
'--

RISC OS 

PROGRAMMER'S REFERENCE MANUAL 

Volume I 

·f. 

Acornf 
r·: 

;.. 

' · 

,.,. 
"1·: 

,..til ~ "'.:. 

,, f 

·. :· 

,... . 
I 



·:·:·:·:·:·:·:···:·:·:·:·:·:·:·:;;.;;;.;;;;;;;;;;:·:·:·:;:;:;:::::::::::;:::;:.;;::::x;:;;;;;;.;;;.,:;.;.;.x;;~;;;:::-:·s»:·:v:;:;;.;.;.;.;.;;;.;.;:;;};;;;;;:~;;;;;;;;;;:;;;:~~:;:·:·: :;.;.;::;:::;;:;:: ·:·:·:·:-: .•.• ·;·.··:·:·:=:·:;::;.;;: ;;;:;:;:·:·:-::=-.~:"»»»:·:·:·:·:·:·:·:·:::::::::::;::::::::: 

1-ii 

Copyright C Acorn Computers Limited 1991 

Published by Acorn Computers Technical Publications Department 

Neither the whole nOf any part of the fnfonnation contained in, nor the product 
described ln. this manual may be adapted Of reproduced in any material form 
except wtth the prior written approval of Acorn Computers Limited. 

The product described in this manual and products for use with it are subJect to 
continuous development and Improvement. All infOfmation of a technical nature 
and partiCulars of the product and its use (including t.he information and 
particulars In this manual) are given by Acorn Computers Limited in good faith 
However. Acorn Computers Limited cannot accept any liability for any loss or 
damage arising from the use of any information or particulars in this manual 

This product is not Intended for use as a critical component In life support devices 
Of any system In whkh failure could be expected to result in personal inJury 

If you have any comments on this manual. please complete the fOfm at the back of 
the manual . and send it to the address given there. 

Acorn supplies its products through an international dealer network. These outlets 
are tramed In the use and support of Acorn products and are available to help 
resolve any queries you may have. 

Within this publication. the term ·sac is used as an abbreviation for 'British 
Broadcasting Corporation'. 

ACORN. ACORNSOfi. ACORN DESKTOP PUBLISHER. ARCHIMEDES. ARM. 
ARTHUR. ECONET. MASTER. MASTER COMPACT. THE TUBE. VIEW and 
VIEWSHEET are trademarks of Acorn Computers Limited. 

ADOBE and POSTSCRIPT are trademarks of Adobe Systems Inc 
AUTOCAD Is a trademark of AutoDesk Inc 
AMICA Is a trademark of Commodore-Amiga Inc 
ATARI is a trademark of Atari Corporation 
COMMODORE Is a trademark of Commodore Electronics Limited 
DBASE Is a trademark of Ashton Tate Ltd 
EPSON Is a trademark of Epson Corporation 
ETHERNET Is a trademark of Xerox Corporation 
HPCL and LASERJET are trademarks of Hewlett-Packard Company 
LASERWRrTER is a trademark of Apple Computer Inc 
LO'nJS 12) Is a trademark of The Lotus Corporation 
MS·DOS Is a trademark of Microsoft COI'poration 
MULTISYNC is a trademark of NEC Limited 
SUN is a trademark ol Sun Microsystems Inc 
SUPERCAI..C Is a trademark of Computer Associates 
TEXIs a trademark of the American Mathematical Society 

:«·:.:.:·:·:·:·:::::;: ·:·: .;;;;;:;.;.;.;:;.;.;::.:··· :·:·:·:·:·:·:=:·:·:·:·:::·:·* ·:·:·:·:·:·:·:-: ·:·:·:·:·:·:·:·:·:·:·:· :·:·:·:··: ·:·:·:·:·:·:«-x·:·:·:·:·:::-:"-c::~;:::-;:;:;.;:;:;.;.:.»:·:.:·:·:::::::::::.;:;:.::;,.-w,;x:::::::::::::::::::::::::;>::::::::::::::-x:~::::=:::>:::::::~::::: 

UNIX is a trademark of AT&T 
VT is a trademark of Digital Equipment Corporation 
1ST WORD PLUS is a trademark of CST Holdings Ltd 

Published by Acorn Computers Limited 
ISBN I 85250 Ill 6 
Edition I 
Part number0470.291 
Issue I, October 1991 

1-iii 





·:·:::.:-:·:·::·=·=~·=·:·:·:·:·:·:·: ·:·:;;.:::::.:::::.: ::;:::::::::::::=:>::::::::::::::::::::::::!!'::::::::::::::::::::r~-:o::::::::::::::::~f.!.::::::::::;:::;::::w:::::'!=~;:;:;:.;::s:;:;:::::::::::..v.:;,~::::::::::::::~=:=::::::::::;::::::.":::;;.:.:·:.:·:·:·:·: 

Contents 
;:;:;:· .:.:.:.:.:.:.:.:.:;:;:;:;:;:;:;:;:;:;:;::·:·· •• :.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:;:;:;:;:;:;:::::::::::::;:;: ;:;:;:::;:;:;:;:;:;::::::::::::::~~;:;:;:;:;:;:;::~:::x:=X:::~:=::::::;:::::::::;:;::=::::::::::::;:::::::: :;:;::::=»-:::!:>.'«::::::::~->.::::::::=::::::::::::::::::::::::;:;:;:;:;:-: 

About this manual 1-ix 

Part 1 -Introduction 1·1 
An introduction toRISC OS 1·3 
ARM Hardware 1·7 
An introduction toSWis 1·21 
• Commands and theCLI 1·31 

Generating and handling errors 1·37 
OS_Byte 1·45 
OS_Word 1·55 
Software vectors 1·59 
Hardware vectors 1-103 
Interrupts and handling them 1-109 
Events 1·137 
Buffers 1-153 
Communications within RISC OS H67 

Part 2- The kernel 1·189 
Modules 1-191 
Program Environment 1·277 
Memory Management 1·329 
Time and Date 1·391 
Conversions 1-429 
Extension ROMs 1·473 
Character Output 2·1 
YOU Drivers 2· 39 
Sprites 2·247 
Character Input 2·337 
The CLI 2-429 
The rest or the kernel 2-441 

1-v 



~=:·:;;;;~::::::::;;;;;;.;.;.;.;.;:;:: :;:;:;:;.;.;:;.;:;:;:;:;:;:;:;:;:;:;:;:;.;:;:;:;:;:;:;:: :;:;:;:;:; :;:;:;:;.;;;:;;;:;;;:e;;;;::;: ;:;:;:;:::::::.::::;:;:x:::::::;;:;:;:;:;:;:;:;:;::~<:=:~;;;:=:;;:;~)';::;:::::::;:;:;:;; ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;;;:;:;:;:;:;:;::.:;:;:;:;:;;:~-:=:~;::;;.::;:;:;:: 

1-vi 

Part 3 - Filing ayatema 3·1 
Introduction to filing systems 3·3 
FileSwitch 3· 9 
FileCore 3·187 
ADFS 3·251 
RamFS 3·297 
DOSFS 3·305 
NetFS 3·323 
NetPrint 3· 36 7 
Pi peFS 3· 385 
ResourceFS 3-387 
DeskFS 3·399 
DeviceFS 3·40 I 
Serial device 3·419 
Parallel device 3-457 
System devices 3·461 
The Filer 3·465 
Filer_Action 3-479 
Free 3-487 
Writi ng a filing system 4·1 
Writing a FileCore module 4-63 
Writing a device driver 4-71 

Part 4 - The Window manager 4·81 
The Window Manager 4-83 
Pinboard 4·343 
The Filter Manager 4· 34 9 
The TaskManager module 4·357 
TaskWindow 4-363 
SheiiCLI 4· 373 
!Configure 4·377 

;;;;;;;;;;;.;.;;:·:·:·:-:- :-:·:·:·:-: ·:·:·:· ·:·:·:·:·:·:·:=:::::::::::;::::::::::::::::::::::::::x:::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::.::::::::::::::;-;:;.v.-:::::::::::::;:;:;x::.::::::::::::;:;:;:;:o:«·:·:;:;:;:; :·:·:·:·:·:·:···· · 

Part 5 - System extenalona 4-379 
Colouffrans 4·381 
The Font Manager 5· 1 
Draw module 5·111 
Printer Drivers 5-141 
MessageTrans 5·233 
International module 5·253 
The Territory Manager 5·277 
The Sound system 5·335 
WaveSynth 5·405 
The Buffer Manager 5-407 
Squash 5-423 
ScreenBiank 5-429 
Econet 6-1 
The Broadcast Loader 6-6 7 
BBC Econet 6-69 
Hourglass 6·73 
NetStatus 6-83 
Expansion Cards and Extension ROMS 6-85 
Debugger 6-133 
Floating point emulator 6-151 
ARM3 Support 6-173 
The Shared C Library 6-183 
BASIC and BASICTrans 6-277 
Command scripts 6·285 

Appendices and ta'*'• 6-293 
Appendix A: ARM assembler 6-295 
Appendix B: Warnings on the use of ARM assembler 6-315 
Appendix C: ARM procedure call standard 6-329 
Appendix D: Code file fonnats 6-347 
Append ix E: File formats 6-387 
Appendix F: System variables 6-425 
Appendix G: The Acorn Terminal Interface Protocol 6-431 

Appendix H : Registering names 6-473 
Table A: VDU codes 6-481 
Table B: Modes 6-483 
Table C: File types 6-487 
TableD: Character sets 6-491 

1-vii 



:;:::::::::::::;:: :;:;:;:;:.;:;;;::::-. .. ~::::~:::;;:;;:;:-;::::::;::w.::;;:;:;:;:; :·:;:;:; :;:;:;:;:::;:;:;:::;:;:;:;:;:; :;:;:;:::;::.:::;::;:;::.:;;.;.;;;:;.;.; ·:·:·:·:·:·:·:-::;:;~;;:;;;::-.z--.<-:.::;::::::::;;;:~:;:;:;:;:;:;:;:;:;:;;;:;:;:;:;:;:;:;:::;:;::•::9.:;:;:;:;:;:;::::<:>:::: .·.··:·:·:·:···· . 

1-viii 

Indices lndlces·1 
Index or • Commands lndices-J 
Index or OS_Bytes lndices-9 
Index or OS_ Words lndices-13 
Numeric index orSwts lndices-15 
Alphabetic index orswts lndices-27 
Index by subject lndices-37 



:~:: .. ~<'/.OX.>:=:~-=~:<-x-::::;:;:;::.:::X:<-::::::: :;:;:;~::::::; :;:;:;:;:;:;:;:;;;:;.;:;.;:;;;: ;.;;;.;:;:;:;.; .;:;:;:;:;:;:;.;.;:;.;.;:;.;:;:;.·. ··:· :·:·: ·:·:·:·:.:-:.-m»:<w::r.:::::::;:::::;;;;.~::::::::<;:.;:,;:«>~>:;:::;:;:;:::::::::::::::::::::.::::::::::::.;.;;:x:::.-

About this manual 
::::::;:-;x::::::=»:=::::::::::::::: =:=:::::::::::=: ::::::::::::::: ::::::::::::::::::::::::::::;;::::::::::::::::;::::::::::::::::::::~:::::::::»-;:".::w::-».::::::::::>.::::::::~::::::~X::::::::::::::::::::::::::::::::::::::::::::::::x::::x::::::::::::::::::::::::::::::::::::::::::::::::::::: 

Summary of contents 

Part 1 

This manual gives you detailed information on the RJSC OS operating system. so 
that you can write programs to run on Acorn computers that use it. 

Part I introduces you to the hardware used to run RISC OS. and to the fundamental 
concepts of how RJSC OS works. 

Parts 2 to 5 

Parts 2 to 5 inclusive give you more detailed information on separate parts of 
RISCOS: 

• Part 2 d~ribes the kernel (or central core) of RJSC OS 

• Part 3 describes the filing systems 

• Part 4 describes the window manager 

• Part 5 describes the system extensions to RJSC OS 

We've laid out the information In these parts as consistently as possible. to help 
you find what you need. Each chapter covers a sped fie topic. and in general 
includes: 

• an lntrO<Iuction, so you can tell if the chapter covers the topic you are looking for 

• an CNnvinv, to give you a broad picture of the topic and help you to learn it for 
the first time 

• T•-'niul Details. to use for reference once you have read the Overview 

• SWl ulls, d~ribed in detail for reference 

• • Co~~t~~tan4s. described in detail for reference 

• Applil;ation nolls. to help you write programs 

• Exa111puprogra111s. to illustrate the points made in the chapter. and on which you 
can base your own programs. 

1-ix 



ConviH!tions us9d 

·.-..:-:.:·: .... :·:·:•~>·•x·:;:.:·:•:•:•:·:·:;;::::::::::::.,-:-;;:.-~;,:~::·:·:·:·:·:·:·:•:-:·:•:·:·:•:·:·:•:•:·:•:•:·:•:•:•:•:•:•:•:•:•:o;;:•:;:::::•:•:•:•::».'>:•:=:>:«;.oox;;;:::::::::::::::•:..;:;:;;.o:::::;:;:::::::::::::.;:-:::•»»:>::>-;~:::-:;:;:.:::::::.;. ;:;.;:;.;.;.;;::.;:;:;.;.;:;.;.;.;. :·.·:·: 

Appendices 

Tables 

The Appendices contain : 

• an Introduction to writing assembler for the ARM chip. on which RISC OS runs 

• lnfonnation or interest to RISC OS programmers writing compilers and other 
language-based tools 

• file fonnats used by current RISC OS appl ications. 

The tables gather together lnfonnation from the whole manual, giving lists that 
you will find useful for qu1d reference. 

Indexes 

The separate volume or Indexes contains. 

• an Index or • Commands 

• an Index of OS_Byte calls 

• an index ofOS_Word calls 

• a numeric index ofSWI calls 

• an alphabetic index ofSWI calls 

• an Index by subject . 

Conventions used 

1-x 

Certain conventions are used In this manual: 

Hexadecimal number• 

Hexadecimal numbers are extensively used. They are always preceded by an 
ampersand. They are often followed by the dedmal equivalent which is given 
Inside brackets· 

&m'F (65535) 

This represents FFFF in hexadecimal. which is the same as 65535 in ordinary 
decimal numbers 

About this manual 
·:~-;.;.;.;. ;.;;;.;.;.:·:·:·:·:-t·:·:·:·:~-;:; .;.;.;.;.;.;.;.;:;:;.;.;:;:;··:; ••••. ;:;:·:;.;.; :;:;:;:;:!=:.;:;:; :;:;:;.;:;:~.;:;.;.;.;.;:;.;.;.;.;:.;.;.;·~0:~-:·:·:•:•:•:·;;;.;.;:;:;.;.;.;:;.;.;.;.;.;.;.;.;.;;;.; .•.•.•.•.•.•.•.;.;;;:;.~·:<-:•:;;:;:;:;:;:;;:;_~;;,:;;.;.;.;.; .;,:.;.y .·.·.·.·.·.·.·.·.·:·. 

Typefaces 

Courier type is used for the text of example programs and commands. and any 
extracts from the RISC OS source code. Since all characters are the same width in 
Courier, this makes it easier for you to tell where there should be spaces. 

Bold. Couri.r type Is used In some examples to show Input from the user. We 
only use it where we need to distinguish between user Input and computer output. 

Command •yntax 

Special symbols are used when defining the syntax for commands: 

• Italics ind1cate that you must substitute an actual value. For example. 
filename means that you must supply an actual filename. 

• Braces indicates that the Item endosed Is optional. For example, (K) shows 
that you may omit the letter 'K' 

• A bar indicates an option. For example. 0 11 means that you must supply the 
value 0 or I. 

Program• 

Many of the examples In this manual are not complete programs. In general : 

• BBC BASIC examples omit any line numbering 

• BBC BASIC Assembler programs do not show the structure needed to perfonn 
the assembly 

• ARM Assembler programs assume that header files have been included that 
define the SWI names as manifests for the SWI numbers. See the chapter 
entitled A" i"tro;w:tio" ID SWis on pa41e 1·21 

• C programs assume that similar headers are included: they also do not show 
the indusion of other headers. or the calling of main(). 

1-xi 



Finding out mor9 

··.·.·.·.·.·.·.·.·.·.·.·.·.::·· :·:::::::;;;:::::::::: .;.;:::::::::::::::;;;::::::.:·:·:=:·:·:·:·:·:·:·:·:·: ·:·:·:·:·:·:-:;:.;.:v:·:>:'-:-::;.:;;;;;:::::•::::::::~:<:;::x:;:y;:;::x«=::::::::: ::::::::.:=:·:·:·:·:·:·:·:·:·: .;.:::·:·:•:=:·:•::::;::::::::::::•:=:•:•-m.•:::::::: :::::::::::.::::::::::~::;;;;;.;::•: 

Finding out more 

Reeder comments 

1-xii 

For how to set up and maintain your computer. refer to the Wtlcoru G~1 supplied 
with your computer. The Wtlco~~t•Gwiolnlso contains an introduction to the desktop 
which new users will find particularly helpful. 

For details on the use of your computer and of its application suite. refer to the 
RJSC OS UwrG~1supplied with it. 

If you wish to write BASIC programs on your RISC OS computer you will find the 
BBC BASIC Gwi4• useful. Other specialist programming languages available from 
Acorn suppliers for RISC OS computers include: 

e DesktopC 

• Fortran 77 

e ISO.Pascal 

If you wish to write programs in assembly language, the O.S~top Ass•~~tblu is 
available from your Acorn supplier. 

If you have any comments on this Manual. please complete and return the form on 
the last page of the volume of Indexes to the address given there. 



.... ' .... 

~
 .... ....,
 

0 a
. 

c 0 .... a
· 
~
 

I I Ill Iii:
 I[ I I Iii!
 r 



ll~ I I !111 



~;::::::::;:; :;.;:;:;;;:;.;:;.:·:·:·:·:·:·:·:···:·:·:·:·:···:·:·:·:·:=:-:-:·:·:·:·:·:·:-:·:.- .;.;;;.;.;-:-:.:-;.;.;;:;.;.;.;.;.;.;.;.;:;.;.;.;.;.;:;.;.:-:·:·:·:·:·:·:-;.;:;.;.;.;.;.;;;.;-:-:·:·}::;:;.; .;.;.;:;.;.;:;.;;;;:.-:;.x-:;:::::::::::~~m.>::::::;:;;:::;.;.:;;.;:;.;;;::::::;:.~-;;: 

1 An introduction to RISC OS 
:~:::::::::::::::::::::=::.;.:.:=::::::::;:;:;:;:;:;:;:;:;:;: ;:;:;:;::·:·::;:· .::-:·::;:;:· .:.:.:.:.:;:.: ;.;.;:;:;:;:;:;:;: ;.;.;.;.;:;:;: ;:;:;:;:;:;:;:;:;:;:;:;:;:;:; ·:·:·:·:·:·.·.·.·.·.·.·.·.·.·.·.:::; :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:~ ;:;:::::~:~;:;:::: =:~: ;:;:;:;:;:;:;::::::::::::::::::: 

Introduction 

Structure 

RISC OS is an operating system written by Acorn for its computers. Like any 
operating system. it is designed to provide the fad lilies that you. the programmer. 
need to control your computer and to get the most out of the programs you write 
for it. 

RJSC OS has a i,-,ttl which contains the main functions that the operating system 
needs. To this are added various 1110IIwlts that extend the system. adding such 
facilities as fili ng systems. a window manager. a font manager, and so on. These are 
called S¥!11111 nllnsion II!OIIults: 

Figure 1. 1 nt structure of RISC OS 

The modules and the kernel provide their facilities very similarly, and there are few 
occasions when you will be able to distinguish whether the facilities you are using 
are provided by the kernel or by a system extension module. You are most likely to 
notice the difference if you wish to alter or replace part of the operating system. 

1-3 



Facililkls 

• ·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:-;.;. :-:·:·:·:·:·:-::X.:-;-::::, •••• ,........;c~::::::...... ---~ ---=::::.::~:::-:-::::~-:-:-:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·: ·:·:·:·:·:':·:·:·:·:·:·:·'=""'-: '::: 

Facili ties 
You can v.ew RISC OS as a collection of routines that provide you with a wide range 
of .facilities. You can get a aood overview ol the range that is COYered from the 
earlier CoAIIots pages of this manual 

This collection ol routines can be broadly d1vlded into three levels: 

• those that RISC OS Itself uses to automatically perform low-level tasks. such 
as iotvrtq~ lta.Yiiog 

• those that provide sophisticated and powerful interfaces for you to use from 
prot~rams. which are known as So{l~>«ff l ol~m~pts, or SWis for short 

• those that provide simpler calls that can be used from the command line as 
well as from prot~rams- these are the • Co111ru.Ys that you are probably 
already familiar with. 

There are chapters later In this part of the manual that cover the above topics in 
more detail. They are entitled: 

• lol~m~pll •*lta.Y~rtg '""' 
• Ait iolr~"'lioA to SWis 

• ' Colli~~~«* I a.Y t'- CLI 

Altering and extending RISC OS 

1-4 

You can easily alter or extend RISC OS. because so much of it is written as 
modules 

Modules 

Each of these modules confonns to a standard. which means that the facilities 
provided by the module are mtearated mto the system as if they were built-in'. You 
too can write modules that conform to th1s standard. so you can add thinas to 
RISC OS as you please 

You can also rewrite any of the standard RISC OS modules. Your replacement must 
provide the same entry points. and return values in the same way- but its internal 
workinas can be functionally different See the chapter entitled Mo;lul.s on 
paae 1·191 forfurther details 

An introduclion 10 R/SC OS 

.. :-... ':':~·_.,.,::::_--:·.-:-:--r~---~---)ir;;.mv_:;:w:«~ -:-:-:-:~:-:-:::-:-:-:-:-;;;.;:;.;:;:;:;:;~;:;:;::· • •••• w .. 'I'N.·.:·:·· 

Vectors 

Because the kernel is so Jarve. lt would not be easy for you to change It In the Silme 
way. You can instead make changes bv usina ..am 
A vector is a chain of entries that R1SC OS uses to deode where to pass control to 
so it can perform a aiven function. Most vectors are used bv SWis. You can dai111 a 
vector. and redirect those SWis to axle of your own. Your axle must accept the 
same input and provide similar output to the orlainal SWI. but It can behave In a 
totally different manner -Just as if you are replacina a module. 

Some vectors are used bv Just one SWJ. but others are used by several SWis that 
perform similar functions. You can change how a whole a roup of SWJs behave by 
daiminaJust one vector- for example, SWis that out.put characters. 

A few vectors are not used by SWis at all. but instead by other parts of RJSC OS. to 
perfo"" functions for which SW!s do not pro.ride an Interface. 

For more information. see the chapter entitled So{llliltlrr ""ton on paae 1·59. 

How RISC OS Is written 
Much or RISC OS- indudina the kemel- fs written In ARM assembler. Some other 
parts- such as the FilerAction system extension module- are written m C. and so 
need the Sftarlll C Liirary to work. 

Of course. RISC OS can only be used on ARM·based computers 

To use RISC OS effectively. it helps to have a workina knowledae of the ARM 
processor and of ARM assembler yourself. The chapter entitled ARM Harol~>«rton 
page 1·7 provides a brief introduction to the ARM processor and the set or ch1ps 
that support it. The appendix entitled App.uix A· ARM u_....,_ on p~~e 6-295 will 
aive you a more detailed introduction to the ARM's assembly lanauaae 

How RISC OS Is supplied 
Because RJSC OS ts relatively compact. It Is alSt~ffedlve to supply It In ROM 
chips. This also has advantages: 

• it is much faster to start. as it does not need to be loaded into memory 

• it cannot be easily lost or dama&ed. unlike disc-based operatina systems. 

There is an attendant disadvantage: 

• it is harder to uparade ROMs than a disc. 

In practice. uparades are done by patches that dalm vectors or repl~ modules. as 
outlined above. 

1-5 



The history of RISC OS 

~::::::::::::::::•:::::::::~::o:::;:;;:::;;:::::;o~ ..... -:~":>.o:<:~~~.:ox::«::;:;::::;:;;:;:;,.~::::::-.. ::-:::::::::::::::-:o::mx•:::w.::•:;::;~«o;;:::::: ::::::: =:=:=:-:::·:·:·:;: :-:·:·:·:·:·:·:=:·:·:-::: -:·:·:=:·:=:·:=:=:·:·:·:·:·:·:·:-:·:·:·:·:·:·: -:-:-:.;·:·:·:= :•:::v: 

The history of RISC OS 

1·6 

Arthur 

This manual describes RISC OS 3. which was developed from RISC OS 2. This in 
tum derives from the Arthur operating system, which was the original operating 
system written for the Archimedes computer. 

1\vo different versions of RJSC OS 2 were released: 

• RJSC OS 2.00 was the original release 

• RISC OS 2.01 was a later release which added support for the Archimedes 500 
series machines: it was not fitted to other machines. 

The differences between these two versions are so few. that •nl- we need to 
dlffere•U.te betwee11 til em we shall refer to them both as 'RISC OS 2'. 

RISC OS is designed to be as compatible as possible with Arthur. Consequently, it 
supports some features of Arthur which have now been superseded. One example 
is the interrupt handling system. which has been much improved under RISC OS. 
However, old-style interrupt handlers written to run under Arthur will still work. 

There are very few remaining users of Arthur. and we consider it to be obsolete. You 
should not worry about making your programs compatible with Arthur. 

In view of this. we do not distinguish features and facilities that are available under 
RISC OS but not under Arthur. However. you will find most of the facilities of Arthur 
described in this manual. because they have been subsumed into RISC OS. lf you 
need full details of how Arthur did things, so you can maintain o ld programs. you'll 
have to refer to the Progr•111111m Rt{trtrtU Muwrl that was released with Arthur. 
Don't throw your old manuals away- keep them! 

Some minor parts ofthe Arthur operating system. which were in the Progr«111111m 
Rtfm"u M•"wrl released with Arthur. are not in this manual. This is because we 
now consider them to be obsolete. even though they're generally still supported. 
Instead. we've documented the preferred way of getting the same results under 
RJSC OS. Likewise, some other parts of Arthur are only referred to in passing. 

RISC OS 2 documentation 

Because many users may prefer not to upgrade from RISC OS 2 to RISC OS 3. we 
advise you to write applications so that they will still run under both versions. This 
will maximise your potential market with very little extra effort. 

To help you in this. we say explicitly whenever a facility or feature is spedfic to a 
version of RISC OS. We've derived this manual directly from the RISC OS 
Progr•111111n's Rt/m"u M•"wrl written for R!SC OS 2: any other changes or additions 
you notice have been made to improve clarity and accuracy. 



·:·:·:·:·:~:~:-:~:;;;;.;;;;;;;.;:;:;:;: ;:;:;:;;;;:;;»:>:o:;;;;:;:;:;;;;;;:;;;.;:~:-:;:;;.;. .. :o:-:-:.:;:->:«·:·:·:-:·:·:·:·:-: ·:·:·:·:·:-:::·:·:·:·:·:·:· :-:·:·:·:·:·:·:·:·:·:· :·:·:···:·.·.·.-::;.;.;.;.;:;.; :;:; :;.;:;:;:;:;:;:;:;:;:;:;:;;~::~::;:;:::;:::::::;;;::::::-':-»~·:·:·:·:···· 

2 ARM Hardware 
;:;:;:;:;:;:; :;:;:;:;:;:;:;:;:;:;:;:;:;:;::, ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:; :-:;:·:;:;:;:;: ;:;:;:;:;:;:;~::::::::::::~~::.:~::~:;:;:-.:::;~:;:;:;:;:;:;:;:::::::::;:;:;:;:;:;~:;:;:;:;:;:;:::::;:;:;:;:;:;:;:;:;: ;:;:;: ;:;:;:;:;:;:;:;:;~;:;:;:;:;:;:;:;:;:;:;:;:;:;:::;:;:;:;:;::::::::-.. ;..::;::::~:::: 

Introduction 

ARM chip set 

To get the most out of your RISC OS computer, some knowledge of the hardware is 
important. This chapter introduces you to tho5e features that are common to all 

RJSC OS computers. 

Each RJSC OS computer has a set of four chips in it, all designed by Acorn 

Computers Limited: 

• an ARM (Acorot RISC ~c.ii111) processor. which does the main processing of the 

computer 

• a VJOC (Vi4.o CD•IIroiiD) chip, which prOYides the video and sound outputs of 

the computer 

• an JOC (l•pwt Oltll"'l Co~ttroiUr) chip. which provides the facilities to manage 
interrupts and peripherals within the computer 

• a MEMC (M,,.ory Colllrolwr) chip, w hich acts as the Interface between the ARM. 
the VJOC chip, Input/Output controllers (indudln& the IOC chip), and the 

computer's memory. 

TQ~~ether these chips are known as the ARM c.iip ut. 

Other components 

The other main electronic components of a RISC OS computer are: 

• ROM (RIU 0111!1 MtiiiDJ"Y) chips containin& the operatin& system 

• RAM (RA~t.lo,. huss Mt,.ory) chips 

• Peripheral controllers (for devices such as discs, the serial port, networks and 

soon). 

Exactly which components and devices are present will depend on the model of 
computer that you have; see the Guides supplied with your computer for further 

details. 

1-7 



ARM chip sst 

.;:;.;:;.;:;:;.;.;.;:;.; ·:·>:·:·:·:·:·:·:·:·:·:•:~:;.;:;;;;;;:.;;:-,:;~;,;;:;;~;:x;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.;:;:: :;:;:;:; .;:;:;:;:;:;. ;:;.;.;::·:·:·:·:·:·::.YM:<:;:<::»...._-:.:>:::::::;.;:;:; :;:;:;:; .;:;:;.;.;:;:;.;.;.;:;:;.;:;:;.~;;:.;<:;;::.;.;:::,.w..:;:,:;;:;:;.;::::-:;.-«-:::::::::;:;::;:;:;:;:·:··· 

1·8 

Schematic 

The diagram below gives a schematic of an Archimedes 400 series computet which 
may be viewed as typical of a RISC OS computer: 

Figurt 2.1 Arc~illdurt of an Arc.~illtttlrs 400 srms Wlltpltllr 

ARM Hardwars 
:·:·:·:·:·:·:·:·:·:·:·:·:;;.;:;;;:;.;:;.;;;:;:;;;;;;:-~:;:-.. ~·::r.::;:;:;:;:;:;~~:x:::::;:;:;::~: :;:;:;:;:;: ;:;:; :~;:;:; :;:;:;:;:;:;:;:;:;:;:;.;:;:;:;:;:;:;:;:; :;:;:;:;:;:;:;:;.;:; :;.;:;:;:;:;:;:;:;:;:;.;:;:;:;.;:;.;: ;.;.;.;.:;;.;:;.;::::::::::~:: ;:;:;:;.;.;:;::.::-:.::;:.. ..... -...-.;::;:::;:;:;: 

The ARM processor 

The ARM Is a RISC (Reduced Instruction Set Computer) processor- it has a 
comparatively small set of Instructions. This simplidty of design means that the 
instructions can be made to execute very quickly. 

RISC and CISC processors 

A traditional CISC (Complex Instruction Set Computer) processor. as used for the 
main processor of a computer, provides a much larger and more powerful range of 
instructions, but executes them more slowly. 

A CISC processor typically spends most of the time executing a small and simple 
subset of the available instructions. The ARM's instruction set closely matches this 
most commonly used subset of Instructions. Thus. for the mafority of the time, the 
performance of the ARM is higher than that of comparable CISC chips; It is 
executing similar instructions more quickly. 

The more complex instructions of a CISC chip are generally only occasionally used. 
For the ARM to perform the same task. several instructions may be necessary. Even 
then. the ARM still has a comparable performance, as it is repladng a single slow 
instruction by several fast instructions. 

Advantages of RISC 

In summary, the simple RISC design of the ARM has these advantages: 

• it has a high performance 

• it uses much less power than comparable CISC chips 

• it is cheaper to produce than CISC processors. malting RISC OS computers 
cheaper for you to buy 

• it is much simpler to learn how to program the chip effectively. 

ARM 2 and ARM 3 

Currently Acorn uses two different versions of the ARM processor. The newer 
ARM ) is clocked at about three times the speed of the older ARM 2. and has a 
4Kbyte on-chip cache. These two features mean that it delivers some three times 
the power of the ARM 2 (13.5 million instructions per second. or MIPS, compared 
to some 4 • 5 MIPS for the ARM 2). 

From the programme(s point of view. there is little difference between the two 
processors. The ARM 3 supports the full instruction set of the ARM 2. and provides 
a few extra instructions all but one of these Instructions are used to control the 
ARM l 's cache. 

1·9 



Th9 ARM proctJSsor 
.;;;::~:-:-:::~;:.-;;o:::::::::•::::::;;;;::;:;:;:::::::::-.::::::-:;x~:::•::-~:=~::::::·:···· ·•· · '•.;;;.;.;.·.·· ;;;.;.;.;;;;:·:·:·:·:·:·:·:·::;.;:;:;.;.;.;.;.; :;:;:;:;:;:;: ;:;:; 

1-10 

Word size 

The ARM uses 32 bit words. Each instruction fits In a single word. At any one time, 
the processor is dealing with three instructions: 

• one instruction is executed 

• the next Instruction is simultaneously decoded 

• the one after that is fetched from memory. 

The ARM has a 32 bit data bus, so that complete instructions can be fetched in a 
single step. Its address bus is 26 bits wide. so it can address up to 64 Mbytes of 
memory (16 Mwords). 

Processor modes 

The ARM has four different modes it can operate in: 

• User Mode. the mode normally used by applications 

• Supervisor Mode (SVC Mo.lt) used mainly by SWI instructions 

• Interrupt Mode (IRQ Mo<lt) used to handle peripherals when they issue 
interrupt requests 

• Fast Interrupt Mode (AO MO<It) used to handle peripherals that issue fast 
interrupt requests to show that they need prompt attention. 

The last three modes are privileged ones that allow extra control over the 
computer. They have been used extensively in writing RJSC OS. 

Changing mode 

Note that if you force the ARM to change mode (usually done using a variant or the 
TEQP instruction) you mut follow this with a no-op (usually done using 
MOV RO, RO). This is to 1110iol co"u"tion. giving the ARM time to finish writing to 
the registers for one mode before switching to the other mode. 

ARM HardWar9 

· · -;·:·.:·:·:·:·:=:-::;.;;:::::·:·:-:::::::: ::::;.:::::::;:::::::::::::::::~ :::::;.;:;:;:;:;:;:;:;:;:;::::::::::::::::::;::~:::.:;.;o;o;;;:;w.•:::.:•w-;:~::-.s-m:;:;:::zr-:..-.:::::::::-:::::::::;:::::::::•:::•:::•:~::::::·:-~::::•:·:~·:-:·:-';;:;::•;;::;.:·:·:·:·:·?.-'n:«<:;:;:-:-:o;;:.:.:·:·:·:·:·:····· 

Registers 

The ARM contains twenty-seven 32 bit registers: you can access sixteen or these in 
each or the modes. Some or the reaisters are shared across different modes, whilst 
others are dedicated to one mode. In the diagram below, registers dedicated to a 
privileged mode have been shaded light grey: 

Fig.m 2.2 ARM rrgistm 

Only two or the registers have special functions: 

• R 15 is used as the program counter (PC) and program status register (PSR) 

• Rl4 (and Rl4_svc. Rl4_irq. Rl4_fiq) are used as subroutine link registers. 

One other set or registers is conventionally used by RJSC OS for a special purpose: 

• RIJ (and Rl1_svc, Rl1_irq, Rl1_fiq) are used as private stack pointers forthe 
different processor modes. 

All the remaining registers are general purpose. 

1-11 



The ARM proc96scr 

:·:-:::::.:·:·:·:·:~:;-,.;.;.:-:-:-:::·:·:-:•:-:·:•:::•:·:::·:·:•:-:·:•:•:·:·:·:·:·:·:·:·:·:·:•:·:·:·:·:·:·:·:•:·;;.;;;;::::::;;:;:;:•:•:•:•»»:•::;:;.:•:•;;:::::::::::::::.:•:•:•:•:=:-:::::·:·:-:.:·:·:.;-:.:·:~.:::::::::::::::::::::::::::::::::::::::::::::::::•:;;•:•:•:•:;;:.:.;;::::.:::.:·:·:.:v:·:•:·::x.:.·:::.: 

1-12 

R15 - progrem counter end etetue register 

Rl5 contains 24 bits of prosram counter and 8 bits or processor status realster: 

31 30 29 28 27 26 25 ... . .. 2 1 0 

I N I Z I C I V I I J F I Program Countw (PC) I Mil MO I 
Fifwn 2.3 Bit ltUfr i11 RIH~ ~~PC •Ill ~~ PSR 

• bits 0 and I are the processor mode Oags MO and M I 

00 Usermode 
01 FlOmode 
10 IROmode 
II SVCmode 

• bits 2 - 25 are the program counter 

• bn 26 Is the FlO disable Oag F 
0 Enable 

Disable 

• bit 27 Is the IRQ disable Oag I 

0 Enable 
I Disable 

• bits 28- 31 are condition nags: 

V oVerflowOag 
C Carry Oag 
Z Zero Oag 
N Negative Oag 

The program counter must always be word aligned. and so the lowest two bits of 
the address must always be zero. To maJCimise the available address space. these 
two bits are not stored In R 15. but are appended to the prOf! ram counter when 
retching Instructions. thus rorming a 26-bit address. 

R14 - subroutln. link registers 

Rl41s used as the subroutine link reaister. and ~ivesacopyorthe return PC and 
PSR when a Stanch and Link Instruction is executed. It may be treated as a general 
purpose realster at all other times Similarly. Rl4_svc. R 14_irq and R 14_1iq are 
used to hold the return values or Rl5 when interrupts and exceptions arise. when 
Stanch and Link instructions are executed within supervisor or interrupt routines. 
or when a SWI instruction Is used. 

:..:::;;.:;;,;;;;:;:;:;:;:;: 

ARM Hardware 
·>:·:·:·:=:·:·:·:-=·=·:·:·:·:·:· :-:·:·:=:·: :·:·:-:-:::.:·:·x·:-:·:·:·:·:·::.~:::.:::•:•:~·=·:·:·:::•:•:-:•:-::-~».-.:·:·:•:•:•:·:•:•:•:•~»>x,.;:::;:;:•:-: ·:·:·:·:·:·: :;.;.;.;.;:;:;:;:;.;:;:;:.:···· 

R13- prlvete steclc pointer• 

Rl3 (and Rl3_s-.c. Rl3_1rq and Rl3_flq) are conventionally used by RISCOS as 
private stack pointers ror each or the processor modes. 

1r you write routl nes that are called rrom User mode and that run in SVC or IRQ 
mode, you will need to use some or the shared registers RO to Rl2. You will 
thererore need to prese!Ve the User mode contents on a stack berore you alter the 
reaisters. and res1ore them before returning rrom your routine. 

Note that the SVC and IRQ mode stacks must be full descending stacks. ending at 
a megabyte boundary You are stronaly advised not to change the system stack 
locations: if you do 1\a-.oe to. you must be aware that they are reset to their default 
positions when errors are generated. and when applications are started. 

FlO routines need a faster response. so there are seY'en private reaisters in FlO 
mode. In most cases these will be enough ror you not to need to use any or the 
shared registers. and so you will be spared the overheads of saving them to a stack. 
lryou do need todoso. you should rorconslstency use Rl3_fiq as the stack 
pointer. 

You can use Rll and/or Rl3_flq as conventional registers lryou do not need to use 
them as stack pointers. 

Instruction set 

You will find details or the ARM's Instruction set In the appendix entitled Appe-.J.ix 
A: ARM •mr~~bltr on page 6-295. 

The VI DC chip 

The VIDC chip controls and provides the computer's video and sound outputs. The 
data to control these systems Is read rrom RAM Into buffets in the chip, processed, 
and converted to the necessary analogue signals to drive the display's CRT guns 
and the sound system's amplifier 

The VIDC chip can be programmed to pr011ide a wide range or dirrerent display 
rormats. RISC 06 uses this to 1Jive you its dillerent screen modes. Likewise. you 
can program the way the sound system worlts 

Buffers 

The VIDC chip has three burrers for Its Input data These are used ror· 

• videodata 

• cursor data 

• sound data. 

1-13 



Tlul VIDC chip 

.;.;.;.;.-..,:.;.;.~y;;.;;S',;:.;.;.;.:-:-;.;.;.;.;.;.;.;.;.;.:-:·:·X·%•;<!-;f!:-~::-.."!-"'~·~~~C:~~::'"':·:·~·~-:~ -~··$;: ___ ";.; __ ,;.::;;~: ••• ;:~:-:.::.:-:-:::-:-:-:-:-:-:-:-:-:-:-:-:-:-:·:·:·:·:·:·:·:·:·:·:·:·:·:·:•:•:•:.;-:.;.;.:.:•:•: 

1-14 

Video 

Each of these buffers Is a AFO lfirst-in, first-out) ~VI DC chip ~uests data from 
RAM as it is required. USin8 blocks of four l2·blt words at a time. The MEMC chip 
controls the addressin8 and fetchin8 of the data under direct memory access 
IDMA) control 

Data from the video buller Is seriaflsed by the VJOC chip into I , 2. 4 or 8 bits per 
pixel. The data then passes throu11h a colour look-up palette. The output from the 
palette is passed on to three 4·bit digital to analogue converters IDA<J). which 
provide the analogue signals needed to dnve the red, green and blue cathode ray 
tube (CRT) guns in the display monitor 

The palette has 16 registers. each ol which is 13 bits wide. This supports a choice 
lrom 4096 dillerent colours or an external video source. 

The registers that control the video system give a wide choice of display lormats: 

• the pixel rate can be selected as 8, 12. 16 or 24 MHz 

• the horizontal timing can be controlled in units or 2 pixels 

• the vertical timing can be controlled in units or a raster 

• the screen border can be set to any olthe 4096 possible colours 

• the width of the screen border can be altered. 

If needed, support is prov1ded for. 

• interlaced d1splays 

• external synchronisation 

• very hi8h resolution monochrome modes (up to 96 MHz pixel rate). 

Cunor 
The cursor data controls a pointer that is up to 12 pixels wide, and any number of 
rasters high (although RISC 05 restncts the cursor to a maximum of 32 rasters in 
height) Its pixels can be transparent (so the cursor can be any shape you desire). 
or can use any three of the 4096 possible colours. 

The cursor may be positioned anywhere on the screen within the border. 

Sound 

TheiOC chlp 

ARM Hardware 

The sound data consists of dfcital samples of sound. The VI DC chip can support up 
to ei8ht separate channels of sound. It prOYides ei8ht stereo image registers, so the 
stereo position of eadt channel can be independently set 

The VIOC chip reads data from the buffer at a protrammabfe rate The data is 
passed to an eight bit DAC. which uses the stereo I!Tia8e registers to convert the 
digital sample to a stereo anaque signal. This is then output to the computer's 
Internal amplifier. 

The IOC chip provides the facilities to manage interrupts and peripherals within 
your RISC OS computer. It controls an 8 to 'J2 bit Input/Output (VO) data bus to 
which on·board peripherals and any VO expansions are connected. lt also provides 
a set of internal functions that are accessed without any wait states, and a flexible 
control port. 

Internal functions 

The following Internal functions are provided by the IOC chip. 

• Four independent 16 bit programmable counters 1Wo are used as baud rate 
generators- one for the keyboard, the other lor the serial port . Another 
{TIIIW 0) is used to generate system timing events. The last timer (Ti...,. I) IS 
unused by RISC 05, and you can protram it for your own purposes 

• Six programmable bidirectional control pins 

• A full-duplex, bidirectional serial keyboard interface. 

• Interrupt mask.. ~uest and status re11isters for both nonnal and fast 
interrupts. 

Peripheral control 

The IOC is connected to the rest of the ARM chip set by the system bus It provides 
all the buffer control ~uired to interface this hi8h speed bus to the slower 110 or 
expansion bus. The JOC supports: 

• sixteen interrupt inputs 114 level sensitive. 2 ed~je-trig8ered) 

• seven external peripheral select outputs 

• four programmable peripheral timing cycles (slow, medium. last and 2 MHz 
synchronous). 

1-15 



The MEMC chip 

;.;.;.·.;.:-:·:·:·:·:·:·:.!:·:·:-:··· ···:: •••• ;.;.;.;::-:·:·:·:·:·:·:·:::-:;;.-::::::;.;:;:;:;;;.;:::::::;::::::::::::;::::::;:::;::;;:::::::;:::::::::::::::;:;::::::;. .. -:::.-:.:-~~=::::::::::::::::::-::::::::::::::::::::;::::~;f(.::::::::::::::::::::::::::;:;.;:;;;~::;:;.;.;:&;;.;:;:;.;;:.;::~:;:;.::::;:::: 

Both the IOC and peripherals are viewed as memory-mapped devices. Most 
peripherals are a byte wide. and word aligned. A single memory instruction (LDRB 
to read. or STRB to write) can be used to: 

• access the IOC control registers, or to 

• select both a peripheral and the timing cycle it requires. and access it. 

The IOC can support a wide range of peripheral controllers. including slower. 
low-cost peripheral controllers that require an interruptible VO cycle. 

The MEMC chip 

1-16 

The MEMC chip interfaces the rest of the ARM chip set to each other and to the 
computer's memory. It uses a single clock input to provide all the timing signals 
needed by the chip set. 

Memory support 

MEMC provides the control signals needed by the memory: 

• timing and refresh control for dynamic RAM (DRAM) 

• control signals for several access times of read-only memory (ROM)- 450ns. 
325ns. and 200ns. 

Up to 32 standard DRAMs can be driven. giving 4 Mbytes of real memory using I 
Mbit devices. 

Fast page mode DRAM accesses are used to maximise memory bandwidth. so that 
slow memory does not slow the system down too much. 

Memory mapping 

RISC OS computers use MEMC to map the physical memory into a 16 Mbyte slot. 
the base of which Is at 32 Mbytes. RISCOS does not address this slot directly, 
though: Instead it addresses another 32 Mbyte logical slot within the 64 Mbytes 
logical address space supported by the ARM's 26-bit address bus. Each page of the 
slot that RISC OS addresses can be: 

• unmapped 

• mapped o nto one page of the logical memory 

• mapped onto many pages of the logical memory. 

RISC OS can only read and write from pages that have a one-to-one mapping. 
One-to-many mapping is used to 'hide' pages of appl ications away when several 
appl ications are sharing the same address (&8000 upwards) under the Desktop. 

ARM Harrfware 

·!·!·!·!·!·!·!·!·:·:·:·:·:·:.:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:· ;.;.;:;.;:;:;:;:;:; .;.;;;:;:;:;:;:;: ;:;:;:;::::=::-:~:>."::::::~::::::;.:::::<.~-:·:·:::.;·:·:-::-:. !·!·!·!·!·!·!·!·!· ;:;.;:;:;:;::·:·:·:·:·:·:·:·: .;.;.;:;:;.;.;.;.;.;.;!;.;.;. :-: ·!·!·!·!·!· ;:;:;:; :;:;:;:;:;:;:;.;::·:·:·:·:·:-;.:-~ 

The computer's physical memory Is divided into physical pages. Likewise. the 
32M bytes of logical space is divided into logical pages of the same size. MEMC 
keeps track of which logical page corresponds to which physical page, mapping the 
26 bit logical addresses from the ARM's address bus to physical addresses within 
the much smaller size of RAM. 

Pagealze 

MEMC has 128 pages to use for its memory mapping. Each page has its own 
descriptor entry held in content-addressable memory (or CAM). This simple 
structure allows the translation (of logical address to physical address) to be 
performed quickly enough that it does not Increase memory access time. 

In general. all 128 pages are used to map the RAM. Note that this is not always the 
case: for example, the Archimedes 305 uses only 64 pages. 

If MEMC does use all 128 pages (or any otherco•.ta•t number). then: 

• as the size of the computer's physical memory increases. the size of each page 
increases- a larger amount of physical memory is being split into the same 
number of pages 

• as the size of each page Increases, the number of logical pages decreases -the 
same amount of logical memory (32 Mbytes) is being split into larger pages. 

MEMC adresses a maximum of 4 Mbytes of memory. Machines with more than 
4 Mbytes fitted have an extra MEMC chip slaved to the master MEMC chip for each 
additional4 Mbyte fitted . so the page sizes are the same as for a 4 Mbyte machine. 

The table below shows this. The values are those used in Archimedes computers. 
and may be viewed as typical of RISC OS computers. They should not be relied on 
for programming though: future RISC OS computers may not use 128 pages per 
MEMC chip, leading to anomalies such as those in the first row (the Archimedes 
305): 

F'i!/ure 2.4 P•gt sius fur Arcltirui.ts C.OIIlputm 

1·17 



The MEMC chip 

-:-:-:-:-:-.-.~-:~.;;.;.:.:-:-: ·.-:.;-:-::...-;..-.· .. "".... ~~ccncc:c~~=: ·:~:: :: ;Q: :c =~::.: ••.••• ~~..::.z:-:-;.:.:-:-:v:.-.. :«-:-:;:-:-:-:-:-:-:-:-:-:-:.;.: 

1-18 

If you~ to find out a machlne·s paaes12.eand soon. useOS..ReadMemMaplnlo 
(SWl &51) 

Number of .,-ges progremmed 

RJSC OS pr~rams a minimum of 256 pages. even if it actually uses fewer pages. 
This is so that 

• random hits in the unused pages don•t happen 

• extra MEMC chips can be slaved to the master MEMC chip. allowing machines 
to support 8 Mbytes or more of real memory 

Protection levefe 

Three protection levels are provided: 

• Supervisor mode- this Is the most privi leged mode. that allows the whole 
address space to be freely accessed: It is available from all the ARM privileged 
modes (SVC. IRQ and FlO) 

• Operating System mode- this Is more privileged than User mode when 
accessing logically mapped RAM. but acts as User mode in all other cases 

• User mode- this Is the least privileged mode. allowing access only to 
unprotected pages in the logically mapped RAM. and read cydes to the ROM 
space 

If an attempt is made to access protected memory from an insuffidently privileged 
mode. MEMC traps the exception and sends an abort signal to the ARM. 

RISC OS does not use the Operating System mode 

ARM HatriWare 

$;;;.: .m •• :·:~:·~-~:.-:-. :-::::-:-:·:·:-:;;::-:·:-~»:~;:;:::;;;;::..-~,;-;;~~~:«-»:«:-:-~--.. •·······:":fc'~-:~-x-~-... 

Memorymep 

The resulting memory map is shown below. You can only access the areas shaded 
grey 1f you are in one of the ARM·s privlleaed modes (SVC. IRO or AO). which force 
MEMC to Supervisor mode by holding a pin high· 

DIIA eupport 

Reed Witt. 

AOM(hlgh) 
Logat to Phytal 
Addt- T,..,.tor 

DMA~ 
Genendorw 

ROM (Iow) 

: VIdeoContJOII« 

lnpu~tpul Conrollerl 

Physically Mapped RAM 

Loglcaly Mapped RAM 

Hnlldchee 

3FFFFFF 

3800000 

3800000 

3400000 

3000000 

2000000 

0000000 

F".,..n 2.5 M.~~~ory .. , tf a lf,UI RISC OS~ 

MEMC also provides three programmable address aenerators to support direct 
memory access (OMA). They support: 

• a circular buffer lor video refresh 

• a linear buffer lor the cursor sprite 

• double buffers lor sound data. 

1-19 



Finding out mor9 
::::::'::::::: :::::::::::::::~·:;»:-::-:·:·:·:·: ·:·:·:·:·:·:·>:·:·:·:·:-:-:-:·:·:;:·:·:·:·:·:· :·:·:·:;:::::::::.:::::;;.:::::::::::::::::::::::::::::~:=x ::::::::::::::::::::::::::::::::::::::::::::::::;:::::::.:::::::::::::::::::=:: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::<::::::-:-·· 

Finding out more 

1-20 

If you ~to find out more about ARM assembler and the ARM chip set, there are 
a number or sources you can tum to: 

• ARM assembler is summarised in the appendix entitled l\pp1"iix A: ARM 
asur~~bkr on page 6-295 

• ARM assembler is thoroughly covered In the manual supplied with the Dcsitop 
A5str~~bl~r, available from your Acorn supplier 

• The ARM chip set Is described in much greater detail in the At.ont RJSC Mcc~iru 
far~~ihj O.ta Mcnwll. VLSI Technology Inc. ( 1990) Prentice-Hall, Englewood Cliffs, 
NJ. USA: ISBN 0.13·781618-9. 

In addition, a number or other publishers have produced books covering these 
topics- such is the interest in the ARM chip set. 



;:;:;:;:::::m:;.:-;;;.;;.:;;:;:;.;:;;:-.y;m--:.;..-;:v..;::;;.;.;.;;;.;.;:;.;.;.;:;.;.:·:·:·:·:·:-:-:.;.;.;.:·:·:·:·:·:·:·:·:·:=:·:·:·:·:·:-::;:;:;:;:;.;.·. ··::: :·:=:·::::::;.;::::::::::::::::::::::::;:::;::::x::~;:::;x:x:::.::::::::::;;;;::~~x:r.:;-.. -:;.-.;.:;.o;:.:;:-»:>n:·:·:·:.: 

3 An introduction to SWis 
·:;:;:;:;: :::::=.:.::'*:;:;:;:;:;:;:;:;:;:;:;:-;::::::::x-.:»'>~~:;:::~::::::::::::::::::::::w-~::;:::::::::;::::::::::'$W~:~::::::;::;::;x;:;:;:;:::;:;:::::;:;:;:;:;:;:;::::::::::::::::::::::::::::::'::::::::::::;:;:;:;:;:;:;::::::r.:.::::::::::;:;:;::::r«.X:::: 

Introduction 
The main way you can access the routines provided by RISC OS is to use a SWI 
instruction. SWI stands for SoftWare l ntenupt. and is one of the ARM's built-In 
instructions. 

In brier. when you issue a SWIInstructlon, the ARM leaves your proeram. It jumps 
to a fixed location in memory, where there Is nonnally a branch instruction into the 
RISC OS kernel code. This code examines the SWI instruction, and determines 
which particular OS routine you wanted. This is called. and when it is finished, 
control returns to your proeram. 

The rest or the chapter will explain how to call SWJs from different languages, and 
follow how a SWI works in rather more detail. 

SWI numbers and names 
RISC OS can work out what routine you require because the SWI instruction code 
contains a 24-bit lnfonnation field which identifies a routine uniquely. This field is 
known as the SWI '"',...,., The section entitled SWI "w,.Nn i11 u r.il on page 1-24 
describes how SWI numbers are allocated. 

RISC OS provides several hundred different SWis. You would find it difficult to 
remember what function each SWI number corresponds to, so each SWI also has a 
name. These names are held in the RISC OS ROMs. and in any system extension 
modules that have been loaded. 

Parameters and results 
Obviously, you need to be able to pass values to SWI routines (pllruutm). and 
must be able to read values back (rl!wlls). The ARM registers are used to pass 
information between the user and RISC OS. In general. you will use RO to pass the 
first parameter. and then enough registers after that to pass the rest. 

• Note that the mechanism ror calling SWis from BASIC will only handle 
registers RO • R7 inclusive. For this reason, parameters are normally restricted 
to these registers. 

Fortunately it Is rare that a routine needs to use more than 4 or 5 registers. 

1-21 



An example 

·*:>;:;;;;;;;;;:;.;:;;;;;:;:;;;;;;;;;:;:;;>;.:·::;:;:;;;:;:;:;;;:;:;:;:;:;:;:;:;:;::::-:-:W.X«-:-Y:..:•:•:·:;:.;.;..;.;.;.;.;.;.;.;.;.;:;.;·:·:·:•:•:·:·:·:·:•:·:·:·:· ;.;.;.;.;.::.;.:,.;.; ·:-··:·:·:·:·:·:·::;.;.;.;-;::~;.;;;.;;;;;;;.;;;:;.:-:«·:-:-:•:.;·:.:·:·:•:·:·:~.«~»::;:;:;.;.; 

An example 

When the Information passed Is numeric, character or address, you generally store 
the data Itself In the register. However. if the data is a string, or a large amount of 
numeric data, then you pass a pointer to the data instead. For example, filenames 
are passed as a pol nter to the characters in memory, and the window manager uses 
pointers to large window descriptors. 

As an example of how to use a SWI. we will look at one called OS_ WnteC Its SWI 
number IS &00 It Is used to output a character. It takes a single parameter -the 
character you want to output- which is passed in RO. Suppose you wanted to 
output the character 'I\, the ASCU rode of which is 65 

Calling from Assembler 
In assembler you could write; 

MOV RO, 165 
SWI 0 

; Load RO with 'A' 
; and output it 

It would be dearer if you set a constant named OS_ WriteC to &00 We suggest you 
do so In a standard header file that contains all SWI names and numbers Using 
such a file, you could then write· 

MOV 
SWI 

RO,t65 
OS WriteC 

; Load RO with 'A' 
; and output it 

When this Is assembled. the bottom 24 bits of the SWI instruction are set to zero
the SWI number forOS_WriteC. 

Calling from BBC BASIC 

1·22 

From BBC BASIC you can call a SWI routine in two different ways: 

• use the built in assembler 

• call it dlr~ly from BASIC 

BBC BASIC Assembler 
BASICs bu1lt ln assembler is very similar to the standard ARM assembler H~ver. 

the SWI names are available as strinRS: note that this means you must enclose 
them In double quotes The case of the letters is significant 

MOV 
SWI 

RO, t65 
"OS WrlteC" 

Load RO with 'A' 
; and output it 

An lnlrOducllon to SWls 

:•:::0}:<::-:•:::o:-::::::::::::::»::::::::x•:-»»:::•:·:=:•:•:•:::.:.;.x-:·:·:·:·:·z·:·:.: .·.;.·.;.:-:-:-:·:·:~~·:-!-:-: y_.;.;:; •• ·:·::;.:-:-:..:-':-:·:·: ;;,;.;.;;;::.:-:-~:-:·:·:·:·:·:·:-:: :·:·:·:·:·:-:-:·:·:·!-!·!·':O:·!-!·!·!·!·!·!· : :-··.·.·.·.·.·.·.·.·.·.·.·.·.·::: 

BBC BASIC 

Calling from C 

You can use the BASIC keywOfd SYS to call SWI routines dlr~ly from Interpreted 
BASIC. BASIC Just asks RISC OS what SWI number the given string corresponds to: 
you will find full details of the syntax In the BBC BASIC Cwii1. Our example would 
be written ; 

SYS "OS_WriteC",65 

The Acorn C library provides a similar ~ure to call a SWI routine. Again, you 
should see the ANSI C manual for full details of the syntax. and how erfOIS are 
handled. The example below assumes that relevant header Illes have been 
flncluded. 

_terne l_av.l_req• req•: t • decl are r~i•t.r • tructur• • / 

r.qs .r(O) • 'S; 1• eee p•eudo ~0 to ' A' • ! 
_k•rnel _avl (OS_Wrlte<:, •req•, &~9•): J• c a ll stn • 1 

More about SWI numbers and names 
In general. you don't have to worry about the exact mechanism used by RJSC OS to 
decode the SWI instructions. As long as you use the right SWI number. and pass 
the correct parameters, the corr~ result will be obtained. 

We strongly advise you to use SWI names in your code, for added darity. This Is 
easy from BASIC, as the names are already set up: from other languages (such as 
assembler and C above) you will find this easiest if you set up header Hies. 
U.amples h• the rat of thle .,. .. .J wiD aN• me JO• h.,e doae eo. 

SWI name prefixes 

The prefix of the SWI name (OS In the example above) determines which part of the 
system will deal with the SWI. OS obviously refers to the calls handled directly by 
RISC OS Examples of other prefixes are Font. Wimp. and ADF'S. The prefix is 
detennined by the module which Implements the SWI. 

Error handling - an Introduction 
RISC OS provides full error handling facilities for SWis In general . if a SWI has no 
errors, the V Oag in R 151s clear as the routine exits; if there is an errOf. the V flag is 
set and RO po1nts to an error blod on ex1t 

1-23 



SWI numbets In cklraH 
:~::~-»:·:·:·:·:·:·:·:·:·:·:·:·:·:· :-:·:·:·:·:·: .;.;.;:;.:-:·:·.·:=:::::::::;x:>::::::::::::::-;z.m::.~-:-:·:·:·:·: .;.;-:-:·:· :-:-:-:-:-:-:-:-;.:-::;.;.;::.o.:-:::::-:::::;;;;o,;::::u..-::-...-:-::- --:~-:::~:-::;.;:;:;:;:::::::::::;.;::«·:·;.:-:-:-:-

As the routine exits. RISC OS checks the V Oaa. tr It Is set (meaning there was an 
error). then RISC OS looks at bit 17 (the X 6it) or the SWI number: 

• . If It Is set then control retums to your program. and you should deal with the 

error yourself. 

• Ir 1t is dear control is passed to the system error handler, whkh reports the 
error to you You can of course replace the system error handler with one of 
your own. 1ndeed. most programs do 

For further details. see the chapter enutled Ct11mh"f a11~ u IIAI5"f crron on 

page I-J7 

SWI numbers In detail 

1-24 

The 24 bits used to encode the SWI number in the instruction allow SWis in the 
ranae 0- &FFFFFF (16777215) to be used. This SWI 'address range' is divided up 
into several parts under RISC OS. For example. SWis in the range 0- &3FFFF 
(262143) provide the basic operating system functions (Only a small proportion of 
these are currently used, however.) Modules can provide their own SWis. and these 
must be &lven unique numbers to avo1d dashes 

You can also define your own SWI calls When a proaram executes a SWI whose 
number Is not reoognised by the OS oranyofthe modules In the machine, the OS 
calls a spedal routine called the 'Unused SWI vectol' Usually, this will just retum 
the error No such SWI. However. a user program can claim this and, if the SWI 

number is one that it reoognises, perfonn the appropriate task. 

This section explains in detail how SWI numbers are allocated The bottom 24-bit 
section of the SWI op-code Is divided up as follows: 

Bits 20 • 23 
These are used to identify the particular operatln& system that the SWJ expects to 
be in the machine. All SWis used under RJSC OS have these bits set to zero. Under 
RISC IX. bit 23 is set to I and all other bits are set to zero 

An intoducllon 10 swas 
·· ·.·.··:·:·:·:·:·:·:·:·:-:::::::::;;:;;::::;.:;.~:~.ww:-:-:::.:-:-:-:-:-:=:=:-::::::::::::::::;;:::::o::-:;;;:.:::::-:.:;:·:·:·:·:-::::::::::m.~:=:=:=:==~·:..:-:-:.:-:-:·:·:··· ;.;:;;;:;:;:;~~ ,;•n, 

Blt•18 ·19 

Bit 17 

These are used to identify which part of the system software implements the SWI. 

as follows: 

Bit .. mber 
19 II 

0 0 
0 
I 0 

I 

M_ .... 

Operatlna system 
Operatin& system extension modules 
Third party res1dent applications 
User applications 

Thus OS SWis. such as OS_WriteC, have both bits clear. 

Modules such as filin& systems. device drivers for expansion cards, and the Font 
manaaer have bit 18 of their SWis set, so their SWI numbers start at &40000. Note 
that this can indude system extension modules written by third parties. 

Any SWis provided by application software that Is distributed by other software 
houses should have bit 19 set and bit 18 clear. 

This is u.sed to detennlne the act.100 taken on errors. It Is the 'X' bit E"or handhn& 
in SWis is described in the chapter en!Jt.led CIN7'alillf au '•Uii"f monon 
paae 1-n. 

Bits 6 ·16 
These are the SWI Chunk Identification numbers. They identify a block of 64 
consecutive SWis. for use within a slnale application or system extension module. 
Anyone wishing to use one or these blocks or SWis for distributed software should 
apply in writin& to Acorn Customer Service. who will allocate a unique value. 

Bit• 0 • 5 
These identify individual SWis in a chunk Hence a third party application may use 

SWis 10 the followina binary ranae, 

OOOOIOnnnnnnnnnnnnOOOOOO to 
OOOOIOnnnnnnnnnnnnllllll 

where nnnnnnMnnnn is the chunk number that the software house has been 
allocated for the application or module. 

1-25 



T9Chnlca/ d9Utils 

•:•:•:::•:•:•:•:•:•:•:•: ·:·: ·:·:·:·:<<·:·:«..:·:·:·:·:·:·:·:·:·:·:·:·:..:·:·:·:·:·:..:·:·:..:-:..;.»M:..:·:·:-:·:·: ···········:···:·:·:· :·: ·:·:·:·:-:-:·:·:·:·:·:·:·:·:««·:O:::O:.:·:~»>:•:::::::::::~::.:•:•:•:=:•:::•:::•::.:;s:;:;:;.:•:•x·:•:•:•:•:•:·:;:<:«<•:•:•:•:•:•:·:•:.:::•:·:::•:·:·: 

Technical details 

1-26 

Although In general you don't need to lmow how a SWIIs decoded and executed. 
there are some more advanced cases where you will need to know more. This Is 
what happens: 

1 The contents or Rl5 are saved in R 14_svc (the svc mode subroutine link 
register) 

2 The MO and M I bits or Rl5 are set (the processor is forced to SVC mode) and 
the I bit Is also set (IRQ Is disabled). 

l The PC bits orR 15 are forced to &08. 

4 The instruction at &08 is retched and executed. It is normally a branch to the 
code that RJSC OS uses to decode SWis" 

' RJSC OS uses the PC bits ot the return address held in Rl4_svc to pick up a 
copy of the SWIInstructlon. 

6 Interrupts are restored to the state they were in when the SWI was Issued Thi s 
Is done by setting the I bit in Rf 5 to the value ofthe equivalent bit In Rl4_svc 

7 The V b1t of the return address held in R 14_svc is cleared. unless the SWI was 
OS_BreakPt or OS_CaiiAVector. (This is done for the error handling system
see the chapter entitled Ctlllf'lting •"" i•dli•gmon on page 1-37) 

I RISC OS looks at the 24 bit SWI number field held in the SWI instruction. and 
uses It to decide where to branch to. 

9 If the SWI does not use a vector, RISC OS will branch directly to the actual SWI 
routine. 

If the SWI does use a vector. RISC OS branches to the routine that calls the 
vector. Unless you have claimed the vector. this will execute the actual SWI 
routine. 

10 The SWI routine Is executed. 

I I Any error handling is perfonned. 

12 Any call back handling is performed. 

I) Con trol ls returned to your program by using the instruction: 

MOVS Rl S, Rl4_svc. 
Th is restores both the mode you were in when you called the SWI, and the 
Interrupt status Note OOM:-ver that a few SWis (such as OS_fntOn, which 
enables l ntenupts) del iberately alter the mode and/or interrupt status so they 
are not restored on exit 

If an error is being returned by setting the V bit. the instruction 

ORRS RlS, Rl 4_svc, tV_blt 
Is used instead 

An lntroducfion to SW/s 

:·:·:·:·:·:·:·:-=~-=..::<·>=·:·:•:•:-:•:::::<:«>:o::.:::::::::::::~::::x•:•:•:•:>:•:>:.;:•:•:=:•:•:::;:::•:•:•:•:•: .;:;.;:•:•:-:· :·:·>·:-:-:.: .;:;.;;:::-:=:•:•x::•:>:-:-:.::~::;x~·:•:·:•:-:•: ·:·:·:·:·:.:-:..:·:·:·:·:·:·:·:·:·:· :-:-:-:·:·:·:·:·:·:·:·:·:·:·:·:·:·:-:-:·:·: ·:·:•:•:::::::::::::::::::::;:;-;..-::::•:::: 

An example of documentation 
Below Is an example of how a SWI Is documented. Comments are provided in grey 
boxes so you can understand exactly what each bit means. 

Some things are assumed to be consistent for all SWis. and only exceptions are 
documented: 

• SWis are decoded and executed as outlined above. 

• The V nag is cleared if there Is no errof; It Is set If there Is an error. and RO will 
then point to an error block. See the chapter entitled <naating ad iadlirtg 
tmm on page I-J7 for further details 

• Other registers and Oags are preserved across the call . unless stated otherwise. 

Note that the description or the SWI refers to the routine Itself- In other words. 
what happens during step 10 above Thus headings such as Proctssor ... ~,and 
l•ltmtpts refer to what happens In the SWI routine itself- not what happens when 
the SWI instruction is decoded. and so on 

1-27 





Important no/116 

·;:::;:;::;:;;;;;o:. .;.:·~·!·::::;.;:;.;-:-:-:-::;.:<!:::::;.:;.:::;:;.o;;;;;;:;:;:;.:•::::;:; ·:·:·:·:·:·:·:·:·: .;.;{"•:·:· ;.;:;.;:;.;.;.;:;::.::-:·:·:-::;.; :;:;:;:;:;:;:;:;:;:;:;:;:;.;.;:;.;:;.;-:-:-: .;:;.;:;:;:;.;:;:;;:~:;:;:;:;:;:;:;:;;:::.::-:-M;-;-:-;.;.;::-::;.;. ;.;:;:;.; ·:·:·:·:·:·:·:·:·:-:·:·: 

1-30 

Error handling with vectored SWia 
Normally, you can assume that the V nag of the return address held In Rl4_svc has 
been cleared by RISC OS before a SWI routine is entered. This leaves the return 
address in the corred fOfmat to Indicate that no errors occurred 

You cannot make this assumption for SWI routines that are ~ored This is 
because any or these routines might be called using the SWI OS_CaiiAVedor. for 
which RISC OS does not dear the V bit. 

Therefore. if you daim a vectOf and replace a SWI routine with one of your own. 
that routine must not assume the state of the V nag. Instead. you must explicitly 
clear the V !lag if there was no error. or explicitly set it (and set up an error block) if 
there was an error. 



:-:·:·:-:-: .. pm,;;;o».ir,;;>-.;::;:::::.::.:·.-..... ''.X.:•:•:·:·:·:·:·:-:·:·:.:·:·:;~:~~·:·:·:·::;.;.;.;.;.;-:-:-:-:-:-:.·:.-:-::;..:-? .. :·:·~~;,;_;;·,:;.;..:-;;::;:;;;~:-::;;;;;:;:;:;;;;;;;.;.;.;.;.;.;::.;~~ 

4 * Commands and the CLI 
~::::~~:=z.:w:::::::::.:::::.::· ·X:-~-.;:::*:::~:=:~-~- :.:~~=x:;:$»'*~~~=:='5--;;:::::::::::-;:::.:::::.-;x::x::::::~::.'\:::::::::-z.~..$ 

Introduction 
• co .. IIUI.W provide you with a simple way to access the facilities of RISC OS by 
USIIli text - for example 

*Time 

will display the time and date. lf you have read your computer's RISC OS Uwr CwiU, 
you will already be familiar with many of these commands. 

This chapter introduoes you to • Commands and the CLI: the chapter entitled Tfu 
CLI on pajle 2-429 describes them In more detail. 

Command Une mode 
Perhaps the lll06t common way of issuing a • Command is to type it when the 
compute r is in eo ..... _, Li"' _,.,-also called Swpc1Yiscw ,.o;, by some screen 
displays. Each line starts with a ·· · character prompt. so you don't need to type it 
yourself. In the above example. all you need to type is the text Time. 

OS_ CLI and the CLI 
When you type a • Command. the text is passed to RISC OS by a SWI. named 
OS_CLI. The text is then Interpreted by a part of RJSC OS called the eo ..... _, LUI• 
l~l"J'rlflr- or CLI for short. This converts the text to one or more SW!s that do the 
work of the • Command 

For example. the •nme command fust calls three SWis. You can achieve the same 
effect with a few lines of BASIC: 

Dl" b l ocJt 24 
?b lock • o 
ns · os_word",l4, b lock 
S'I'S '"'OS_IIdtell "' . b loc); , 2 4 

S'I'S "'OS_NevLln.* 

The • Command version IS obviously more convenient 

1-31 



• Commands v. SWis 

:;;;::;;:;;;;;:::::;:;:;:;;~;:;.:•:•:•:·:·:•:·:•:·:·:·:·:·:•:-:.:·:·;«•:•:·:.;:;.;.; ·:·:·:·:·:·:·:·:·:·:· :·:·:·: :;:;:;:;:;:;:;:;:;:;:;:;:;>:•::;:;: ;:;:;:;:;:;:;:;:;:;:;.;.;.;.; ·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·::;.;.::::::·:·:·:·:·:· 

• Commands v. SWis 

Documentation 

• Commands have a number or advantages when compared to SWis. mainly 
because of their slmplldty: 

• they are simple for novice users to use 

• they can be easily typed In directly, either from the command line or from 
applications 

• they are simpler to call rrom programs 

• they provide simple access to powerful features. 

Their slmplldty also leads to some disadvantages: 

• they are not as nexible as SW!s 

• they cannot easily pass infonnation bad to a program. as they usually output 
results to the screen 

It Is up to you whether you use • Commands or SW!s. Sometimes you will have to 
use SWis. so you can do something that • Commands do not catedor There 'Nill be 
other times when you use • Commands ror their simplicity and ease of use 

Each • Command is documented in the relevant chapter. For example. "Time is 
described In the chapter entitled Ti1111 .,.; Dation page 1-428. You will find many or 
the miscellaneous • Commands that the kernel supplies In the chapter entitled TM 
Cl..l on page 2-429. (This chapter also details the OS_CLI SWI.) 

An example of documentation 

1·32 

The next page gives an example or how a • Command Is documented Again . 
comments are provided In grey boxes so you can understand exactly what each bit 
means. 

·Commands and the CLI 

·>:·:·:·:!:·:·:·:::-:-:·:·:·: ·>:·:·:·:·:·:·:.:•:·:·:·:•:·:·:·: .;.;.;:;.;:;.;.;.;.;:;::·:·:·:-::•::r.::-:=:·:-::;.;:;:;:;:;:;:;:;:;:;:~;.;;.;:;::-;.;:;:;.; :;:;:;;::::;.;:;. ;:;:;:;:;:;:;:;:;:;:;.; ·:·:·:·:·:···· ·:·:·:-::;.;:;:;.;:;:;:;:;<:«-:-:~:-:-:.::::·:·:·:·:·:•: 

l:i:~·ot·Oillhm.M ~] • *Time 

Displays the day. date and time. • I :} ::m ®liM~t::rr:~ l 

Syntax *Time • f:;:: H:!~ ,~~~Mff@.J 

Parameters f t{!:~:)~fd 
None 4 

Use 

"Time displays the day, date and time or day It Is displayed in the same format as 

OS_Word 14,0 f ~ ~~=:'Jail 
Example · ··· ···.··.·.· 

•Time • I ~.~~ff.J 

Related commands :':. ·relaliiKf.:::::::: 

None • ( ii~Jj:i::·::jlll 
Related SWls 

OS_ Word 14,0 (SWI &Q7). OS_ Word 15 (SWI &Q7). • 1 
OS_ConvertStandardDateAnd'lime (SWI &CO). 
OS_ConvertDateAndnme (SWI &C I) 

Related vectors 

WordY, WrchV 

1·33 



Using • Commands 

:::~:-:::~:~:=:-:-:::.;:~ -:·:·:·:-:-:-:-:-:-:-:-:-:-:::-:-:-:-:·:·:·:·:·:·:·:·:·:·:···.":·:-.::::xoxw..-:····· ....... ~.;r;.·~-:::.;.:;.::.;: .. ::::::-.~~:":::::·:=:=:=:-:;;-?.:.::::::::::::::::»~;e;::;;x 

Using • Commands 
You don't have to be in Command Une mode to use • Commands. In fact. you can 
caU • Commands In a number of other ways- both from applications and 
programminslanguages The sections below outline these. 

Issuing • Commands from applications with command lines 
You can issue • Commands from most applications that provide a command line 
by typing a·· · at the stan of a command. The application recognises the··· prefix 
and calls 05_CLI. instead of trying to execute it Itself. 

When you write applications that provide a command line. they too should 
recognise any ·· · prefixes. and call OS_CU. 

Issuing • Commands from assembler 
You can issue • Commands from assembler by passing the string directly to the 
SWI OS_CLI. Note the null byte tenninating the command string: 

t'IMESfk 

ADk kO, TIMUTI< 
SWI OS_C LI 

DCI "'fll!llt'", 0 
ALl Gil 

Kake RO pol nt to tho t•xt 
and cd 1 OS_CLI 

: O.Une the • COftWM.nd. t••t 

Issuing • Commands from BASIC 

1·34 

There are a number of different ways you can ISSue • Commands from BBC BASIC 

Directly from progrema 

You can issue them directly from your program 

• TI~ 

The OSCU keyword 

Sometimes you won' t know all the text of the • Command you want to use; for 
instance. you might want the user or your program to give the name of a file. 
Instead of issuina the command directly, you can build up the text of the 
• Command, and then use the OSCLI keyword: 

INPUT "'Na• ot file to delete"': fileS 
OSCLI "'Delete '"+fileS 

·Commands and 1116 CU 

.. -.;-:·:-:-:-::::;:.;:;:;.:::.:.-:-»::::x.~:::::::::;;:::::o:::::;;:::::::::::.::~:::::=::::::~:x~«·-· ~-···~ ................. 

C.Hing os_cu directly 

Of course. you can also call OS_CU directly, as outlined In the section entitled 
Clllillf /ror& B8C BASIC on page 1-22. You can either use the SYS keyword 

01 " TIICSnt 4 
Stlto:Snt • "riME" 
SYS "OS_CLI", TIICSnt 

or more simply: 

SYS "OS_CLl", "TI"t" 

or you can use BBC BASIC's built-in assembler: 

.TIKESTI< 

ADI< 1<0, Tlto:llnt 
SIII "OS_CLl" 

EQUS "TI " £" 
EQUB 0 
ALIGII 

H .. t• ItO point to the text 
• •d c• ll os_cLI 

Define the • COftftlnd text 
Tetllll1nat11'19 null foe te•t 

See the BBC BASIC GlliM for full details of all the above syntax. 

Issuing • Commands from C 
Similarly, the Acorn C library provides different ways for you to issue • Commands. 

The prOCledure ayalem 0 
You can use the procedure system. which tal<.es as a parameter the text of the 
· command: 

ayat.ea("'r1-"'); 

You cannot run a replacement application uslnc this call. unless pretued w1th 
'CHAIN: '. So: 

ayate• ("'BASIC"'); 

would stan up BBC BASIC. but when BASIC quits controf returns to the 
C application rather than its parent. 

Ceiling os_cu directly 

Alternatively, you could directly call OS_CLI: 

_llecnel_ awi_reqa rel'jla ; 
char t1Mnr() • "'rtrM•; 

r.qa. r (OJ • (tnt) ti mestr; 
_kern• l-"''1 (OS_CLJ, • reqa, •rec;a): 

1·35 



Changing and adding ·Commands 

:-:=:·:·:·:·:·:·:-:=:-:~.;. .. :;:.;;<::::-:•:·:·:•:·:-:.:.:·:·:·:•:•:•:::~-:.:o;;:.'ffi~:,;-;:=::::::::::::::::x:: :::: ::::::::::::::::::::: :=: ::::::::::;:; :::::::·:·:·:·:·:·:=:·:·:·:·:·:·:·:-:.:-:::~::::::;:~::::::::::::::::*::::::::::::::-»:=:::::::::::::::::::::::::::: ::::::::::::::::: 

Changing and adding • Commands 

1·36 

One of the keynotes of RISC OS Is the ease with which you can alter and extend it. 
You've already been introduced to how you can alter. replace or add SWis. The 
techniques that can be used for this are: 

• claiming vectors 

• repladng modules 

• adding new modules. 

In just the same way. you can use these techniques to alter. replace or add 
• Commands. 

Using vectors 

If you claim a vector. and hence change how the SW! that uses it works. you will 
also alter all functions of RISC OS that call that SW!- including • Commands. 

As an example. let's assume that you have changed OS_ WriteC so that all letters 
are converted to capitals. You'd do this by claiming WrchV. the vector used for 
character output. so that it passes on calls made to OS_ WriteC to your routine 
instead. 

This would mean that all • Commands that output their results via WrchV would 
now do so in capitals only. This is true of all • Commands that output characters. 
and our example of •nme is no exception. 

See the chapter entitled Softwcrt ~~«tors on page 1·59 for further details of how to 
use vectors. 

Replacing modules 

If you replace a module. you must provide the same services that the old module 
did. So your replacement module should have the same • Commands. each of 
which must have the same syntax and accept the same parameters as before. 
However. they can be functionally different. 

There is no reason why a replacement module cannot add extra • Commands as 
well. 

Adding modules 

If you write a new module. it can provide • Commands. in exactly the same way as 
any of the system modules. See the chapter entitled Mo;u!ts on page 1·191 for 
details of how to write a module. 



:;mm::-».«>:::o:::::•~:::::::::::::::::::::•:=::~:::::::::::::::•:::::.:~«.:>:·x;.s(«-:~·~::::::::;.;::::~;::;;~;:;,:*='-~~;:::•:•:•:::o:;;....s::v:::;~:.:-x.:::::.:·:·: .·.·.··:·:·:·:·:·:·!- :·:·:.;.;-:.;.: ·:·:·:·:·:· :·:·»:.:·:··.·.·.·.········ 

5 Generating and handling errors 
::::::::::x:;:;.::::x:::::::::.:::::::::::::::::::::::::::::::::::x::::::::::::::::::::::::~:::::::.o;:'J.s.-;·n~x.-;::::::::::::::::::::::x:::r~/::X*.>J.:::::::::~:sw~x::;:::::::::~~:::::::::~::...».:-;:~:w~x:::::~::~:....::~::;::::::::~::-; 

Introduction 

Error handling 

It is reasonable to expect that most SW!s can generate an error. For example, if you 
pass poor parameters you would expect the SWI routine to tell you about it. 

SWis report errors in a consistent way. If no error occurred, and the desired action 
was performed. the SWI routine will dear the ARM's V (overflow) flag on exit . If an 
error did occur. the SWI routine will set Von exit. Furthermore. RO will contain a 
pointer to an error blodt. which is described below. 

Just before RISC 06 passes control back to your program, it checks the V flag. If it is 
dear (no error occurred) control passes directly back. 

lfV is set (an error occurred). RISCOS loolcs at a copy of the original SWI 
instruction you used: 

• If you had cleared bit 17 oftheSWI number. RISC 00 deals with the error itself. 
Control does not return normally to your program: instead the error is passed 
to the error handler used by your program. which normally will report the error 
to you. 

• If you had set bit 17 of the SWI number. RISC 00 returns control directly to 
your program. The V flag will still be set to Indicate an error, and RO will 
contain the error pointer. It is up to you to deal with the error. 

Type• of SWia 
These two types of SWI are known respectively as mor-g• rvr•li"f and mor-rlblr"i"f 
SWis. For every SWI, you can call either version, depending on whether you want to 
detect the error yourself. or leave the current error handler to deal with it. All the 
examples in the chapter entitled • eo ..... "41s •"41lfl• CLI were error-generating 
SWis. If you want to call an error-returning SWI. with bit 17 set: 

• add &2()()()() to the SWI number you use, or: 

• put the letter X in front of the SWI name. thus: 
XOO_WriteC, XWimp_OpenWindow, and soon. 

1-37 



Error blocks 

:;:;:;::•:·:·:·:0::)'/. .·:>:-::;;;:;:;;·;:.;.;:;.;.;.;.;.;:;:;.;.;.;.:·:·:·:;:.;·:·:·~= ·:·:·:.:·:·:·:·:·:·:·:·:·:-:·:·:·:·:·:·:•:•:•::;;;:;:;:;:;:;::<:<»:·:>::;.;:;:;.;:;.;:;.;:;.;-:-:-:-:-:-:·:·:·:-:-:-:-:-;:;.;.;:;:;:;.;-;:;:::;.;:;.;.:.;:w.o..~:-:-::;:;:;.;.;:::;:;: ;.;:;.;:;:;.;-:::.x .... »»: 

Error blocks 

Error numbers 

1-38 

The error block pointed to by RO has the following format: 

RO + 0 a WOfd containing the error number 
RO + 4 error message. terminated by a zero byte. 

An errOf block must be word-aligned, and must be no more than 256 bytes long 

Just as the 24-bit SWI number is divided into different fields. 32-bit error numbers 
are also split up 

The bottom byte Is often a bask 'error number'. 

The middle two bytes identify what senerated the error. Third parties generating 
their own errors must apply to Acom for an identifier. The followin£ error ran11e5 
ha~ been reserved . 

Ra•le 
&000- &OfF 
&100- &I IF 
&120 - &llF 
&140-&15F 
&160-&17F 
&180- &19F 
&lAO- &IAF 
&IBO-&IBF 
&ICO · &IDF 
&IEO · &IEF 
&200 - &27F 
&280 - &2BF 
&2C0-&2F'F' 
&'300- &JF'F' 
&400- &4F'F' 
&500-&5BF 
&5C0 · &5F'F' 
&600 - &63F 
&640 - &6F'F' 
&700 - &7F'F' 
&800 - &a7F 
&880 - &af'F' 
&900 • &-97F 
&980. &-9F'F' 
&N)() - &AJF 

Error ,e~~enotor 

Operating system - sac-compatible error 
OS_Module errors 
OS_ReadVarVaiiSetVarVal errors 
Redirection manager errors 
OS_EvaluateExpression errors 
OS_Heap errors 
OS_CiaimiRelease errors 
OS_ChangcEnvironment errors 
OS_ChangeDynamicArea errors 
OS_CLVmiscellaneous errOfs 
Font manager errors 
Wimp errors 
Date/time conversion errOfs 
Econet errors 
FileSwitch errors 
Podule errors 
Printer driver errors 
Ceneral OS errors 
International module errors 
Sprite errors 
Debugger errOfs 
BOC VO Podule errors 
Shell CLI errors. and miscellaneous Olhers 
Draw errors 
Colou r1'ta ns errors 

Generating and handling srrors 

·:·:·:•:::::::::::;:;:::;:;;:;~::::::=:ox::::::: ::::::::~: :;::::::::::::::::::::::::::::.:-~:-: ·:·:·:·:•:·:·:·:•:·:-:-:-:•:•:.:-:-:-:-:-:ox-:-:-:-:-:·:·:·:-:.:-:-:-:-: .... :.:.:-:·:·:·:·:·:·:·:•:·:•:::;:.;:;:;.~;;:;:::::::: -:-:-:-:-:- :-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:·x·:-:-:-:-:::::.:-:::-:-::·.· 

&MO-&A7F 
&ABO- &ABF 
&N:.O-&AFF 
& IXXOO- &IXXFI' 

(eg &10800- &108F'F' 
& 20000 - & 200F'F' 

ARMJ errors 
TaskWindow errors 
MessageTtans errors 
Errors from filing system number &XX 
A Of'S errors) 
Sound errors 

&20200- &21000 Podule errors. and miscellaneous others 

The top byte contains Rags· 

• Bit 31. if set. Implies that the error was a serious one. usually a hardware 
exception (eg the prtliram tried to access non~xlstent memory) or noati ng 
point exception, from which It wasn' t possible to sensibly return with V set. In 
such cases different error rantes are used 

&80000000- &800000fl' Machine exception.s 
&80000 I 00 - &80000 I F'F' CoProcessor exceptions 
&80000200 - &800002F'F' floatins Point exceptions 
&80000'300 • &800003F'F' Econet exceptions 

• Bit 10 is defined to be clear, and can therefOfe be used by programmers to Oag 
internal errors. 

• Bits 24 - 29 are reserved. They should be cleared for compatibility with any 
future extensions. 

If bit 31 is set then these bits (24 • 29) are sometimes used as a suberrOf 
indicator: for example ADFS uses them to show what kind of disc error has 
occurred. 

Technical details of error-generating SWis 

You may need to know In more detail how RISC OS handles an error that an 
error-generating SWJ creates. 

First it infonns modules of the error using the SWJ OS_ServiceCall, with reason 
code 6 (Error). This Is for the module's information only, so that it can tidy up 
(dose files, and so on) before RISC OS handles the errOf. The module must not 
try to handle the errOf. 

2 It then calls the errOfvectOf (fo r a detailed description see the chapter entitled 
Scftwrt -'Dn on page 1· 59) By default, th is calls the current error handler. 
You may claim th is vector, but again this should be for i nformation only- fOf 
example, so that yoor p!Oiram can tidy up The call must subsequently be 
passed on to the error handler. your program must not try to handle the error. 

If you want to handle an error yourself. you must instead use the error-returning 
version of the SWJ. 

1-39 



GBnBraling 9«01'5 

.•:·:·: ··-·.·:·:·.·.·:·:·:;:;:;:::::;.;.;.;-;::·:·:.:·:.~::;.:;%.:;:;;.;.;.;.;.;.;.;.;.;.;:;.;.;:;.;.;-:-:·:·:·:·:·:-;::·:·:·: ·:·:·:·:·:·:·:·:-:-::;.;:;:;.;:;:;:;.;:;.;:;.;:;:;:;:;:;:;:;:;:;:;<;;;:::::;:;:;:;:;:;:;:;:;:;:;:;:;:;;;;;:;:;:.;.;"::;:;.;::-:::;:;:::::::::::;:;:;: ;:;:;;;:;:~.:·:•::;.;.;•:·:•:•:v:•: 

Generating errors 
In addition to detecting errors. you might want to generate an error which calls the 
current error handler. so you can find out about a problem. A common example 
would be if you detect that Esc is pressed. This is usually a sure sign that the user 
wants to abandon the current operation. The standard response is for you to 
acknowledge the escape (see the chapter entitled Chracw Input on page 2-337 for 
details). and generate an 'Escape' error. This is then dealt with by the current error 
handler. 

To generate the error, you should call the SWI OS_GenerateError. On entry, RO 
contains a standard error block pointer. The routine never returns. For example. 
BASIC's error handler will cause the current BASIC program to terminate. returning 
control to the command mode. or to execute an ON ERROR statement, if one is 
active. 

Writing system extension code 

1-40 

You must not write system extension code (such as a module. interrupt handler or 
transient) that generates errors- users of this code have a right to expect it to 
work. This means that you must always use the X form of SWis in such code. 

The only time you should call OS_GenerateError from system extension code is to 
report exception-type errors- that ts, when bit 31 of the error number is set. For 
example. the Floating Point Emulator uses this mechanism to report exceptions 
from both the hardware and soltware floating point processors. as coprocessor 
instructions obviously cannot return with the V bit of the ARM processor set to 
indicate an error. 

Gfl()9('ating and handling 9f1'0fS 

:.:.:-:· :·:·:·:·:·:·:·:·:·:·:·:·:·:=:·:-:::::::::::::::::::::::::::::;:::::::::::::::::::::::::::oz.x:r-:;:::::::::::::::::-.. ~::::•:::::~x·:·:::::;:.::::. .. :;:.:::.Y.::::•:·:·:·:!:.:·:-:·:•:=:·:-:-:·:·:.:-::::::::;.;::::::::::::::::.;::::::::.:·· ······:·:;:;:;:::;:-m~:;;;;:.:-::: 

SWI Calls 
OS_ GenerateError 

(SWI &28) 

Generates an error and invokes the error handler 

On entry 

RO = pointer to error block 

On exit 

Doesn't return- OS_GenerateError (SWI &2B) 
V Oag is set- XOS_GenerateError (SWI &2002B) 

Interrupts 

or 

Interrupts are enabled by OS_GenerateError. but unaltered by the X fonn 
Fast interrupts are enabled 

Processor mode 
Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 
OS_GenerateError generates an error and involtes the error handler. Whether or 
not it returns depends on the type of SWI being used. If XOS_GenerateError is 
used, the only effect is to set the V Oag. This is not very useful. 

Here is an example o( how OS_GenerateError would be used: 

SWI •os_Read.Eacap4tState• 

ADRCS RO,eacape8lock 
SWICS ""OS_~n.ratetrror .. 

.noE.scapo 

.esc.poBlock 
£()00 11 

EQUS "'Etea~ .. +CHJl$0 
ALIQI 

Seta C 1 f ••cape 
Get ptr. to error block 
Do tMt error - do41tn' t 
return 

trror nutd:>er for escape 
Error atrtn9 

1-41 



OS_G9n6£Bt9Error (SW/ &28) 

;.;;;.;:;.;.;.;:;.:-:·:·:·:·:·:·:·:..:-:-:-::;.;::-:-~:-:-:-:-:>:-:-:;;:;;:.;:;.;-.:;:::.:::::;;:;;;.:::;;::-:::::::::::::::::::.~·::::::;:;::::;::;:;:;:~;:;<::-;;;;;.;;.;.;«-;:;:;: ;:;:;:;:;:;:;:;:;:;:;:;.;:;:;:; .;:;:;:;:;:;:;:;.;:;:;.;:;.;.;:;:;.:-:·:·:·:·:·:·::.:;;.; ·:·:·:·:-:<:-:::-:-:-:-:.:-:::-:-x-:-':·:·:·:+:;;;~~ 

Related SWis 

None 

Related vectors 

ErrorV 

1-42 

G-ating and handling 91T0rs 
x-;-;. ;.;:;.;.;.;.;;·.;.·.;.;.;.;.;;;.;;;;;.;.';~.:.::~:;;.;-~:.":-:·:;:.;.;.;.;.;.;:;:;:;:;:;:;:;.;:;.;:;:;:;:;:;:;.;;;.;. .;:;:;:;:;:;:;:;:;.;;;:;.;.;:;.;:;:;:;:;:;.;-:-:·:·:·:·:·:·:·:·::;:;.;.;.;.;.;:;:;:;:;:;:;:;.;.;.;.;.;.;:;;;.;:;.;:;.;.;:;.;.:o;:~-:-:.:·:·:·:·:·:·:·:·:·:·::;:;.·. 

* Commands 

Generates errors 

Syntax 

*Error (error_no) text 

Parameters 

Use 

error_ no 
text 

the error number 

a st ring of printable characters explaining the error 

*Error 

· Error generates an error with the given error number and explanatory text. This is 
normally then printed on the screen. This command is useful for reporting errors 
after trapping them within a command script. 

If you omit the error number it is set to the default value of 0. 

Errors are also generated by the system error handler. 

Example 

*Error 100 No such file 

Related commands 

None 

Related SWis 

OS_CenerateError (SWI &2B) 

Related vectors 

ErrorV 

pri"ts 'No SILC~ fill 

1-43 



~ ~
 

I I ~ ~ I t ~ ~ ~ ~ . I ~ 

~ r ~ 
~ 

« ~ 
~
 



;;;.;.;-:-:-:-~:-:-:::::•:·~~::~;:;;;:;:;:; :;:;:;:;:;:;:;:;:;;;~:::::•::::;:;:;;;:;:;:;;;:,...;};«:;:::;:;:; :;:;:;;;:: :;:;::;;;.;:;:: :;:;:;:;:;;;:;:;:;:;:;:;:;:;:;:;:; :;:;:;:;:;:: :;:;:;:;:;::·:·:·:·:•:=:·:·:·:·:·:•:·:·:·:·:·:·:·:·:-:·:·::-:-:~;.;:;;;:;:;;;:;::::::.":-~ :·:·:·:·:·: .;.;;;.:-::::;;;;:;;;;: 

6 OS_Byte 
:::::::: ::::·:::::::::x::z:::::::::::::::::~-::::x:-«::::::::::::::::::::--::::::::::::::::x::::::::::::~'*~>.--:::::::::•::::::::x:::::::::~::::::::::::::::::::::::::::::x::::::::::::::::::::::::::::::::; :-;.;.; ;:;:;:;:;:;:;:;:;:;~:;::::=:::::::=:::::; :;:;:;:;:;:;:;:;:;:;:;:;: ;!;!:':!:: 

Introduction 

Parameters 

Most SWis deal with only one task. For example, OS_Module deals with modules. 
OS_RemoveCursors Just removes cursors. and so on. However. there are two SWJs 
which perform a wide variety or operations. They are called OS_Byte and OS_ Word. 
They exist. prindpally, to ease the conversion or software rrom the older BBC and 
Master series or computers. The operating systems on these older machines have 
two corresponding routines called OSBYTE and OSWORD. 

Because the calls are multi-purpose, they tend to appear in more than one chapter 
or this manual. This chapter documents OS_Byte in general terms. so that when 
examples or its use are given later on, you will understand the entry and exit 
conditions better. The next chapter outlines how OS_ Word works. 

OS_Byte takes one, two or three parameters. The first parameter, passed in RO. is 
the reason code. This indicates which particular action you require OS_Byte to 
take. It has the range 0 - &FF'. Thus when we talk about 'OS_Byte 81' , this is 
shorthand ror 'OS_Byte with ROset to81 on entry'. A complete list or the OS_ Byte 
numbers may be round in the IMtx tf OS_ByUs. 

The second and third parameters are passed in R I and R2. These too are in the 
range 0- &FF; the name OS_Byte comes rrom the ract that i t deals with byte-wide 
parameters. 

In ract. all OS_Byte routines mask out the top 24 bits or the parameters when they 
use them. Although these top bits are not used, calls to OS_Byte always preserve 
them in RO; the same applies ror R I and/or R2 where they are documented as 
preserved. If you are writi ng a routine to implement or decode OS_Byte calls, you 
must make sure you preserve the top 24 bits. at least in RO. This means you will 
have to mask the parameter(s) into temporary registers rather than back into the 
passed parameters. 

Some OS_Byte calls return values. On earlier Acorn computers these were always 
byte-wide, but on RISCOS computers some or these values may now be too large 
toflt in a single byte, and should be treated as whole words. For example, iryou 

1-45 



Calling OS_Byre 

·>:·:·:·:·:·:·:-:-:·:·:=:~:-:'::::::;;;;;;;•:~:>:::::.;;::.;;:::;;;;;;:;:;;:;::;;;:.;.;~:=:·:;;::; :::;;:; :;:;;;:;:;:;:;:;:: :;:;;;<.-;:~:*::.: :;:;:;:;;;:;; ;.;:;:;:;:;.;:;:; :;:;:;:;:;:;:;:;:;;;:;:;;;;;;;:;;;:;:;:;:;:;;;:;:; :;:;:yj';:;;:;.;.;.;.;:;:;:;.;;;:;.;.;:;:;.; :;:;:;:;:;:;:;;;;;o::::;;;:;:;:;.;:;:;:·:··· 

were reading the number of spaces left in a buffer using OS_Byte 128. you might 
read the two 'byte' result returned in R I (low byte) and R2 (high 'byte' - in fact 24 
bits) like this: 

ADD Rn,Rl,R2,LSLJ8 

Calling OS_Byte 

1-46 

You call the OS_Byte SWI in exactly the same way as any other SWI. See the 
chapter entitled A" i"troe.utio" to SWis on page 1·21 for details. 

The calls may be grouped into three main classes. according to the value of RO on 
entry. 

Calla where RO Ia le" than 128 

If RO is less than 128. then only R I Is used to pass further Information. However. R2 
is often used as a temporary register and corrupted in the process. You use these 
calls to set st.tws ~~«rii!Ms. which the computer uses to control its operation. For 
example, OS_Byte 5 sets the status variable for the type of printer that is 
connected. 

In addition to setting the appropriate status variable. these calls may also perform 
some other task. For example, OS_ Byte 5 also waits for the current printer buffer to 
become empty before returning. Al though these calls sometimes return the 
'previous' state of the status variable. they are normally used for the action they 
perform. rather than the information they return . 

Calla where RO Ia between 128 and 165 (Inclusive) 

If RO is between 128 and 165. both R I and R2 are used to hold parameters. and 
both reljisters may contain information on exit from the call. The calls are often 
used for the results they return. rather than to perform particular actions. 

Calla where RO Ia between 166 and 255 (Inclusive) 

For calls with RO between 166 and 255 on entry, the action is always the same. RO 
acts as an index into the RAM which holds the status variables. They are held in 
consecutive memory locations. so RO= 166 accesses the first one. R0=167 accesses 
the second one. and soon. The contents ofRI and R2 determine what happens to 
the status variable: 

New Value = (Old Value AND R2) EOR R I 

On exit. Rl holds the old value of the status variable, and R2 holds the value of the 
status variable In the next memory location. 

os_Byre 

·:·:·:·:·:· :·:.::::::::::::::: :::::::::;:;::::::::::;;;::;::::::::::::::;:;:::::::::::::::-x::.:::::::::::::::;:::::::::x:x:::;:~::x:::;;;:;;.::::::::::::::::: ::::::::::.::::=:;:::::::::::::::::::::::::::::::::::::::~::-:::;::::::::::::::::::::::::::::;;::::::::::::::::::::.;.;:::;.,~::::mmw..:-:.:.:·:·:· 

Readla1 aad wrldac •••a 
The most useful application of this rule occurs when the old value is returned 
without being altered (allowing the status to be read 'non-destructively') as shown 
below: 

R2 = &fF and Rl "'&00 

and where the value is set to a particular number: 

R2 = &00 and Rl "'new value 

Alteria1 eelectecl btt. 

These are the only cases which are stated in the descriptions of OS_Bytes in this 
guide. Other values orR I and R2 may be used to alter only selected bits of the 
status variable. You should: 

• clear the bits of R2 corresponding to the bits you want to alter 

• set the correspondina bits of Rl to the new value you want these bits to have. 

for example. to set bits 2 • 4 of a status variable to the binary pattern 101. and 
leave the rest unaltered. you would use: 

R2 = &E3 ( 11100011 in binary) and 
Rl = &14 (00010100 In binary) 

In all cases, the calls In the range 166 • 255 return with the previous value of the 
variable in Rl and the value of the next variable in RAM (ie the one which would be 
accessed with RO+l) in R2. The exception is where RO = 255. where there is no 
defined 'next' location, and so the value of R2 is undefined. 

Altering any of these variables does not have any immediate effect. but may often 
seem to. as many are acted upon by interrupt routines. 

Which call to use when 

Many of the calls in t his last group access the same status variable as the 
low-numbered calls. between Oand 127. However. as noted above. the lower group 
may also perform some other action in addition to changing t he variable value. 
This means that the lower aroup should be used to alter a variable. whereas the 
upper group may be used for reading the current value without changing it. 

OS_Byte and Interrupts 
Like most important SWls. OS_Byte Is vectored so you can alter how it works. 
Before its vector is called. interrupts are disabled. Most OS_Byte routines are so 
short that there is no need for them to ~nable interrupts- instead they rely on 

1-47 



Adding OS_By/9 calls 

.;;:>:>X::::"o:«"='~::;;:.;::;:;:;:;:::;:;:;:::;;;:;;;:;~;;;;:;;;:;::.o;o;::::-:;::::;:;:;:;:;:;:;:::;:;:;:;:;:;:;;;.;:;.;:; :;:;:;:;:;:;:;:;:;:;.; :;:;:: :;.;:;.;.;.;:;:;.;.;.;.:·:·:·:·:·:-::;.;::·:·:·:·:·:·:·:·:·:· :·:·:;;.;;;~~~<:<:<::~~;;::x;:;:::::;::{:;;::;:;:;:;:;:;:;:;:~~::::;:;:·:····. 

RISC OS doins this when control is returned to you. Because these OS_Byte 
routines do notre-enable interrupts they are also used by interrupt handlins 
routines 

If you replace or alter an OS_Byte routine. make sure that: 

• you do not change the way it alters the interrupt status 

• you do not make it take so Ions that interrupts are disabled for an 
unreasonably Ions time. 

Adding OS_Byte calls 

You can add your own OS_Byte calls to RISC OS by installins a routine on the 
software vector that OS_Byte calls use. For full details. see the chapter entitled 
So{twrt wctors on pase 1-59. 

There is an alternative. but less preferable way of add ins OS_Byte calls . If you issue 
an OS_Byte with a number that RISC OS doesn•t recognise. it issues an Unknown 
OS_Byte urviu ull to all modules. Your module can then trap this service call and 
implement the new OS_Byte. For full detai ls. see the chapter entitled M~uf4s on 
pase 1-191. 

The *FX command 

1-48 

Because OS_Bytes perform many useful functions. a • Command is provided to 
call the routine directly. It has the syntax: 

*FX <reason code>[[,] <r l > [(,] <r2>)) 

The command is followed by one. two or three parameters. which may be 
separated byspacesorcommas. The values reason code. r l and r2 are loaded 
into resister RO. R I and R2 respectively: then OS_Byte is called. Any omitted values 
are set to zero. So: 

MOV RO,t218 
MOV Rl , tO 
MOV R2, 1255 
SWI OS_Byte 

has the same effect as: 

*FX 218 , 0,255 

OS_Byt9 

:::::::: :-:::;:::;::::::-:.:::::::;:::::: ::::::::::::::::::::::::::::::: ::::::::::::::::;:::::::;: ::::::::::::;::::: :::::::::::::::::::;: ::::::::::::::::::::::::::::::::::::: :::::::::::::-:::«-.':=»:=::-:::::::•x.;::::xc;~~::::x:x-::::::::::::: :=:=:=:=:·:=:=:-:::::::::::;:::::::::::::<:::'%:' 

Calling *FX 

The "FX command does not display any returned values: you cannot use it to read 
the values of status variables from the command line. It is called in the same way 
as any other • Command: see the chapter entitled • Co•uunis •ni ~~ CLI on 
pase 1-31 for details. 

1-49 



SW/calls 

::::::•:::::::::r.::::::::::::;.:;!':•::::::::::::::::::--~:;:::::::::•:o:o:«Q.o»:•:>;.o;:;:.:·:·:•:•:•:=:•:::•:•:·:•:•:;:.:-:::.,.:::•:;w,;.:;:::•:>:>?'h:>:•:=:::::•:•:::::::::::::::•:·:·:·:·:·::;.:.:·:.:·:~<«·:>:·:·:·:·:·:·:·;·:.:-:·:.:·: ·=·: ·:·:·:·:·:·:·:-:::.:·:· :·:·:·:·:·:·:·:·:·:-·:· · · 

SWI calls 

1-50 

OS_Byte 
(SWI &06) 

General purpose call to alter status variables. and perform other actions 

On entry 
RO = 05_Byte number (so for OS_Byte I . RO = I) 
Rl. R2- as required by individual 05_Byte 

On exit 

RO preserved 
Rl , R2- as returned by individual 05_Byte 

Interrupts 

Interrupts are disabled by the 05_Byte decoding routine 
Interrupt status is unaltered (ie remains disabled) for most values of RO 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

R .. ntranc:y 

Use 

SWI is re-entrant for some values of RO 

The action taken by this SWI depends on the reason code passed in RO. You should 
see the individual documentation of each OS_Byte for full details: 

• If RO is less than 128, then senerally only R I is used to pass further 
information. These calls set a status variable. and may also perform some 
other task. R2 is corrupted unless stated otherwise. 

• lfRO is between 128 and 165 (inclusive), both Rl and R2 are used to hold 
parameters, and both reQisters may contain information on exit from the call. 
The calls are often used for the results they return. 

OS_By/9 

:::.:-:•:";::::::::::::::::::::::;:$.o:·:•:·:·:·:·:;:o:.:-:;:;;:;.;.:v;:.:.;.cv:.:.:-:: :·:·:·:·:·:·:·:·:·:·: :;::::::::::::: :::::::::::::::::;::::::-;:::::::::::::<:•:<:;:<:::<::x=:::=:•:.:::::::::::;:;:::oy_.:.:w .. :·:·:·:·:=:-: =:·:·: ·:·:=:·:·:=:·:=:=:-:::::::::.:=:·:-::;. :·:·:-::::::: ;;::::::::::::::::::::: 

• For calls with RO between 166 and 255 (inclusive) on entry, the action Is always 
the same. RO acts as an index to a status variable. which is altered usinQ the 
contents of R I and R2: 

New Value= (Old Value AND R2) EOR Rl 

To read the status variable, use R I = &00, and R2 = &FF. To write to the status 
variable, use Rl =,.. .,.hu. and R2 = &00. 

Related Swts 

OS_ Word (SWI &07) 

Related vectors 

ByteV 

1-51 



·eommands 
:;:;:;.;;;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:·:·· :;:;.;.;:;;;:;:· ........ ;.;;;;;;;:;:;:;:;;;.;:;.; :;.;.;.;.;.;.;:;.:·:<·:·:·:·:·:.:.;:;::·:·:~·=·=--:· :.:-:•:·:-:::::•::: 

*Commands 

1-52 

*FX 

Calls OS_Byte to alter status variables. and to perfonn other closely related actions 

Syntax 

*FX reason code I I, ) rl I 1, 1 r2) ) 

Parameter• 

Use 

reason_ code 
rl 
r2 

from Oto 255 

from Oto 255 

from0to255 

The parameters are in decimal by default. but you may specify other bases (see 
E,u,.plts below). 

• tx alters status variables. which the computer uses to rontrol its operation. You 
can either read from them. or write to them. Some ·rx rommands will also 
perfonn other actions closely related to the status variable that Is being altered. 

This rommand merely calls the SW! OS_Byte. passing the reason code in RO. rl in 
Rl. and r2 in R2. The reason code detennines which status variable is affected. 

Individual •tx commands are not documented. You should instead refer to the 
documentation of individual OS_Bytes. For example. to see what •tx 218, ... will 
do. see the entry for OS_Byte 218. 

Examples 

*FX 218,0,&FF 

*FX 247 4 01 

Related commands 

None 

Related SWls 

OS_Byte (SW! &o6) 

r2 is sp«~ in 'tull«i,.• l 

rl is sp«~ in h•st 4 

OS_Byte 
:::;:--::;:;:::;:;:;:::;:;::.::::::::::::=.:::::::::::::: :;:;:;:;:;:;:;:::;:;:;:;;:-:::.:::~:;:;;;:::::;:;:;:;:;:;;;;;;:~::::::::::::;:;:;:;:~:::: :;:;:;:;:;:;:;:;:;:;:;:;:::::::::::: :;:;:::::::;:;:::::z~-::::::r.::::::::;:;:;:;:;:;:;:;:;:;:;:;:: :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:; :;:::::: :;:;:;:;:;:;:;-:;:;:;:;:;:;:;:;:;:;: 

Related vector• 

ByteV 

1·53 



i l ·. m
 

~~~ I ::: [ ~ I il ;:;: 
:::: :::: 
:;:: 
;:~ 
<: 
.~:~ ::: 

~ 
:=: 

...,. 

m
 

u;> 
~
 



·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:· :-::;.;.;.;.;.;:;;;.;.;.;.;.;:;.;.;:;.;.;::···.·.·.·.·.·.·.·.·.·.·.·.·::;:;;;.;;;;;:;;;.;;;:··.·.·.·::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:; :;:;:;:;:;:;:;;;.;;;:;.;:;;;:;.;;;:;:;.;:;:;:;:;: ;:;.;.;.;::·:·:·:·:-:>.···· 

7 OS Word 
::::::;:;:;:··.·.·.·.·.·.·.·.·.·· :;:::::::::::::::::::::::;:;:;:;:;:~;:;:;:;:;:;:; :;::::::::::· -:-:·:·:·.~·:,.;:;:;:;:;: ;:: ·:·:-:-:::;:;:;:;::<:::~;:;:;:;:;: :-:·:·:·.·:·:·.·:' ::;:;:;:;:;::<:::::;;:~:«:::::::::::::;:;:;:;:;:;:;,,~:;:;:;: ;:;:;:;:::::::::::::::;:;:;: ;:;:;:;:;:;:; :;:::::::::::::::::;,,:;,;, 

Introduction 

Parameters 

The a;_ Word call is very similar to the a>_Byte call. It is also used to read from. or 
write to. values held in RAM by RISC OS. Much of what is said in the chapter 
entitled OS_Byl6 also applies to OS_ Word. 

You can add new OS_ Word calls by installing a routine on the software vector that 
OS_Word uses -seethe chapterentltledSoftw.rw vcton on page 1·59. Alternatively 
you can use the Unknown OS_ Word service call. although this is not such a good 
way to do so. and is hence deprecated- see the chapter entitled Mo;utn on 
page 1·191. 

Like OS_Byte. interrupts are disabled when most OS_ Word routines are entered. 

The major difference between the two calls is that an OS_ Word call deals with 
larger amounts of data than an OS_Byte call. You therefore need to pass your data 
in a different way. 

OS_Word always takes two parameters. RO is a reason code (as it Is forOS_Byte). 
R I . however. is a pointer to a parameter block. This is an area of memory where you 
store parameters that you want to pass to OS_ Word. and where OS_ Word can store 
Its results. The size of the parameter block varies from call to call. and is 
documented with each OS_ Word description. Often the parameter block contains a 
sub-reason code. which can specify the length of the parameter block; so the site 
can also vary for a given reason code In RO. 

Like OS_Byte. OS_ Word is multi-purpose. and covers such areas as reading the 
time and date. setting the screen's 'palette'. and reading the definition of a 
re-definable character. 

There are far fewer a>_ Words than OS_Bytes; 0 - 22 is the current range of RO on 
entry. Most of these OS_Word calls are provided to ease the task of porting 
software from the earlier BBC and Master series computers. 

Calling OS_ Word 
You call the a>_Word SWI in exactly the same way as anyotherSWI. For details see 
the earlier chapter entitled A" i"tro;uctio" 10 SW!s on page 1-2 I . 

1-55 



OS_ Wwd and • Commands 

,•;,-, . :~~-- :-:-:-:-:-:-:-:-:-:-:-:.:-:-:-:-:-:-:-~---~-; ,•:: .. ;;.·--~ ;.;::=:- :-:-:-:-:-:-:-:-:-:-:-:· ···:;:;. _:;:;::::::-%'::::-.:.':".'}; -: 

OS_ Word and • Commands 
Unlike OS_Byte. no • Command equ1valentto OS_ Word is pr<Mded. 

1·56 

as_won1 
:~o: ::.:.~=--=--- --------~-=-~ __ -~;;:;:.-::=>:-:::.w.-:::-:-~:::::::;.;;.:;;~:>;~:w.<;:.s.:;;.x-:«-:.:v:-:-:-:-:-:-:-:-:-:.:-:-:-:-:-:-:-:"':->:-:-»:-:-:-:.· -;;:;"« 

SWI calls 
OS_Word 
(SWI &07) 

General purpose call to alter status variables. and perfonn other actions 

On entry 

RO = reason code 
R I = pointer to parameter block 

On exit 

RO preserved 

Interrupt• 

Interrupts are disabled by the OS_ Word decodlna routine 
Interrupt status is unaltered (ie remains disabled) for most values of RO 
Fast interrupts are enabled 

Proceasor mode 

Processor is in S\K: mode 

RtMtntrancy 

Not defined 

Uae 

The action taken by this swr depends on the reason code passed in RO In aeneral. 
OS_ Word is used to either read or write a Ia rae number o( status variables at once. 
Rl points to a parameter blod. the lenath of which varies depend In& on the reason 
code. You should see the individual documentation o( each OS_ Word for full 
details. 

Re .. tedSWia 

OS_Byte (SWI &Q6) 

Related vector• 

WotdV 

1-57 



I I 



· · ·.·.··:·:·:· ;.;:;;;.;;;:; ;;:;;;:;:; :;;;;;.;:~;;:;x~>;:;::::;:>:.;;..v.;:-:-:·:·:·:·:·: .;.;.;.;.;.;.:-:·:·:·:·:·:·:·:-···· ;.;:;;;;;:;:;.;:;:;:;:;;;:;:;:;;;;;:;;;:;:;:;:;:;:;:;:;:;:;;:;: .. --»:o:;::=:;:;:;:;:.:;:;:::::·:::.:·:·:·:·:·:·:·:·:·:·:·:·:·:=:·:·::;:;:;:;:;:;:;:·;;:·:·· 

8 Software vectors 
::::::;;::::: :::::::::: ::::::::::::::::::::::: :::::::::::::::::::::::::::::~=::::::::::::::::::::~::t~::>:*=:::::::::~.::::::::::.x::::::::::::::::::::::::;;:::::::: ::::::::;;::::::::::::::: :=: =:=:~:=:=:=:= ::::::::::::::::::: :::::::::::::;::}~<::~~:::::::::::::.:::::::::::::::::::::::::::::::::: 

Introduction 
We have already seen that one of the most important features of RISC OS is the 
ease with which it can be altered and extended. Most of RISC OS is written as 
modules; these can be replaced. and extra ones can be added. 

The exception to this Is the kernel. which provides the central core of functions 
necessary for RISC OS to work. You cannot replace the entire kernel. Instead. you 
can change or replace how certain fundamental routines of the RISC OS kernel 
work. You do this by using wftw.rr wo:lors. or >«tors for short. These are held in the 
compute(s RAM: RJSC OS uses them to record where it can find these routines. 

Many of these routines perfonn all the functions of a given SWI. The corresponding 
SWI is then known as a ~~&~Drill SWI. 

Claiming vectors 
When you call a SWI. RJSC OS uses the SWI number to dedde which routine in the 
RJSC OS ROMs you want. For an ordinary SWI. RISC OS looks up the address of the 
SWI routine and then branches to it. However. if you call a vectored SWI. it instead 
gets the address from the corresponding vector that is held in RAM. Nonnally this 
would be the address of the standard routine held in ROM. 

You can change this address by using the SWI OS_Ciaim. documented later in this 
chapter. RISC OS will then instead branch to your own routine. held at the address 
you pass to OS_Ciaim. 

Your own routine can do one of the following: 

• replace the original routine. passing control directly bad to the caller 

• do some processing before calling the standard routine. which then passes 
control back to the caller 

• call the standard routine. process some of the results it returns. and then pass 
control back to the caller. 

If your routine completely replaces the standard one. it is said to i1111rUpt the call: 
otherwise it is said to p•ss 011 the call . 

1-59 



Anflxamp/fl 

;-;.:-:-:;;.;!;.; ;;.;-:-::;.;:;.;:;:;.:-:·:·:·:·:·:·:.t·:·: .;;;.;.;::-:·:·:·:·:·:·:·::;:;.;.;.:;;.;.;-;;;.;:;:;.;yx.:;:<.e-::::::::;;;.;;:.:;.;~:-:-:-:-:·:-::::::: :;.;.;:;:;.;.;.;:;.; ·!·!·!·!·!·!-!·:·x;;.;;;;;:;;::::::::::::::;:::;:;:::;:;:::::::::::::;:;::~~:;:::::::::::::;::::::::*">.~:>: 

An example 

Vector chains 

As an example, let's look at theOS_WriteC routine. When RJSC OS decodes a SWI 
with SWI number &00, it knows that you are requestins a write character operation. 
RISCOS sets an address rrom a vector- in this case called WrchV- and passes 
control to the routine. 

Now by default. the WrchV contains the address orthe standard write character 
routine in ROM.Ifyou claim the vector using OS_Ciaim, whenever an OS_WriteC is 
executed. your own routine will be called first. 

So far. we've deliberately been vasue about how vectors store the addresses or the 
routine . In fact. the vector is the head or a chain or structures, which point to the 
next claimant on the vector. and to both the code and the data associated with this 
claimant. Consequently: 

• there may be more than one routine on a siven vector 

• no claimant has to remember what the previous owner of the vector was 

• vectors can be claimed and released by many different pieces or software in 
any order. not Just in a stack-like order. 

The routines are called in the reverse order to the order in which they called 
OS_Claim. The last routine to OS_Claim the vector will be the first one called . Jr 
that routine passes the call on. the next most recent claimant wil l set the call. and 
so on. lf any or the routines on the vector intercept the call. the earlier claimants 
will not be called. 

When not to Intercept a vector 

There are some vectors which should not be intercepted: they must always be 
passed on to other claimants. This is because the derault owner, ie the routine 
which is called if no one has claimed the vector. misht perfonn some important 
action. The error vector. ErrorV. is a sood example. The default owner of this vector 
Is a routine which calls the error handler. If you intercept ErrorV, the error handler 
will never be called, and errors won' t be dealt with properly. 

Multiply Installing the same routine 

1-60 

When OS_Ciaim adds a routine to a vector. it automatically removes any earlier 
instances oft he same routine from the chain. If you don't want this to happen, use 
the SWI OS_AddToVector instead. 

Softwarfl VfiCtors 

:-:·:-;.:-:·:·:·:·:·: ·:·:-:·:·:-:-:·:·:·:· :·::::;:;.;:;:;:;:;:;:;:;;;;;.;;;::·::; •. ;:;;;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:»;;::::;:;:;:;:;:;:;:;:;:;:;:;:;:;::~~-:;::::::;:;:::~::.:;:;:::::::::::::::~:;~::::::;:~:~: -::;:;:;:;::«_:;:;:;:;:;:;:;:;:;:;:· 

SWI Calls 

Adds a routine to the list or those that claim a vector 

OS_Ciaim 
(SWI &1F) 

On entry 

RO = vector number (see pase I· 70) 
Rl =address or d aimins routine that is to be added to vector 
R2 =value to be passed in Rl2 when the routine is called 

On exit 

RO • R2 preserved 

Interrupts 

Interrupts are disabled 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI cannot be re-entered as It disables IRO 

This call adds the routine whose address is siven in Rl to the list of routines 
claiming the vector. This becomes the first routine to be used when the vector is 
called. 

Any earlier instances of the same routine are removed. Routines are defined to be 
the same if the values passed in RO. R I and R2 are identical. 

The R2 value enables the routine to have a workspace pointer set up in Rl2 when it 
is called. If the routine using the vector Is in a module (as will often be the case), 
this pointer will usually be the same as its module workspace pointer. 

1·61 



OS_C/aim (SWI &1F) 

:·:·:·:·:·:-:::·:·:·:·:·:·:·:·:·:·:·:·-=·· ;.;.;.;;;.:-: .·.··:·:·:·:·:·:·:·:·:-:.Yh:·:·:.:-: ........ ;-,.;:;o;*.;:=,;;;:;:;:;:;:;:;:::::-::::$»$::;;:;;:;;;:;:;:;: ;:;:;:;:;:;:;.;:;:;:;.;:;.;:;:;:;.;.;:;.;.;.;.;:;.;:;.;.;.;:;;;.;:;.;.;:;;;.;:;:;.;;;:;:·.· .· 

1-62 

Example 
MOV RO, fByteV 
AOR Rl, MyByteHandler 
MOV R2, fO 
SWI "OS_Cl a lm" 

Related SWls 

OS_Release (SWJ &20), OS_CaiiAVector (SWJ &34), OS_AddToVector (SWI &47) 

Related vectors 

All 

Software vectors 
. ·.·.··:·:·:;:;:;.;.;.;:;:;.;.;:;.;:;.;.;:;.;:;:;:;:;;;:;;;:;.;.;.;.;:;;;:;:;:;.;:;:;:;:;:;:;:;.;:;.;:;:;:;:;;;:;:;:;:;:; :;:;:;:;:;:;:;:;:;:;:;:;:;.;:;:·: ····:·:··· ••• :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.;:;:;:;:;;;;;:;:;;;··: ••• ·.·.·=· ·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.;;.;:;.;.;:;:;:;.;.;:;:;:, 

OS Release 
(SWI &20) 

Removes a routine from the list of those that daim a vector 

On entry 

RO =vector number (see page 1-70) 
Rl =address of routine that is to be released from vector 
R2 =value given in R2 when claimed 

On exit 

RO- R2 preserved 

Interrupts 

Interrupts are disabled 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

SWJ cannot be re-entered as It disables IRQ 

U•e 
This call removes the routine. which is identified by both its address and 
workspace pointer, from the list for the specified vector. The routine will no longer 
be called. If more than one copy of the routine Is claiming the vector. only the first 
one to be called is remcwed. 

Example 
MOV RO, fByteV 
ADR Rl, MyByteHandler 
MOV R2, 10 
SWI "OS_Rel ease" 

Related SWls 

OS_Ciaim (SWI &IF). OS_CaiiAVector (SWI &34 ). OS_AddToVector (SWJ &47) 

1-63 



OS_ R91NS9 (SWI &20) 

;~::::::<;<:;::;:::::;:::;:::;:::;::;;::::::::::::::::::::::::::.;:;:-;:;=-:~::::;:;:::;:::.::::::::::;:;.:,.~--x::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;;;:;:;:;:;:;:;:;:;:::::~:;:.~;:~:?::::>::::>:::::::::-:-::}XX::::::::;:;:;:;:;:::::-x.:>::;:;:;::·::::::::::::;:;:·:····· 

1-64 

Related vectors 

All 

Sotrware l'llCtots 
.;.;.;.;.;.;.;;;.;.;:;::;;o;:;:;.:;:;;:.;. .. ~::::;;;;:~..;;.':~x::: :·:·:·:·:-:-;.;.;:;.;:; :;:;:;:;:;:;:;:: .;:;:;:;:: :;:; •• ;:: .;.;:;.:-:·:-::;::;;:; .;:;.;:;:;:; :;:;.;:;:;: ;:;:;.;:;:;.;:;.:.:-:: ;::;;.;;;.;:;:;.;.; :;:;;~~:~::s:;.:;::::::;::::;.-::;;;x~:;:;:;.;:;o:o;;;::::.::;::~ 

calls a vector directly 

OS_ CaliA Vector 
(SWI &34) 

On entry 

RO • R8 = vector rout! ne parameters 
R9 =vector number (see page 1·70) 
V and C nags in R 15 =nags to pass to vector 

On exit 

Dependent on vector called 

Interrupts 

Interrupt status Is undefined 
Fast interrupts are enabled 

Procesaor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is re-entrant- but not all vectors it calls are re-entrant 

OS_CaiiAVector calls the vector number given in R9. RO • R8 are parameters to the 
vectored routine: see the descriptions below for details. 

This is used for calling vectored routines which don't have any other entry point. 
such as some calls to RemV or CnpV. It is also used by system extensions such as 
the Draw. Colour'J'rans and Econet modules to call their corresponding vectors. 

You must not use this SWI to call ByteV and other such vectors. as the vector 
handlers expect entry conditions you may not provide. 

Related SW1s 

OS_Ciaim (SWI &IF). OS_Release (SWI &20). OS..J,ddToVector (SWI &47) 

1-65 



OS_Ca/IAV6Ct7r{SWI &:J.f) 

·:·;.:-;.:-::.»:-:-:-:-:-:-:-:-:-;-;-:-:-:-:-:-:-::-:-:-:-:-. ;;;:;;;···--•· -~--'-- ,IA:.,o;;:,":";::.:~ ........... ,•.-.•:;x:::=:•:•:•:.:•:•:•:•:•:•:•:•:•:•:•:•:•:•:-:•:•:•:•:•:•:•:•:•:•:•:•:•:•:•:•:•:::•:•,•:•:.,•:•:.: 

1-66 

Relaled vector• 

All 

Sotrware I'IICiotS 

~;-::-;.:-::.:-:-:-:.:-:-:-:-:-:-;.;.:-;.::.:.:.:-:-:::.;.:;:-:-:'0:-:.:-;-:-:-:-:-:-:-:-x:;v.;:.:-:-:-;.:-····;· ··;:::·····-··;:;;gg;j;;;:;:;;;:::::;; •h • ..-:X-~":~-~-

OS_AddToVector 
(SWI &47) 

Adds a routine to the list of those that claim a vector 

On entry 

RO =vector number (see paae I· 70) 
Rl =address of daiming routine 
R2 =value to be passed in R 12 when the routine Is called 

On exit 

RO • R2 preserved 

Interrupt• 

Interrupts are disabled 
Fast interrupts are enabled 

Proceaaor mode 

Processor is In SVC mode 

Re-entrancy 

Uae 

SWI cannot be re-entered as it disables IRQ 

This call adds the routine whose address is aiven in R I to the list of routines 
daiming the vector. This becomes the first routine to be used when the vector is 
called. 

Unlike OS_Ciaim. any earlier instances of the same routine remain on the vector 
chain. 

The R2 value enables the routine to have a workspace pointer set up In Rl2 when it 
is called.lfthe routine usina the vector is Ina module (as will often be the case). 
this pointer will usually be the same as its module worbpace pointer. 

Related SW1a 

OS_Ciaim (SWI &IF), OS_Release (SWI &20). OS_CaiiAVector (SWI &34) 

1-67 



OS_AddToV8Ctor (SWI &47) 

:::~::::::::;:;:;:::;:;::.~;:;:::::::::::::::::~;;:::::::::~:~::>»~::::::::::::;:::::;s:-«.:-~;;:;:~~/.::::;::;::::::::::===:::::«~"S?.:;>::;:;:;:;:::::::::::;:::::::;:~:;::::;:;:::;::::::::::::-~~=::::-::~::.:::::·:· 

1-68 

Related vectors 
All 

Softwllf8 \'9CtOrS 

~:;:;:;:;:;:;::<-).':::::::::: :;:;:;:;:;:;::>;::::::::::::::::::::;:::;:;:;::::<<:O:..~;::$!.~-....::~:o:;:-;:;.;:;:;.;:;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:;::::::::::::::::::...~·::.:.-:::::::::::::::~:.~::.-:::~::: ;:;:;:;:;:; :;:;:;:;:;:;:;:;:::::::~;: .;.;;;:;:;:;.;:;:;:;:·:···· 

Use of registers 
If you write a routine that uses a vector. It must obey the same entry and exit 
conditions as the corresponding RISC OS routine. For example, a routine on WrchV 

must preserve all registers. lust as the SWI OS_ WriteC does. 

If you pass the call on. you can deliberately alter some of the registers to change 
the effect of the call . However. if you do so, you must arrange for control to retu m 

again to your routine. You must then restore the register values that the old 
routine would normally hare returned. before finally returning control to the 
calling program. This is because some applications might rely on the returned 
values being those documented in this manual. 

Processor modes 
The processor mode in which the routine Is entered depends on the vector: 

• Routines vectored through lrqV (Vector &02) are always executed in IRQ mode. 

• Routines vectored through EventV.InsV. RemV. CnpV (Vectors &10- &16) and 

TlckerV (Vector & I C) are generally executed In IRQ mode, but may be executed 
in SVC mode If called using OS_CaiiAVector. and In certain other unspecified 
circumstances. 

• All other routines are executed in SVC mode-the mode entered when the SWI 

Instruction is exectJted. 

SVCmode 

Note that if you call a SWI from a routine that is in SVC mode. you will corrupt the 
return address held in Rl4. Consequently. your routine should use the full. 

descending stack addressed by Rl3 to save Rl4 first. See the section entitled 
l111porla"t notts on page 1-29 for a more complete explanation of this. 

IRQ mode 

If your routine will be entered in IRQ mode there are other restrictions. The"se are 

detailed in full in thesectk>n entitled Rntmtio"s on page 1-118. 

Returning errors 
Routines using most of the rectors can return errors by 5etting the V flag. and 
storing an error pointer in RO. The routine must not pass on the call. as one of the 
parameters (RO) has been changed; this would cause problems for the next routine 
on the rector. The routine must instead intercept the call. returning control bad to 

the calling program. 

1-69 



Retvming from a vectored rovtine 

:::::::::::::::::::::::::::::::::::x:::;.:::::::::::::::::::;:::::;zx:::::::::::::::::::::::::·:·:·:·.·::::::::::::::;:::::<:::::::::::::::::::::::::::::::::::.:::::.:::·:·:=:·:·:=:=:-:::::::::::::::::::·:·:·:-:::::::.:::::::::·:·:;:·:·:·:·:-:::.:::::::::::::::::::::::;:::::::;::::::::::::::::;:::::.;;;.;;::::::::· 

You can' t do this with all the vectors; some of them (those involving IRQ calls in 
particular) have nowhere to send the error to. 

Returning from a vectored routine 
You should use one of two methods to return from a vectored routine . These are 
described immediately below; for an example. see the section entitled An auc,U 
prograJtt on page 1·98. 

Pa .. lng on the call 

If you wish to pass on the call (to the previous owner). you should return by 
copying Rl4 into the PC. Use the instruction: 

MOYS PC,R14 

When you pass on a call. you must preserve theY and C nags for the next routine. 
Note especially that the CMP instruction corrupts these nags; arrange your code to 
instead use the lEO instruction with unshifted operands. 

Intercepting the call 
If you w ish to interrept the call . you should pull an exit address (which has been 
set up by RISC OS) from the stack and jump to it. Use the instruction: 

LDMFD Rl3!, {PC) 

Control will return to the caller of the vector. 

List of software vectors 

1-70 

The software vectors are listed below. The following section entitled SuPKPKary of 
~~odors gives a summary of each vector. and tells you where to find out more about 
it. A few vectors also merit a more detailed description in the section entitled Y«.t.or 
uscriptions on page 1·77. Such vectors are indicated in the list below by a dagger 'f. 
Also. the names of the routines which can cause each vector to be called are in 
brackets.: 

Vector 

UserY 
ErrorY 
lrqY 
WrchY 
RdchY 
CUY 
ByteY 

t 

No 
(&00) 
(&01) 
(&02) 
(&03) 
(&04) 
(&05) 
(&06) 

De.cripdoa 
User vector (reserved) 
Error vector (OS_GenerateError) 
Interrupt vector 
Write character vector (OS_ WriteC) 
Read character vector (OS_ReadC) 
Command line interpreter vector (OS_CLI) 
OS_Byte indirection vector (OS_Byte) 

Sotrwsre \I8CfOtS 

:: :::::::::::::~:::::::::::::;:::: :::::::::-:;;.;;:::::;:.~:::::::::"::::x::::::::>!'"/.t)';:;m;;;;;:;:;;;:.:·:·:·:::;:::-z.#h:::::::.-~:=:::::w-..m~::;::.rnm:~:r~:::-:·:::««>m;;::;;x::o:::::::;:;:;-;:q-*';:.x.;.x-::·:·>: 

WordY 
FileY 
lvgsY 
BGetY 
BPutY 
GBPBY 
FindY 
ReadUneY 
FSCV 
EventY 
lnsY t 
RemY t 
CnpY t 
UKVDU23Y t 
UKSWIV t 
UKPLOTV t 
MouseY 
VDUXV t 
TickerY t 
UpcaiiY 
ChangeEnvironmentY 

SpriteY 
DrawY t 
EconetY t 
ColourY t 
PaletteY t 
SeriaiY 

(&07) 
(&08) 
(&09) 
(&OA) 
(&OB) 
(&OC) 
(&OD) 
(&OE) 
(&OF) 
(&10) 
(&14) 
(&15) 
(&16) 
(&17) 
(&18) 
(&19) 
(&lA) 
(&I B) 
(&I C) 
(&I D) 
(&IE) 

(&IF) 
(&20) 
(&21) 
(&22) 
(&21) 
(&24) 

OS_ Word indirection vector (OS_ Word) 
File read/write vector (OS_File) 
File arguments read/write vector (OS_Ivgs) 
File byte read vector (OS_BGet) 
File byte put vector (OS_BPut) 
File byte block geVput vector (OS_GBPB) 
File open vector (OS _Find) 
Read a line of text vector (OS_ReadLi ne) 
Filing system control vector (OS_FSControl) 
Event vector (OS_GenerateEvent) 
Buffer insert vector (OS_Byte) 
Buffer remove vector (OS_Byte) 
Count/Purge Buffer vector (OS_Byte) 
Unknown VDU23 vector (OS_ WriteC) 
Unknown SWI vector (SWI) 
Unknown VDU25 vector (OS_ WriteC) 
Mouse vector (OS_Mouse) 
VDU vector (OS_WriteC) 
l OOHz pacemaker vector 
Warning vector (OS_UpCall) 
Environment change vector 
(OS_ChangeEnvironment) 
OS_SpriteOp indirection vector (OS_SpriteOp) 
Draw SWI vector (Draw_ ... ) 
Econet activity vector (Econet_ ... ) 
Colour'Trans SWI vector (Colour'Trans_ .. 
Read/write palette vector 
OS_SeriaiOp indirection vector 

All other vectors are reserved by Acorn. 

Summary of vectors 
Brief details of these vectors are given below. 

Many of them are by default used to indirect calls of SWis. and so the routine they 
call is the same as that the SWI calls. In these cases, you should see the 
description of the SWI for details of entry and exit conditions. Vectors which do not 
have corresponding SWJs are instead documented in more detail later in this 
chapter. 

As an example, the default routine called by WrchY Is the same as that used by 
OS_ WriteC. and so you should see the description of OS_ WriteC for details of it. 

1·71 



Summary of vectOfS 
·-:·:·:-:-;.;. ;:;:;.;.:-:-:.:.m-»;.:;;.:-:-: -:-:-:-:-:-:-:-:-:-:-::;.;-:-:-:-:-:=:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·::;.;:;.;: ;::-:-:-::;.; -:.;,;.:;:..:.~.:-:-:-::;. :-:-:-:-;.:-:-:-:-:-:-:-::;.;:;:;:;:;:;:;:;: ;:;:;.;:;:;:;:;:;:;:;:;:;:;:;::-:-:«::-:-::;:;:;.;.;:;.;.;-:::·:~-»=«·:· :-:-:.: ·:·:·:·:·:·:·:-: 

UserY 

ErrorY 

lrqY 

WrchY 

RdchY 

1-72 

Abo at tile ftH •• .,.tem Yeeton 

Note that the filing system vectors F'ileV (Vector &08) to FindV (Vector &00) have 
'no default action' . le they return Immediately. H~r. the F'ileSwitch module 
(described in the chapter of the same name, starting on page 3-9) OS_Cialms the 
vectors whenever the machine Is reset. so effectively the default action Is to 
perform the appropriate filing system routine. 

Other Yeetors .. d reHU 

Vectors are freed on any kind of reset. and system extension modules must claim 
them again If they need to-lust as F'ileSwitch does. 

UserV is a reserved vector. and you must not use it Its default action Is to do 
nothing. 

ErrorV Is used to indirect all errors from error-generating SWis and from 
OS_CenerateError- see page HII for full details The default act1on Is to call the 
error handler. 

See also the rest of the chapter entitled C.rtCTati~~g arwl fla..Jii~~g mon. and the 
chapter entitled Progra111 EIIWort llltrtl on page 1-277 for more about handlers. 

lrqV is called when an unknown IRQ Is detected. It enables you to add Interrupt 
generating devices of your own to the computer. The default action Is to disable the 
interrupting device. See page l-781ater in this chapter for full details. 

See also the chapter entitled lrttlmlpts a!IJ '•*6119 ~ .... on page 1·109. and the 
chapter entitled Progra111 E!Mro"llttrtl on page 1-277 for more about handlers 

WrchV is used to indirect all calls to OS_ WriteC- see page 2-13 for full details. The 
default action is to call the ROM write character routine 

RdchV is used to Indirect all calls to OS_ReadC- see page 2-357 for full details. 
The default action Is to call the ROM read character routine. 

Software \I8Ctors 

~;..:-;.;.; ·:·:·:·:=:-:.:.:-: -:-:-:-:-:-:-:.:-:-:-::::::::::::::::::;:;.;:::::::::;.; :·::;.:::.:-x:::.;.:·:·:·:·:·:·:·:·:·: ·:<:.:..:·:·:·:·:·:-:..:-: -:-:-:=:-:-:-:-: :;:;.;::::::::::::-::::: ::::::;:;:;:;:;:;:;:;.;.:-:-:-X-;-:-x~--«·:-:-: -:.:·:·:·: -:-:-:-: -:·:·:·:·:·:·:·:·:·:·:·: :;:;:;:;:;;;:;:;. 

CUY 

ByteY 

WordY 

FlleY 

ArgsY 

BGetY 

BPutY 

CUV is used to Indirect all calls to OS_CU- see page 2-415 for full details. The 
default action Is to call the ROM command line Interpreter 

ByteV is used to indirect all calls toOS_Byte-see ~ 1-50 for full details. The 
default act1on is to call the ROM OS_Byte routine 

Note that interrupts are disabled when an OS_Byte Is called If you daim this 
vector. your routine must enable interrupts If Its processing takes a long time (over 
l~s). and be prepared to be reentered. 

WotdV Is used to Indirect all calls to OS_ Word- see page 1·57 for full details. The 
default action is to call the ROM OS_ Word routine. 

Note that interrupts are disabled when an OS_ Word is called If you claim this 
vector. your routine must enable interrupts if its process Inc takes a long time (over 
IOOJ!s). and be prepared to be reentered. 

FileV is used to Indirect all calls toOS_F'ile-see page 3-27 for full details. The 
default action Is to call the ROM OS_File routine (see the note above). 

ArgsV is used to indirect all calls to OS ....Ares- see page 3-42 for full details. The 
default action is to call the ROM OS_Args routine (see the note above). 

BGetV Is used to Indirect all calls to OS_BGet- see p;~te 3-56 for full details. The 
default action Is to call the ROM OS_BGet routine (see the note above). 

BPutV Is used to Indirect all calls to OS_BPut- see page 3-58 for full details. The 
default action is to call the ROM OS_BPut routine (see the note above). 

GBPBY 

CBPBV is used to Indirect all calls to OS_CBPB - see page 3-59 for full details. The 
default action Is to call the ROM OS_CBPB routine (see the note above). 

1-73 



Summary of vectors 
_.;;;.;;.;:;Q.;:-;.;.:-:-:·:·:·:· 

1-74 

FlndV 
FindV i.s used to Indirect all calls to OS_Find- ~page 3-68 for full details The 
default action Is to call the ROM OS_flnd rouune (see the note aboYe). 

RMdUneV 

FSCV 

ReadLineV IS used to Indirect all calls to OS_ReadLine- see page2-417 for full 
details The default action IS to caU the ROM OS_ReadLane routine. 

F'SCV is used to Indirect calls to OS_F'SControl- see page 3-73 for full details. The 
default action Is to call the ROM OS_F'SControl routine. 

Even tV 

lnsV 

RemV 

CnpV 

EventV Is used to indirect all calls to OS_GenerateEvent- see page 1-144 for full 
details. The default action Is to call the event handler. 

See also the rest of the chapter entitled Ew1tls; and the chapter entitled Progra,. 
E~toiro~t,.,ltl on page 1-277 for rnor~ about handlers. 

lnsV Is called to place a byte In a buffer. See page 1-80 later in this chapter for full 
details 

See also the chapter entitled Buffm on page 1-153 

RemV Is called to remove a byte from a buffer. See page I.S2 later in this chapter 
for fu II details 

See also the chapter entitled Buffm on paee 1-153 

CnpV is called to count the number of entries in a buffer. or to purge the contents 
of a buller See page 1-8-4 later an this chapter for full details. 

See also the chapter entitled Buffm on page 1-153. 

UKVDU23V 

UKVDU23V Is called when a VDU 21.11 command Is issued with an unknown value of 
11. The default action Is to do nothing- unknown VDU 23s are usually ignored. See 
page 1-86 later in this chapter for lull details. 

SOflwate~ors 

-:««v..r.·.-:::::·:.-~·:·:·:-:V:-::.: .... ;.;;;;;.;;;.;.;;;;;;;;;.;:;;;:::x<:•.-:-m-?..-,.:;;:0»".««-xv-.-:.:-:-:a·:·x·:-x-:.v.-:·Y..:·:·:-·Iolo~~~-~~"'""""~;,.,· ====;;;; .;.; . ' . .·.~-~-:- ··:·:·:·:· 

UKSWIV 
UKSWIV is called when a SWIIs Issued with an unknown SWl number The default 
action is to call the unknown SWI handler, which by default generates a No such 
swr error. See paee I.S71ater In this chapter for full deta1ls 

See also the chapter entitled All iiiUDoluaio~ ID SWls on page 1-21, and the chapter 
entitled Profr•,. Ellllito~IUilt on paee 1-277 for more about handlers. 

UKPLOTV 
UKPL01V is called when a VDU 2'.i.~ (Plot) command Is Issued with an unknown 
value o( ~ . The default action is to do nothing- unknown VDU 25s (Plots) are 
usually ignored. See page H!8later In this chapter for full details. 

MouseY 

MouseV is used to indirect all calls to OS_Mouse- see pate 2-207 for full details. 
The default action Is to call the ROM OS_Mouse routine. 

VDUXV 
VDUXV is called when VOU output has been redirected by setting bit 5 of the 
OS_ WriteC destination nlli This vector Is normally dalmed by the Font Manager, 
to implement the Font system (see the chapter entitled T~• Fo~tl M•Mf" on 
page 5-1). If the Font module Is disabled, the default action is to do nothing- no 
output is sent to the VDU. See page I.S91ater In this chapter for full details 

See also the chapter entitled Ciaraa.r Oklpwl on pate 2-1. and the chapter entitled 
VOU Oriwrs on pate 2-39. 

Tlckef'V 
'JlderV is called every centl-second. l.t must never be Intercepted See page 1-90 
later in this chapter for full details. 

UpC.IIV 

UpCaiiV is used to indirect all calls to OS_UpCall- see the chapter entitled 
eo .... ....Uiiolls wil4iot RJSC OS on pate 1-167 for full details The default action is to 
call the UpCall handler. 

ChangeEnvlronmentV 
ChangeEnvironmentVis used to indinect all calls toOS_ChangeEnvironment- see 
page 1-307 for full details. The default action Is to call the ROM 
OS_ChangeEnvironment routine. 

1-75 



Summary of vectors 
:;.;-::;;;::::;:-:::=:-~x.::::;:::::-:;:.:;:.;:;:::::-;::::::-~-:;:::::::..x:;...;:;;;;::::::::::::;:~:::::::::::::::;:-~:::~:o:;.; .. :::::::::::::::.h'"~:::::::;;;~:~:=::::;:;::::::::::::::::::;:;~:::::::::::::::::::::::::::;~:<':-:·~·=;:::::::::.;::-:-:-:·:·:· :-:-:-::;::.;._;.;:.;:;.;.·.·.• ... 

1-76 

SprlteV 

DrawV 

SpriteV is used to indirect all calls to OS_SpriteOp- see pafle 2-262 for full details. 
The default action is to call the relevant ROM OS_SpriteOp routine. (In fact there 
are two claimants for this vector: one intercepts those calls handled by the kernel's 
sprite routines. the another intercepts those handled by the SpriteExtend module.) 

DrawV is used to indirect all SWI calls made to the Draw module. The default 
action is to call the ROM routine In the Draw module that decodes and executes 
SWis. See pa11e 1-91 later in this chapter for full details. 

See also the chapter entitled Draw .. ootull on pa11e 5-1 I I. 

EconetV 
EconetV is called whenever there is activity on the Econet. The default action is to 
display the Hour11lass on the screen. See pase 1-92 later in this chapter for full 
details. 

See also the chapter entitled E<:oovt on pa11e 6-1. the chapter entitled Hourglass on 
pa11e 6-73. and the chapter entitled N•!Sr.tus on pa11e 6-83. 

ColourV 

ColourV is used to indirect all SWJ calls made to the CoiourTrans module. The 
default action is to call the routine in the ColourTrans module that decodes and 
executes SWJs. See pa11e 1·94 later In this chapter for full details. 

See also the chapter entitled Colouflrans on pa11e 4-381 . 

PaletteV 
PaletteV is called whenever a call is made to read or write the palette. The default 
action is to call the ROM routine to read or write the palette.See page J-961ater in 
this chapter for full details. 

This vector has no default owner under RJSC OS 2. 

Serle IV 
SpriteV is used to indirect all calls to OS_SeriaiOp- see pa11e 3-440 for full details. 
The default action is to call the ROM OS_SerialOp routine. 

This vector has no default owner under RJSC OS 2. 

Soflwar11 ~ors 
:;:;:: :;:;:;:;:;:;:;,:;:;:: :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;~::;::;;;;:.;.;::::·:-::;.; ·>!·!·!·:=:·!·!·!; ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;;;:;:;:;:;::;:::.:::;::;:~;;:;;:;.;;;:;;::,.·:•s..;:;.:;:-::::::::: .. ~~:::::;.;.:o!;;:}:;:-:-:·!·!·!·:~:-:-:·:·: .;.;.;:;:;:;:;: ;:;:;:;:;:;:;:;:;:;:;:;:; 

Vector descriptions 
The next section describes In detail those vectors which do more than indlrectinll a 
sin11le RISC OS SWI. 

In most cases, the interrupt status is 11iven as urtUfi.W. This Is because the vectors 
may be called either by the SWI(s) which normally use them. many o( which ensure 
a lliven interrupt status. or by OS_CaiiAVector. which does not alter the interrupt 
status. 

1-77 



lrqV (VIK:Ior &02) 

.·:·:·:·:·:·:·: -:-:·:·:-:-:-:·:·:·:·:·::;:;.;.;.;.;:;.;.:-:·:·:·:-::;.;.;.;.;.;.;.;;;:;.;:;.;.;.;.;:;;;.;.;.;.;:;:;.;:;:;.;:;:;:;:;:;;;:;:;:;:;:;;;.:-:·:·:·:·:·:·:·:·:·:·::;:;.;:;:;;;.;.;:;:;:;:;.;:;:;:;:;:;:;:;:;::•:;;:;:;;;:;.;:;:;:;.;.;.;.;:;:;:;:;:;:;:;.;.:-:·:·:·:·:·:·:·:·::;.:-:·:·:·:· ::;.;:;.;:;:;:;:;:;:;:;.; 

1-78 

Called when an unknown IRQ is detected 

lrqV 
(Vector &02) 

On entry 

No parameters passed in registers 

On exit 

Interrupts 

Interrupts are disabled 
Fast interrupts are enabled 

Processor mode 

u .. 

Processor is in IRQ mode 

This vector is called when an unknown IRQ is detected. 

It was provided in the Arthur operating system so you could add interrupt 
generating devices of your own to the computer. RISC OS provides a new method 
of doing so that is more efficient. which you should use in preference. This vector 
has been kept for compatibility. 

The default action is to disable the interrupt generating device by masking it out in 
the IOC chip. 

Routines that claim this vector must not corrupt any registers. You must not call 
this vector using OS_CaiiAVector 

You must intercept calls to this vector and service the interrupt If the device is 
yours . You must pass them on to earlier daimants if the device is not yours. so that 
interrupt handlers written to run under Arthur can still trap interrupts they 
recognise. 

Old software that handled Sound interrupts using this vector will no longer work. 
as the new Sound module exclusively uses the RISC OS SoundiRO device handler. 

Software V6CIOtS 

;:;:;::::~~:~:-:·:;;:;;;.;-;:;;;;;.;.;.;.;.;:;.;.;:;.;.;.:-:·:·:·:·:·:·:.:0:·:·:···· · :;.;.;.;:;:;:;:;:;:;:;:;:;:;:;:::;:;:;:··:::: •.. :.:.:.:;:;:;:;.;.;.; •••• :.:;:;.;.;.;.;::,.;:;:;:;.;.;.;:; .;:;.;.;:;:;:;:;:;:;:;:;:; :;:;:;:;:;:;:;:;:;.;:;:;:;:;:;:;:;:;:;:;:;::;;.;:;.;':<:::«--=~~o;.:;.:.z; 

See the chapter entitled htlll'n<pls arul iarulliltf til* on page 1-109 for details of how 
to add interrupt generatina devices to your computer. and the chapter entitled 
Progra,. Environ,.t nl on page 1-277 for more about handlers. 

Related SWis 
None 

1-79 



lnsV(Veclor&14) 

·:·:·:·: 

1-80 

·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:-:· .• ·:·:·:·:·:·.·:·:·:·:·:~~·:-::;.;:;.;:::;.;.;:x:;.;;::x.::::x::::::«-"!::::'::::::.::::::::::::: :::::::::::=:-::::: :;::::::::::::::.:-::::;.;:;. :·:·:-:::·:·:·:-::;.;::::·:·:·:·:·:·:-;.:-::::;.;::::-~·:·:·:· :-:·:·:·:·:-:.: 

Called to place a byt~ In a buffer 

lnsV 
(Vector & 14) 

On entry 

RO = byte to be Inserted (if byte operation) 
R I = buffer number (bits 0- 30) and byte/block operation Oaa (bit 31 ). 

bit 31 clear~ byte operation- RO holds byte 
bit J I set ~ block operation- R2 points to block of l~ngth RJ 

R2 ,. pointer to first byte of data to be inserted (if block operation) 
RJ = number of bytes to Insert (if block operation) 

On exit 

RO. Rl preserved 
R2 corrupted - If byte operation, 

else R2 s pointer to remaining data to be Inserted -If block operation 
RJ • number of bytes still to be inserted- if block operation 
C = 1 Implies Insertion failed 

Interrupt• 

Interrupt status Is undefined 
Fast interrupts are enabled 

Processor mode 

u .. 
Processor is In IRQ or SVC mode 

This vector Is called by OS_Byte 138 and OS_Byte 153. The default action Is to call 
the ROM routine to Insert byte(s) into a buffer from the system buffers To use 
different sited buffers, you must provide handlers for all of lnsV. RemV and CnpV 

It may also be called using OS_CaiiAVector. lt must be called with interrupts 
disabled (the OS_Bytes do this automatically), therefore code on the vector can 
only be entered with Interrupts disabled and is not ~trant 

Cis used to Indicate If the insertion failed; if C= I then it was not poss1ble to Insert 
all the specified data, or the speci lied byte. 

Software \19Cfcn 

;.;:;.:::·:•:-:::<!-:~::;:;:;:;:;:;:;:: :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;: ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;;x:;:;:;:.:;:::::::;:;:;:;:;:;:;;::;;;;::;.:;;:;:;:;:;:;:;:;:;:;:;:;:::;:;.;:;:;:;.;:~;:;:;:;:;:;:;;:*:;:;:;:;:;:;:;:;:;:;:;:;:;.;.;.;.:-:·:·:·:·:·:·:· :::·:·:·:·:·:·:·:·:·::;::::::::;:~"*· :::::;:v:·: 

Block operations are not available In RISC OS 2, nor are they available for buffers 
that are not handled by the buffer manacer. 

See also the chapter entitled &lfm on pace 1-153 and the chapter entitled TM 

&{ftr Ma "af" on PQie 5,..07. 

Related SWis 

05_Byte 138 and 153 (SWI &06) 

1-81 



R9mV (Vsclor &15) 

;:;:;:;:;:;;:::.·:•::;.;.;.;;;:;. :·:·:·:·:·:·:·:·:·:.:·:·:·:·:·:·:·:·: ..... :-:·:·: ·:·:•:•:•:•:•:;.:;:;;:;;:;:;;:;:::;;;.;;:;:;:;.;:;;;:;:;:;<::;;;:;;;:;):::•:<::;;;.;::•:·:·:·:·:·:~:-:·:·:;;:;:·:·. .;.;.;.;.;.;.:-:.:.:""•»'MI.•:> ;.;.;.;.;.;.;.;.·.;.;.;.;.;.;.;.;.;.;.;.y_.: 

1·82 

Called to remove a byte from a buller 

RemV 
(Vector & 15) 

On entry 

Rl =buffer number (bits 0· 30) and byte/block operation nag (bit 31): 
bit J I clear=> byte operat ion - RO holds byte 
bit 31 set => block operation - R2 points to block of length R3 

R2 =pointer to block to be filled (1 f block operation) 
R3 =number of bytes to place into block (if block operation) 
V nag= I if buffer to be examined only. or 0 il data should actually be removed 

On exit 

RO =next byte to be removed (examine option)- if for byte operation: 
else preserved 

R I preserved 
R2 =byte removed (remove option). or preserved- if for byte operation: 

else R2 =pointer to updated buffer position- if block operation 
R3 =number of bytes still to be removed- if block operation 
C = I if buffer was empty on entry 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Use 

Processor is in IRQ or SVC mode 

This vector is called by OS_Byte 145 and OS_Byte 152. The default action is to call 
the ROM routine to inspect or remove byte(s) from the system buffers. To use 
different sized buffers. you must provide handlers for all of lnsV. RemV and CnpV 

It may also be called using OS_CaiiAVector. It must be called with interrupts 
disabled (the OS_Bytes do this automatically), therefore code on the vector can 
only be entered with interrupts disabled and is not re-entrant. 

If the remove option is used then the byte is returned in R2. lfthe buffer was empty 
then the carry nag is returned set. 

Soflwar9 V8CIOIS 

;:;:;:;;;:;.;.;::;:.;.;:;:;:;:;:;:;:;:;:;.;:;:;:;.:-:·:·:·:·:·:·:·:=:•:·:·::;.:-:·:·:·:·:·:·:·:·::;.;.;:;.;.;.;.;:;:;:;:;:;:;:;:;;;:;:;:;:;:;:;:<=;;;:;:;:;::··: •.. ·.·.·.·.·.·.·.·.·.·.·.·.·.·:=:·:·:·:·:·:=:=:·:·:·:·:·:·:·:<:·:·:=:·:·:·:·:·:·:·:·:·:·:·:·:=:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:-:·:·:····· 

On exit Cis used to indicate if the calls actually worked and if a byte or the 
requested block of data could be obtained. 

Block operations are not available in RJSC OS 2. nor are they available for buffers 
that are not handled by the buffer mana&er. 

See also the chapter entitled &f/m on page H 53 and the chapter entitled Til 
Buffer Ma1Y9tr on page 5-407. 

Related SWis 

OS_Byte 145 and 152 (SWI &06) 

1-83 



CnpV {V9Ctor & 16) 

:;;;;;;;;~·>!·Xv..v.P~·X.:·:-:·:-:-.:·:·:·:·:;;.;.;.;;;;;;;~;;::-~::<<:<:::>::: ·:·:·:·:·:-~:.:-»:.:;;.;;;;;.:-:::;. .. x:x-:~::;:::::::;:::::;::: :::::::·:::::::: ·:·:·:·:·:-:·:·:· :·:·:·:·:.:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:-.:::;:.;.;::.::::::::~:::::;::::::::::.: 

1·84 

CnpV 
(Vector & 16) 

Called to count the number or entries/amount of space left in a buffet or to puflle 
the contents of a buffer 

On entry 

Rl = buffer number 
v naa and c nag encode the action: 

v naa = o. C naa• 0 = retum number of entries 
v naa = 0, c naa • 1 = return amount of frees~ 
V nag = 1 ::) pur11e buffer 

On exit 

RO corrupted 
R 1. bits 0 • 7 =least sianlflcant 8 bits of count. if V nag= 0 on entry. else preserved 
R2. bits 0 • 23 =most siRniflcant 24 bits or count. if V flail= 0 on entry, else 
preserved 

Interrupt• 

Interrupt status is undefined 
Fast interrupts are enabled 

Proceaaor mode 

Uae 

Processor is in IRQ or SVC m<Xle 

This vector i.s called by OS_Byte 15. OS_Byte 21 and OS_Byte 128 The default 
action is to call the ROM routine to count the number of entries In a buffer. or to 
purae the contents or a buffer 

It may also be called us1n11 OS_CallAVector. It must be called with Interrupts 
disabled (the OS_Bytes do this automatically), therefore code on the vector can 
only be entered with Interrupts disabled and is not re-entrant. 

The v naaaives a reason code that determines the operation: 

V nag= 0 count the entries In a buffer 
V naa = I purae the buffer 

Software WIC1ots 

x.x.-:-:;;;;;:;:.so;:;:;.'{::;:-.->:;;;:::~-::;::::x~:~::::::;:::;:;:::;:;:«>:;:;:;:;;;:::;:::;:«««.;..:-:::.:·:·::: ·X·:·:·:·:·:=: :::::::: ::::::::::::::::::::·:·:·:· ··:·:·:·:·:·: ·:·:·:·:<0;,.:v;;;.:-:-~::;;; .;.;-.:-:::~:::-::;:;:;.; ==~~;:;:;:;:;:;:;:::::::::;:;:;:·:·· 

If the entries are to be counted then the result returned depends on the C nag on 
entry as follows 

Cflaa•O 
Cflaa= I 

return the number or entries In the buffer 
return the amount of s~ left In the buffer 

This call also copes with buffer manager buffers 

See also the chapter entitled &lfm on page 1·1 53 and the chapter entitled U. 
&/Jtr Ma,ygtr on page 5-<107. 

RetatedSWia 

OS_Byte 15. 21 and 128 (SWI &o6) 

1·85 



UKVDU23V (\.ilctor & 17} 

:·:·:·:-:;.:•::;.;;:•»-:·:-:~· :=:-:-:-:-;.·.·· =~:.:-: ·:·:·:-.. ::·.::-: ·:·.·:·:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:- :-:-:-:-;.;:;.;:;;;: ;.;-::~~--~~:-.:: -~·~;o;;;:•:=:w.•:•:·:•:·:·:·:-:.:-:-:-:-:-:-:-:-:-:-:-:< 

1-86 

Called when an unrecognised VDU 23 command Is issued. 

On entry 

RO = VDU 23 option requested 
Rl = pointerto VOU queue 

On exit 

RO. R I preserved 

Interrupt• 

Interrupt status Is undefined 
Fast mlerrupts are enabled 

Processor mode 

Processor is in SVC mode 

u .. 

UKVDU23V 
(Vector & 17) 

This vector Is called when a VDU 23.• command Is Issued with an unknown value of 
• . ie it Is In the rarllle 18· 2S or 28· 31. 

The nine parameters sent after the VDU 23 command are stored in the VDU queue. 
R1 points to the byte holding n. and RO also contains 11. 

The default action is to do nothirl8- unknown VOU 23s are ignored. 

Refated SWia 

os_WriteC (SWJ &00) 

Sotrw•• l'«fftS 

:-:-:-:-:-:-:-:-:- :-:-:-:-:-:=:-:-:::-:-:-=:- · ·=-~~~~:;.m0m.-:-:-:-:-:-:-:-:-:-:::::::;:::• ::::::::: :::::::::-:-:=:=:=:·.·········-·.:;;o;x;.;.:-~o;;;w:-:::::::::::-~::=:::--: -:-:-:.:-:.:-::::: :::::::::::::.::;;:~:=:-:«.::.;.:;:-:-:<·:•:·:·:·:·:·: 

Called when an unknown SWI instruction Is Issued 

UKSWIV 
(Vector & 18) 

On entry 

RO • R8 as set up by the caller 
Rll = SWJ number 

On exit 

Generates an error by default 

Interrupt• 

Interrupt status Is undefined 
Fast interrupts are enabled 

Processor mode 

Uae 

Processor IS in S~ mode 

This vector is called when a SWJ Is Issued with an unknown SWI number. Before 
this vector is called, the OS tries to pass the c:alllo any modules which have SWJ 
table entries in their header. 

The default action is to call the Unused SWJ handler. which by default returns a 'No 
such SWJ' error. See the section entitled U11KUII SWI on page 1·28S for full details. 

This vector can be used to add Ia rae numbers ofSWis to the system from a single 
module. Normally only 6-4 SWJs can be added by a module; if you daim this veclot 
you can then trap any additional SWis you wish to add. (You should always use the 
module mechanism lo add the first 64 SWJs that a module adds. a.s it is more 
effictentthan usine this vector) Note that you must aet an allocation of SW1 
numbers from Acorn bek>re addlne any to <XKTimerdally available software This 
Will avoid dashes between your own software and orher software. 

See also the chapter entitled lvl illlnNI..aWI,.III SWJJ on pace 1·21: and the chapter 
entitled PrOf"•,. E..WV111UIIt on page 1·277 for more about handlers. 

Related SWia 

OS_UnusedSWI (SWJ &19) 

1-87 



UKPLOTV (Vectlr &19) 

::;:•:•:o:•».~:o:o:•:o;;:<.»:~·:·:·:·:·:·:•:•:·:->~W.'(9»}":«<-:.:•:~:.;-;.:·:·:.:·:·:·:·:·:-:<·:·:·;;::::;.;.;.;.;.;:;.;:;:;.;;;::;;:;:;*"~ .. -;;:;::;:;;:::;w.>:•:=: •:·:•::;.;-: ·:·:-: ·=-:·:·:·:«·:.:.:.:~:·:•:•:•:•:•:•:o-.;f« 

1-88 

Called when an unknown PLOT command is issued 

UKPLOTV 
(Vector & 19) 

On entry 

RO • ?LOT number 

On exit 

RO~rved 

Interrupt• 

Interrupt status Is undefined 
Fast lnterrupls are enabled 

Proceaaor mode 

Use 

Processor Is in SVC mode 

This vector Is called by the VDU drivers when a VDU 25," (?LOT) or SWI OS_Piot 
command Is Issued with an unknown value of " · 

By using OS_ReadVduVariables you can read the co-ordinates of the last three 
points that have been visited, and the one specified in the unknown PLOT 
command. These are held In the VDU variables 140- 147. See the entry for 
OS_ReadVduVarlables for full details. 

When the call returns to the VDU drivers they update the variables, so that the 
point aiven in the unknown plot becomes the araphics cursor position. The 
previous graphics cursor becomes the last point but one, the previous last point 
but one becomes the last point but two, and the previous last point but two is lost 

The default action is to do nothing- unknown VDU 25s (Plots) are ign~ 

Rel• ted SWia 

OS_WriteC (SWI &00), OS..Piot (SWI &45) 

Soltwtm~ WICIOB 

:=:·:·:=:=:=:=:·:·:·:·:·:-:-:-: •:·:·=·=~~~~=:·:~:·:·===-:-:·:-:;;-:--:-:· =·=·=·=·=·=·:·:·.:0$:·:--.-:.:.:·»':·:·:·:·:·:·:·:•:-::::~:·:-:·~:-:-:•:•:•>-~<-:•:=:=:•:-:•:::•:•:·:•:•:•:•:>x-:;:::::;.:;.:;;::•:::w.::::::.~:::::: :::::::::::::::::::::"";::::::::::: ::::: 

Called when VDU output has been redirected 

VDUXV 
(Vector & 1 B) 

On entry 

RO = byte sent to the VDU 

Onexh 

RO preserved 

Interrupts 

Interrupt status Is undefined 
Fast interrupts are enabled 

Proceasor mode 

Use 

Processor is in SVC mode 

This vector is called when VDU output has been redirected by setting bit 5 of the 
OS_ WriteC destination flaa. When this bit is set, all characters sent to the VDU 
driver are routed throuan this vector Instead. Note that this only affects the display 
driver: other output streams such as the printer and · sPOOL file are called as 
usual. even when VDUXV Is used for screen updatina. 

It is up to the owner of the vector to perfonn the usual queuint of parameter bytes 
etc. The default owner of this vector does not hint. so Issuing a • FJCJ,32 call is 
much the same as dlsabllnt the VDU uslnt ASCII 21. 

This vector is normally daimed by the Font Manaaer. to Implement the Foni 
system (~ the chapter entitled Tic Fo~l M•Mf'l' on p88e 5·1 ). If the Font module 
is disabled, the default action is to do nothlnt- no output is sent to the VDU. 

See also the chapter entitled c•u•a.r Oocl,wl on pate 2·1, and the chapter entitled 
VDU DriYrn on pate 2-39. 

Ret.ted SWis 

OS_WriteC (SWI &00) 

1-89 



Ticlt.BfV (V8Cior & 1C) 

t.·x<-:o:·:·:-;.;.:-:·:·:·:· :·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·: ·:·:·:·:·:·:·:·:·:·:·:.:·:-'...:·:::.x;x;:;:;:;;.:.;~..:;:;:;:::::::.:·:;:.:·:=:·:·:·:·:;:.:·:·:·:·:-:v:·>X«·:-r.:;;;::::;.;::::~;:o: .. ,;:.;:.;.v.~--:..;:;:;:::;:::::::::::::::::::;;;;;:<:~::;::::.::-h::: 

1-90 

Called every centi-second 

TickerV 
(Vector & 1 C) 

On entry 

No parameters passed in registers 

On exit 

Interrupts 

Interrupts are disabled 
Fast interrupts are enabled 

Proc:eesor mode 

Use 

Processor is in IRQ or SVC mode 

This vector is called every centi-second. lt must never be intercepted. as this would 
prevent other users from being called. 

Routines that take a long time (say> IOOJls) may re-enable IRQ so long as they 
disable it again before passing the call on.lf you do so. other calls may be made to 
Ticker¥ in the meantime. Your routine needs to prevent or cope with re-entrancy. 
One way of ensuring that the code is single threaded is: 

• to use a nag in its workspace to note that it is currently threaded. and: 

• to keep a count or how many calls to TickerV have been missed while it was 
threaded. so the count can be examined on exit and corrected for. 

Related SWis 

None 

Software 1'9C!ors 

·.·.·.;.;.;;:;:;:;:;:;;;:;.;.;:;:;.;:;.;.;:;:;:;:;.;:;:;:;:;:;:;:;:;. :::::-::=-:::::::::::::::::::::::::::::::::=-;::: ::::::::::::::::::: :=:·: ::::::::. :::::::::::::::::::::::::::::::::::::::::::=:=:=»: :::::::::::::::::::::;.:;:::.:-:::: :-:-:-:-::::::: =:-::::::::: :::::::::::x::::::: 

Used to indirect all SWI calls made to the Draw module 

On entry 

RO - R7 dependent on SWI issued 
R8 = index of SWI within the Draw module SWJ chunk 

On exit 

Dependent on SWI issued 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 
Processor is in SVC mode 

Use 

DrawV 
(Vector &20) 

This vector is used to indirect aD SWI calls made to the Draw module. The default 
action is to call the ROM routine in the Draw module that decodes and executes 
SWls. 

The index held in R8 is decoded as follows: 

0 DrawYrocessPath 
2 Draw_Fill 
4 Draw_Stroke 
6 Draw_StrokePath 
8 Draw_AattenPath 
10 Draw_TransformPath 

See also the chapter entitled Dr•w .. OIIwlt on page 5-111 . 

Related SWis 

Draw_ ... (SWJs &40700- &4073F) 

1-91 



Econ11tV (VIICtor &21} 

~•:•:-~::::•:-;;;..;;;;;;;.;.;;;;;.;:;:;;;:;:;;;;:;:;;;»X;:;}X·h;:;;;;:;:::m:«-;®.;.;-;:;;;.;.;:;.;.;;;.;:;.:·:·:·:·:·:·:·:·:-:-;.;:;.;:; -:-:.:·:·:·:·:·:·:·:·:·:-:::: ;.;:;:;.;:;-::::w.;;.;.:;;:;~:;:;.;-;:;;:.;:;;:;;:;:;;;;:;;:;.;:;;;:;:;.;:;.;.;-:·:~·:<Ym>;.;.;.;.;.;.;~;.;.;;;.; 

1·92 

Called whenever there Is activity on the Econet 

EconetV 
(Vector &21) 

On entry 

RO "' reason code 
R I "'total size of data. or amount of data transferred. or no parameter passed 

On exit 

RO. Rl preserved 

Interrupts 

Interrupt status Is undefined 
Fast interrupls are enabled 

Proc:e8sor mode 

u .. 

Processor Is In SVC mode 

EconetV Is called whenever there is activity on the Econet. The reason code tells 
you what the ectlvlty Is. 

The bottom nibble of the reason code Indicates whether the activity has started (0), 
Is part way through (I) or finished (2). The next nibble gives the type of operation. 

The table below shows the reason codes that are passed. The right hand column 
shows what Is passed In Rl , or (for the lessobviouscases)when the reason code is 
passed, 

&10 
&II 
&12 
&20 
&21 
&22 
&)() 

&11 
&12 
&40 

NetFS_StartLoad 
NetFS_PartLoad 
NetFS_F1nlshLoad 
NetFS_StartSave 
NetFSYartSave 
NetFS_F1 nlshSave 
NetFS_StartCreate 
NetFS_PartCreate 
NetFS_FinlshCreate 
NetFS_StartCetBytes 

R I =total size of data 
R I =amount of data transferred 

R I =total size of data 
R I =amount of data transferred 

R I =total size of data 
R I =amount of data transfened 

R I =total sfze of data 

Softw/JIIII'IJCIOtS 

:-:·:·:·:·:<-:·:·:·:<·:-:-:·:· :-:·:·:·: -:-:-:=:-:=:-::::::::::: :;:::::::::::: =:-:•:•:•:•:•:-:-:::::-:-: :;::::::::•:•:>:>~:::::;m::::~ .. ~c~f~c·~·l~-:.»o~:-:·:·:·:·:·:=:-:=x-... :<•:·:-::::::::::::::::~:::::::::::::::::::~=~:=:•::::::~;;;:;:::9S:·»~:::;;;:~:::-:--::::::;.;.;: 

&41 NetFS_PartCetBvtes R I • amount of data transferred 

&42 NetFS_FinishCetBytes 
&50 NetFS_StartPutBytes R I • total sfze of data 

&51 NetFS_PartPutBytes R I • amount of data transferred 
&52 NetFS_F1nlshPutBytes 
&60 NetFS_StartWait start of a Broadcast_ Wait 

&62 NetFS_F1nlshWalt end of a Broadcast_ Wait 
&70 NetFS_StartBroadcastLoad R I • total sfze of data 

&71 NetFS_PartBroadcastLoad R I ,. amount of data transferred 

&72 NetFS_F1nishBroadastLoad 
&80 NetFS_StartBroadcastSave R I • total size of data 
&al NetFS_PartBroadcastSave R I • amount of data transferred 

&a2 NetFS_F1nishBroadcastSave 
&CO EconeLStartrr.nsmlsslon start to walt for a transmission to end 

&C2 EconeLF1nlshn&nsmlsslon Do'n'ansmlt returns 
&DO EconeLStartReceptlon start to walt for a ~ption to end 
&02 EconeLF1nlshReceptlon WaftForReceptlon returns 

This vector is normally daimed by the NetStatus module. which uses the 
Hourglass module to display an hourglass while the Econet is busy. It passes on 
the call. if the Hourglass module Is disabled, the default action is to do nothing. 
See the chapter entitled HOIU'g!Aiss on paae 6-73. and the chapter entitled NtiS14hu 
on page 6-83. 

See also the chapter entitled NIIFS on paae 3·123, the chapter entitled NttPri11t on 
page 3·367. and the chapter entitled E'aMI on paae 6-1. 

Related SWia 

Econet_ ... (SWls &.40000 • &4003F). NetFS_ ... (SWls &40040 • &4007F). 
NetPrint_ ... (SWls &40200 • &4021F) and Hourglass_ ... (SWls &406CO • &406FF) 

1·93 



COOIKV (VsciOr &22) 

···:-:-:-:~ -~·~-:-:-:-:-:-:-:-:-:-;.:-:-:-:-:-;.:-.·:·:·:·.·:· ;:;:::~.,----~-~---· •••• __ .,.;,._. ..... -:::::::::~- ;;;.;-:-::;:;:;:;:;:;:;:;.;:;.;:;:;:;:;.;:;.;.;;:---:;::;;-;;::"..>;-;..;-o.; 

1-94 

ColourV 
(Vector &22) 

Used to indirKt all SWJ calls made to the Colour'ltans module 

On entry 

RO - R7 dependent on SWI issued 
R6 =index of SWI within the Colour'll"ans module SWI chunk 

On exit 

Dependent on SWI Issued 

Interrupts 

Interrupt status Is undefined 
Fast interrupts are enabled 

Processor mode 

Use 

Proc:essor is in SVC mode 

This vector Is used to indirect 1111 SWI calls made to the Coloui'Trans module. The 
default actiOiliS to call the routine In the Colour'!tans module that decodes and 
executes SWis 

The Index held m R8 Is decoded as follows: 
0 Colour'll"ans_SeiKtrable 
I 
2 
3 
4 
5 
6 
7 
8 
9 
10 
II 
12 
13 

Colour'll"ans_SelectOCOLTable 
Colour'll"ans_RetumCCOL 
Colouffi<ms_SetCCOL 
Colouffians_RetumColourNumber 
Colour'll"ans_ReturnCCOLForMode 
Colouffians_RetumColourNumberForMode 
Coloui'T'rans_RetumOppCCOL 
Colouffians_SetOppCCOL 
Coloui'T'rans_ReturnOppColourNumber 
Coloui'Trans_ReturnOppCCOLForMode 
Colouffians_RetumOppColourNumberForMode 
Colouffians_CCOLToColourNumber 
Colouffians_ColourNumbei'ToGCOL 

::=:::::::::::.:-:::-:-:::::::::::.:-~:::::::::~::x~m::::o,··:~;g(IO;~ooc(IO-.-~-----======;;; 

14 
15 
16 
17 
16 
19 
20 
21 
22 
21 
24 
25 
26 
27 
26 
29 
30 
31 

Coloufl'rans_RetumFontColours 
Colour'll"ans_SeiFontColours 
Colour'll"ansJnvalidateCache 
Colour'll"ans_SetCalibration 
Colour'll"ans_Readealiblation 
Colour'll"ans_ConvertDeviceColour 
Colour'll"ans_ConvertDevioePalette 
Colour'll"ans_ConvertRCBToCIE 
Colour'll"ans_ConvertCIEToRGB 
Colour'll"ans_WrlteCaliblatlonToflle 
Colour'll"ans_ConvertRCBToHSV 
Colour'll"ans_ConvertHSVToRCB 
Colour'll"ans_ConvertRCBToCMYK 
Colour'll"ans_ConvertCMYKToRCB 
Colour'll"ans_ReadPalette 
Colour'll"ans_ WritePalette 
Colour'll"ans_SetColour 
Colour'll"ans_MiscOp 

See also the chapter entitled Colotu'J'r&Ns on paae 4-381. 

Related SWia 

ColourTtans_ ... (SWis &40740- &<IOnF) 

Softww• WICfOtS 

1-95 



PaletiiJ V (Vector &23) 

..:::~:= :·:=:= :-:=:=:·:·:= :=:::=:·:=: ·:·:·:·:·:=:=:·:·:=:-:.:-:-:~:-:o:.;:::~..;:-::::::mY..::::::::::::::::::~::::::;.::::x::::::::::::::::::::;:;:o;:~.;::r~::::::::::::::::: ::::::::::::::::::::::::::::::::;::::::::: :::::::::::::::::x::::.;.;r~~:;:::::::::::::=::::.:::::::·:···· 

1-96 

Called whenever the palette is to be read or written 

PaletteV 
(Vector &23) 

On entry 

RO = logical colour 
Rl =type of colour (16, 17.18,24.25) 
If R4 = 2 (ie writing): 

R2 = 1st flash colour (&BBGGRRxx)- device colour 
R3 = 2nd flash colour (&BBGGRRxx)- device colour 

R4 = 1 ~reading palette, 2 ~writing to palette 

On exit 

Use 

If R4 = 1 (ie reading): 
R2 = 1st flash colour (&BBGGRRxx)- device colour 
R3 =2nd flash colour (&BBGGRRxx)- device colour 

R4 = 0 ~operation complete 

This vector is called whenever the palette is to be read or written. Calls this applies 
to include: 

• VDU 19 page 2-79 

• OS_Word 12 page 2-187 

• OS_ReadPalette page 2-209 

• ColourTtans_ReadPalette page 4-431 

• ColourTrans_ WritePalette page4-433 

By claiming this vector. you can set replacement graphics hardware to intercept 
such calls. and perform the operation using their own palette. On completion. you 
should set R4 to zero on exit: RISC OS then knows not to perform the operation 
Itself. 

By default. this vector calls the ROM routines to read/write the computer's own 
palette: they likewise set R4 to zero on exit to notify the caller that the operation 
was completed. 

This vector has no default owner under RJSC OS 2. However. you can write software 
that calls this vector- and that works correctly under all versions of RISC OS- by 
checking the value of R4 on exit to see if the operation is complete. lf it is not 

Software IIIJCtOtS 

;:;.; :;:;.;.;.;.;:;:;.;.;.;.;:::;:;:;:;.;:;:;;;::::::-:::.;:: ·:·:=:·:·:·:· ;.;.;:;:;.;:;:;:;:;:;.;:;.;: ;:;:;:;.;:;:;:;:;:;.;.;:;.:-:·:·:·:·:=:·:·:~:+:·:·%:·::;:;:;:;. ;.;.;.;.;.;.;:;:;.;:;:;:;.;:;:; :;:; .;:;.;:;:;:;:;:;.;:};-::;:; .;.;:;.;:;.«~:-::;;;.;.;.;.;:;:;:;::::vm.;::::m:::::=:·:·: .;::;:::.;:· 

complete, you then need to use your own code to read or write the palette. For 
more information and example rode fragments. see the section entitled Appliution 
110t.s on pase HOI. 

1-97 



Mars complsx usBS of Y9CIOtS 

···:·:·:·:·:·:=:·:-'/. ·:·:·:·:·: .;.;:;.:::~-:•::::::•:•:•:;:.::::::::::;::;x;.x::::::::::=::»::: :::::::: :::::::::::::::;.:::::::::=:·:·:·:;;. :-:-:.:·:·:·:=:-:-:·:·:·:·:·:·:·:·:·:·:·:·:·:·:;;.;.;-:-:.:-;.w..-..:~::v.«•::.x::::«;:::-x:::: ::::::::::•:=:=: =:=:-:::::::::::::::::::::::;:;;. :-:=:·:·:···· · 

More complex uses of vectors 
Sometimes. you may want to do more complex things with a ~tor, such as: 

• · preprocessing registers to alter the effect of a standard routine 

• postprocessing to change the effect of future calls 

• repeatedly calling a routine or group of routines. 

There are a number of important things to remember if you are doi ng so. You must 
make sure that : 

• 
• 

the vector still looks exactly the same to a prQiram that is calling it, even if it 
now does different things 

your routine will cope with being called in all the processor modes that its 
~tor uses (for example, SVC or IRQ mode for a routine on lnsV) 

• the values of RIO and R II are preserved when earlier claimants orthe vector 
are repeatedly called. 

An example program 

1·98 

The example prQiram below illustrates all these important points. You can adapt it 
to write your own routines. 

The prQiram claims WrchV, adding a routine that: 

• changes the case of the character depending on the state of a flag 
(pre-processing) 

• calls the remaining routines on the vector to write the altered character 

• tQillles the flag (post-processing) 

• ensures that all registers are set to the values that would be returned by the 
default write character routine 

• returns control to the calling program. 

Note that the prQiram releases the vector before endinll. even if an error occurs. 

Soltwsrs Y9CtOtS 
:·:·:;:::·: ···=·=<·»:-:-:.:·:•:·:·:·:·:·:;:;.-«-:¥.«-"?.:::m:::::•::;;.:--::::::::::::::::::::::~:::~=w:::::::::::::::::::::~::::::::::::: ::::::::::: :::::::::::=:-::::::::::: =:=:·:·:=:·:=: -:.::::::::::::: :.:.:.:.::: ••• ·.·.·.·.·:·:·:=:=:·:=:=:•:;:·:·:·:·:· :-:·:·:·:·:·:·:·:····· 

DIK code\ 100 
FOJt paaa\=-0 '1'0 3 SI'E.P 3 

P\• codo\ 
( OPT pass\ 
.voctoreode\ 

aavo t he ontry vah.-e*" tha Moeaaary at ate tor Uw Npeated call , 
and our vorkapace pointer 

STMI'D rl l! , (rO , r10-rl2, rl4 ) 

do our preprooeadnq; •• a trivi al exa~ le, convert to the current easo 
LOki cl 4, (r12) : pick up upper/lOIIIorc.aM tl aq 

rl4, t O 
uppereaee\ 
rO, fASC"A" 
rl 4, rO, t.uc·z .. 

; lowerca•• the characte r 

CHP 

BEQ 
CHP 
RSBG£S 

A DOGE 
a 

tO, tO, fASC"a"-ASC"A" 

done_p~proc.aa\ 

.uppercase\ 
CHP rO, fASC"a" ; uppercaae the c.Mracter 
1\SBG£$ rl4, rO, t ASC .. a: '" 
SUBC£ rO, rO, tASC•a• .. .uc•A.'" 

.done _preprooeaa\ 

now do the c all to the reat of tbt v-ector. Since tb1a ta wrchV, vo know that 
ve are 1n SVC ft!Ode; how.ve r, the code below will correctly call the rest of 
the vector whatever the IIIO<Ie. 

STKFO rll ! , (rlS} 
ADD rl2, rU, U 

pushes PC+l2, C:QIII)lete with flaqs And roode 
at act. contain• pc .. rO, rlO, rll, rl2, rl4 
ao point at the a tacked r1 0 

LDKI A r12, {rl0 · r12, rlSt ; and natoM the atate needed to call the 
reet of the chain (rlO •nd e l l•. and 

z •r41turn- to the non-vector cla iftl!nq address. 
the load of r12 vaet•• one cycle . 

ve a re nov at the pc+l2 that we atacked; thi1 11 the refore where the 
reat of the vector return• to vhe n it baa t1n1ahed. 

LOR r12, (r13, fl2) rel01ci our vorkapa~ poi nter 
Note that the offaet of fl 2 (and the earlier 
U when ve puahed onto tho stact } Mf•r t o 
tbia example only and are not qeneral 
Note alao th•t the pc ve put:hed vas 
pulled by the vector claimer. 

we coul d nov do ao• JDOre proceaatnq, aet rO up to anot h•r charact•r, 
and loop rou.nd to done_preproceaa\ •9ain; 1natead, ... 11 just clo aoiiW 
exaft'f)le poatprooeaai nq; we' 11 toqqle our upper/ low•rc:••• tlaq . 

LDIUl 

EO~ 

SfiUl 

r l 4, (rl2) 
rl4, rl4, f l 
r14, (r12) 

1-99 



An BXampls program 

:=:=:=:·:·:=:=:·:-:-:.:·:·:·:·:·:"'·:·:·:·:-:::-:-:::-:·:·:·:·:"'·:":-:-:·:·: ·:-:::;:.::;.::: ::::::::;:ox:wm::::-x:::::::::::::::::::::::=::-:=::::-:;::::: ::::::::::::::::::::::::::;::: :::::::::::::::;.::::::;.;:: ·:·:···:-:-:·:::::::::;:;x~:::::-:::.~?.::;:.::::::::::::::::::::::~: 

1-100 

NEXT 

nov return; lf there was no error t hen t ntere.pt t he call to t he 
vector, returninQ~ the ort gtn1 l character . 

LDMVerD rU ! , { rO, rlO-r12, rl4, rlSJ 

could P••• the call on instead by omi ttlnq rl4 from tho ad.drosso• 
to pull - le use LOKVCFO rl3 ! , {rO, r10-rl2, r l S ) 

there was an error: s et up t ho corr.ct error pointer, flaqa, and 
c l aim t h• voetor. 

STR rO, trl3) ; aavo the error poi nter 
LOMFD r l 3! , ( rO, r l 0 - rl2 , rl4, rlS ) 

; return vlth V tti ll sot, ai"Kt claim t ho vector 

DIM flaq\ 
?flaq\=0 
WrchV\=3 

ON tflROI\ SYS '"XOS_Roloaso '", WrchV\, voctorcode\, flaq\: P1UNTI\£PORT$ : £NO 
SYS '"OS_Cl dm'", lfrchV\ , vectorcode\ , flaQ\ 
REPEAT 

INPUT cotrrn.and$ 
OSCLICOII'WN.nd$ 

UNTILcorrm.and$•'"'" 
SYS .. XOS_J\oloaao'", WrehV\, vectorcode\ , tlaq\ 
END 

SoflwBffl WICfotS 

;:;:x::.;:;:;:;:;:;:;:·:··· ·,·,·.·.·,·.·.·.·.··:·:·:;:;:;:; :;:;:;:;:;.:::;:>;:;:;::::::::*:r.;:::::::::::::::;:;:::::::::::;::::::::~:::;:;::;::<:~~-::;:;:;:;.;::«::-:-:::v:-:.:-:-. .. :::-:-:::-::::;.;.;:;.;;:;w,:;.;::::::;m:;::::::;:;:;:;:;:;:;:;:;::;:::ow.-::;:;:;:;:;:;:-;.~:;:;:;:;:;:;:·:··· 

Application notes 
The PaletteVvector has no default owner undefRISCOS 2, but you may still wish 
to write software that calls this vector. and can hence interact with (say) a 
replacement graphics care!. 

The two pieces of code below work correctly under all current versions of RISC 05. 
They do so by checkillQ the value of R4 on exit from PaletteV to see If the read/write 
palette operation is complete. If it is not complete, the code is beillQ run on a 
RISC OS 2 machine, and there was no PaletteV claimant (such as code downloaded 
from a graphics card) that was able to complete the operation. In such cases, the 
code then reads/writes the palette itself. 

Reading a palette 

The first piece of code reads the palette: 

t n RO • loqlea l colour 
R.l z type of colour {16, 17,11,24,25) 

OUt R2 • ltt flaah colour <•B&o::;lli\JII:xl - d.evlce colour 
R.l = 2nd. flaeh colour ('88GCJlRxx) - devi ce colour 
vc •> t1 •9• pr .. erved, YS •> llO-,..rror, tlaq• corrupt 
(muat n ' t be c a lled wlth v aet) 

readpalette Entry •~tc, l.t'" 

MOll R4, tl 
HOY R9, fPa lott.V 
stn xos_c:allAYector 
EXIT VS 

fEO R4, t O 

EXIT EO 

SWI xos_~actPaletto 

LDRVC R4, •• FOFOFOOO 

ANDVC Rl4, 02, IU 
ORRVC R2,1l2 , Rl4 , LSR 14 

ANOVC Rl4 , RJ, Jt.4 

OAAVC R3,RJ , Rl4 , LSR t4 

EXI'J'S VC: 

EXIT 

LTORG 

r.ad palett• 

roturna •BBGGRilxx 

returns •BOCOJ\Oxx 

clear• low n i bbl es and bottom byt e 
(w• want to pr•••rv• blts o .. 1) 

force to 188GGR.Rxx 

force to IBBGGMxx 

Note that if the vector is claimed. the resulting colours must be 24-bit, rather than 
the restricted versions returned by OS_ReadPalette. 

1-101 



Wri!Nig a paJetle 

«-Y.-»m;.;.;.:.;.:.;.:;:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:w:.:·: ·:·x-:-:-:· '::;.;-:-:-:-:-:-:-:-::;.;-:-:-::;.;:;:;:;.;.;:;:;:;:;.;.;::::::::-.x:<-:>e 

Writing a palette 

1-102 

The first pi~ of code writes the palette 

ln ao • loqlca l colour 
ll • <y~ o! colour (16,11,U,Z4,2SI 
a2 • let fh1b colovr f68&GC~•I - devl« colour 
I) • 2nd flaah colour Ua~l•xt - device colour 

OUt. vc •> fhqe pr•••rved, vs •> ltO- >error, fl aq-s corrvpt 
(rauatn•t be called vlth V 1et) 

lfl: Ooean't co,. vlth J.l•l,,lt2<>1t) (!li tHe differe nt fhah atatea,. 
It 11 tn fact 1~01Uble to qet ltl• 24or2S,It2<>1t) to work. 

sot-palette ••c,lt9"' 

IIOV M,l2 
NOV lt9, f PaletteV 
SWI xos_CalLAVectoc 
l.XIT VS 

T£0 U, I O 
uns to 

AND l14, AO, UFF 
AND U,Al, H FF 
ORR U , ll4,A4,LSL II 
ate Al4 . a2 . u r r 
Oltl .... , 14, R14, LSL t l 
110V Al4, A2, LSA 124 
Pueh '"lt0 , 1tl.lt4,1U4"' 
A00 Al,lp, f 2• 4 
IIOV RO,Il2 
SMI XOS_ Vocd 
snvs ao . top) 
rull ·ao,at,JU, IU4-

EXITS VC 

EX If 

••t p.t.Jette 

Al4 • 'BIGGl.P.OO 
IU • •CCJitltrl cO (qreet'l~ .r1td, 1'1. RO) 
Rl4 • • ooooooaa (bl ueJ 

Al -> block 
wclte palette 

Note that when wnllng the palette. there is no need to alter the parameters when 
calhngVDU 19orOS_Word 12. smce theseonlylookatthe lop nibbles of each gun. 

However. 24-bit palette values can only be received through the vector. since the 
VDU 19 and OS_Word calls cannot trust the values ofthe bottom nibbles oft he 
palette values passed to them. and must treat them as being copies of the 
corresponding top nibbles 



··,:;:;:;:;:;:;:;:;:::;:::;.;:;:;:;:;:::::::::::::::::::;:;:;:;:::;:;~::~-'':·:':·:·:·:··.;.;.;.;:;.;:;.;.;:;.;.;.;.;.;.;:::::.:·:·:·:·:·::·.·.·.·.·:':·:':··:·.·.·.·.·.':·:·:·:':·:·:·>.·.·.·:·:':·:·:·:':·:·:':':·:·:·:·:<·:>·:':·: ·:·:·:·:-:·:<·:<·:·:·:·:·:·:·::;:;.;:;:;,;:::;:;:;:;:;:;:;:;:;:;:;:; 

9 Hardware vectors 
::::::::::x:::-::x--~=:~::::::::;:::::--:::.-::::::::::::::$;:~.:x:?:::::: ::::::::::::::::::::::::::::::::::::::::: :::::: :::::::::::::::::::::::::··.·.·.·:·:=::::::::::::- :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::::::;:;:;:;:;:;:;:;:;:;:;:;:::;:;:;::::::::::..-.::.-:::-: 

Introduction 

Reset vector 

The hardware vectors are a set of words starting at logical address &0000000. The 
ARM processor branches to these locations In certain exceptional conditions- in 
general, either when a privileged mode Is entered or when a hardware error occurs. 
These conditions are known as ro:IJI(io" s. Usually. each vector will contain a branch 
to a routine to handle the exception. The vectors. their addresses and their default 
contents are: 

Addr Vector Defa•lt co•te•t. 
&00 Reset B branchThruOError 
&04 Undefined instruction LOR PC, UndHandler 
&08 SWI B decodeSWI 
&OC Prefetch abort LOR PC, PabHandler 
&10 Dat a abort LOR PC, DabHandler 
&14 Address exception LOR PC, AexHandler 
&18 IRQ B handle IRQ 
&l C FIQ FIQ code .• 

When the computer is reset. amongst other things: 

• the ROM is temporarily switched into location zero 

• the program counter is loaded with &00. 

The reset vector is hence read from the ROM and will always be the same. 

Any attempt to Jump to location zero in RAM will result in a 'Branch through zero· 
error. 

Hardware exception vectors 

The middle group of vectors. except SWI. are under the control of various 
·environment' handlers. When the exception occurs. before any of these vectors Is 
called. the ARM processor saves the current program counter (R 15) toR 14_svc. The 
ARM is then forced to SVC mode. and interrupts are disabled. 

1-103 



Hardwara axcapllon vactOtS 
.,.;.;.;.;;;;;;;;;;;:;;;:;;;:;;;:};;;.;.;•.·:~~ .·:w .. ·:-:?' ;:::::;:;:-.. ;.:-:·:·: ·:·:-:·:·:·:·:·:·:·:·:·:-:-:-:-............. ;;·:-:-:-::;;;:;:;:;:;.:.;::: :;:;:;.;~ 

1-104 

The u.sual action of these eJiceptlons is to cause an enor The default handlers ror 
these eJiception.s also dump the aborting mode's registers Into the current 
ExceptlonDumpt\rea, and test to see ir the exception occurred while the processor 
wa:s In FlO mode. 1£ it was then FlOs are disabled on the IOC chip so that the 
exception does not recur- this would overwrite the original register dump. and 
probably hang the machine. 

These vectors may be set and read as described in the chapter entitled Progra111 
E~lliro~tllllltl on page 1·271 Very rew programs need to take account or them 

Undefined lnatrucdon vector 

The undefined instruction vector is called when the ARM attempts to eJiecute an 
Instruction that is not a part of its normal instruction set Ir the floating point 
emulator (either hardware or sortware) is active. it intercepts the undefined 
Instruction vector to interpret noating point instructions. and passes on those that 
It does not recognise. 

Prefetch abort vector 

The pre£etch abort vector IS called when the MEMC chip detects an illegal attempt 
to prefetch an instruction There are two possible reasons lor this: 

• an attempt was made to access protected memory rrom an insufficiently 
privileged mode 

• an attempt was made to access a non~xistent logical page. 

Data abort vector 

The data abort vector is called when the MEMC chip detects an illegal attempt to 
fetch data. There are two possible reasons lor this; 

• an attempt was made to access protected memory rrorn an lnsullidently 
privileged mode 

• an attempt was made to access a non~xistent logical page. 

Addreaa exception vector 

The address exception vector Is called when a data rererence is made outside the 
range 0 - & 3FFFF1'F. 

Harrlwara I'IICIOtS 

~·~::;;;:;.;.;.;:;;:·:·:·:·:·::;.;. :·:·:·:·:·:-:-:·:·:·:·:·:·:·:-:·> •• . ...... ;:;:;:;:;:x.;X«;;;;:;:;:;:;:;:;:;:;:;;;::-:·:·xWh.:«·»:.:·:««.:.:·:·:•:·:·:.:-:·:·:·:·:·:.:·:-:.;:;.:-:·:·:·:·::;:;.;~ ;v;;:::::::::•:•:•:::~::;•$»>»x-:.:·:·:·:·:·:· 

SWI vector 

IRQ vector 

FIQ vector 

The SWJ vector is called when a SWIInstruction is issued It contains a branch to 
the RJSC OS code which decodes the SWI number and branches to the appropriate 
location. Berore calling this vector, the ARM processor saves the current program 
counter (RI5) toRI4_svc. The ARM Is then rorced toSVC mode. and Interrupts are 
disabled 

You are stron&IY recommended not to replace this vector. 

For run deta1ls. see the earl ier chapter entitled lVI illtrooluaio~ to SWis on page 1·21 

The IRQ vector is called when the ARM receives an interrupt request It also 
contains a branch into the RJSC OS code. This code attempts to deal with the 
interrupt by examining the ICC chip, to find the highest priority device that has 
interrupted the processor. Ir no lnterruptlna device is round then the software 
vector lrqV IS called. 

Berore calhng the hardware IRO vectoc; the ARM processor saves the current 
program counter (RI5) to Rl4_lrq, the ARM is £arced to IRO mode. and interrupts 
are disabled. 

For run details. see the chapter entitled l~~~~mqots alllllia~.tlillf "'"'on page 1·109. 

Finally. the FlO vector Is called when the ARM receives a rast interrupt request. For 
some daimants (such as ADFS) this is the first instruction or a RAM-based routine 
to deal With the fast interrupt requests. For otherdalmants (such as NetFS) this is 
a branch Instruction to the code that deals with the £ast Interrupt requests. (NetFS 
uses FlOs to drive a state machine. so the overhead of oopylni code to the FlO 
vector is much more than that or putting a Stanch instruction there.) 

Berore calling this vector. the ARM Is rorced to FlO mode. and both normal and rast 
Interrupts are disabled. 

For rull details. see again the chapter entitled l~tlmii,CS allll '•""~"' 1111111. 

Claiming hardware vectors 
Ir you are the current application. you can change the effect or most or the 
hardware vectors by Installing the appropriate handler. U you are not. then you will 
have to 'daim' the vector yourselr. This is most likely to ocx:ur If you are a system 

1-105 



Passing on calls t1 hllrdwliTe vec:IOtS 

:·:·:·:·:·:·:·:·:·:·:-:·:·:·:-:·:·: ·:·:·:·:·:·:·:·:·:v:-~x·:·:·:·::::~:~;:;.;.;.;.:~~-::;.;:;:;:;.:::::;::x.;.>':;:.:~:.;.:.;:;:;.;.;.;:;.;:::;;;;:~~:::;:;:;:-;;:;;;-.:;:;:;:;:;:;:;:;:: :;::::::::::::::::::::::-:·:·: .·.·.·:·:·.;.;.;.:.:·:.:·: 

extension module. There Is no SWI to claim a hardware vector: instead you have to 
overwrite It with a B my Handler ora LOR PC, (PC, f myHandlerOffset] 
Instruction, and do all the 'housekeeping' yourself. 

Passing on calls to hardware vectors 
You must make sure that If your own handler cannot process what caused the 
vector to be called. the 'next' handler for the vector Is called. The address of the 
next handler can be dynamic. so you must be careful : 

• If the Instruction In the hardware vector location when you come to daim It Is 
B oldHandler. then you need to compute the address ol the old handler 
and store It In your wortspaa:. You then need to store a pointer to this 
address 

• lfthe Instruction is LOR I PC, t oldHandlerOf f set ]. then you need to 
compute the address of the variable where RJSC OS stores the Installed 
handle(s address. and store this pointer. You 1n1t aot dereference this 
pointer to get the actual address of the handler. as this value may change as 
different applications are run . 

In both cases above you now have a pointer to a variable which holds the address 
of the next handler to call: you can then use identical code in both cases to pass on 
a call to the hardware vector that you cannot handle. 

Releasing hardware vectors 
If your module Is killed, so you need to release a hardware vector. you must first 
check to see that the Instruction that Is in the hardware vector location points to 
your own handler. If It does not. your module must refuse to die, as another piece 
of software has stored away the address of your handler, and may try to pass on a 
call to your handler or to restore you when it exits. 

Vector priorities 

1-106 

The hardware vectors have different priorities. so that if exceptions OCC\Jr 
simultaneously they are sensibly handled. This list shows the vectors in order ol 
priority 

Reset 
Address exception 
Data abort 
FlO 
IRQ 

tHigh priority 

Hardware V9Cbs 

:-:::: :::::::::::::;:::::::::::::::::::::::::::::::::=:::::::=::::::::::§::::::~=:-:::::::::.;:::: :;:;:;::~:;:;;::::::::::::;:;:;;;;:...-.::;:;;;:«:»oo.:;:::•:•:•::::::::::::::;>;::::·:·:•:•:·:·:·: .;:;:;::::<~»;.;.;.:.;v;.:v:·::::·. ·.·:·::-:·:·:·:·:.:::::-_.;:;:;:«-:·:=:-:::::::.;-:;:.:-:::::::::::::::::::: 

Prefetch abort 
Undefined Instruction 
SWI 

.I. Low priority 

1-107 



co 
0 .,.... ' .,.... 



;:;:;:;:;::.:·:·:·:·:·:·:·:·:·:.:~:•:*:;;.;.;;;;;;~;;; .. ;:;:;:,;:;;;:«<«<-::;.:;:;:;;;:.;:;;;.;:;.;;;.-:::;-;-;;:;<:;::::;:;;;:;:;:;:;:;;: ;:;.;:;:;:;.;.;;;.; ;.;;:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:.;:;:.;;:.~;:-,.o;.;:;:::::::::::::: :;::::·· .:.:;:;:;:;:;:. :;:;:;.;:;:: :;::::::~::::::::;:;:;:;:;::::;-;:; 

10 Interrupts and handling them 
::::::::::::::: ::::::::::::::::::::::::::':::::::::::::::::::::::::::: ::::::~::::::::::~:;::::~::::::::::~:::::::::::~::::x:::.:::::::::::::::::~: ::::::::::::::::::::: :·:·:.: :::::::::::::::::::::::::::=:::::::::::~:-=*=*:::::::::::::...::::::::::-::~:::: ::::::: :::::::::-::::::::::::::::::::::::lX:::: 

Introduction 
An irtlcrup( is a signal sent to the ARM processor from a hardware device. 
indicating that the device requires attention. They are sent. for example. when a 
key has been pressed or when one of the software timers needs updating. This 
sending of a signal is known as an irtr.m.pc "'111151. 

RISC OS deals with the interrupt by temporarily halting its current task. and 
entering an irtul'rllpt rolllilll. This routine deals with the interrupting device very 
quiddy- so quiclt.ly, in fact. that you will never realise that your program has been 
interrupted. 

Interrupts provide a very effident means of control since the processor doesn't 
have to be responsible for regularly checking to see if any hardware devices need 
attention. Instead. it can concentrate on executing your code or whatever else its 
current main task may be. and only deal with hardware devices when necessary. 

Devices handled 

Amongst the devices which are handled under interrupts on RISC OS computers 
are the: 

• keyboard 

• printer 

• RS423 port 

• mouse 

• disc drives 

• built-in timers . 

Expansion cards 

Additionally. external hardware such as expansion cards may cause new interrupts 
to be generated. For example. the analogue to digital convertor on the BBC VO 
expansion card can interrupt when it has finished a conversion. It is therefore 
possible to install routines which deal with these new interrupts. 

1-109 



Device numb8rs 
·:;:;:;:;:;:;:;:::::;:;:::;:;;:;;:;:;:;.;:;:;:;;;>;;:;;;:;:;.;. :···:·:···:·:·:·:·:·::;.;.;:;:;.;.;.;:;:;:;:;:;:;:;:;.;:;:;:;:;:;:;.r;;:y;...;:::::::::•:::;:>:;,:-::;.;.;.;.;. :-:·:·:·:·:-:-:·:·:;;.;.;.;;;:: :::::::~~:::;;:.:;;:;;;:;:::;:;:;;~:::::;.;:;;;;;;;;;;;;:;.;.;.· ·:·:·:·:·:·:-::;;;:;:::::;:;:: :;:;:;:;:;:::::::::;:;:;:· 

Device numbers 

1-110 

Each potential source of interrupts has a 4tviu 11u .. hcr. There are corresponding 
Uvju vte:tors: installed on each vector there is a default Uviu II river that receives only 

the interrupts from that device. 

Unless you are adding your own interrupt-generating devices to the computer. you 
should not need to alter the interrupt system. 

The device numbers correspond directly to bits of the interrupt registers held in 
the toe chip: 

DeYice umber 
0 

7 
8 
9 

I5 

Correspoada t cx 

Bit 0 of IRQ A registers 
Bill of IRQ A registers 

Bit 7 of IRQ A registers 
Bit 0 of IRQ B registers 
Bit I of IRQ B registers 

Bit7 of IRQ B registers 

See the section entitled IOC rtgistm on page 1-133 for more details. 

Not all RISC 06 computers use the same interrupt generating hardware. Early 
models (eg the Archimedes 300. 400 and 500 series, and the A3000) use a variety of 
peripheral control chips: current models (eg the A5000) use the 82C7IO or 82C7I I 
chip; future models may use other peripheral controllers. These different 
peripheral oontrollers are mapped differently onto the IOC chip's IRQ registers. 
Consequently, device numbers differ between models of RISC 06 computers. 

tuerruprs and handling lflem 

·:·;::::;;:::•:o:•m;:.::;:-:· :·:·:·:·:·:·:·:·:·:·:·:·:=:·:·:=:=:=:-:::::•:=:=:•::::::::::::m•:•:;:•:•:;:•:-:::-:-:.:-: ·:-:=:·:·:=:·:·:::.:-:::::::::: :;:•:::;:-:::::: :=:=:=:<:::::;::::;~.,..m-:::.:-:·:·:·:·:·:·:·:·:= :::::::=:·:=:•:•:;:•:-:::•: ::::::::::~:=:::::::::•:•:•:=:·:·:·:···· · 

For early models (ie the Archimedes 300, 400 and 500 series, and the A'3000). the 

device numbers are: 

0 Printer Busy 
I Serial port Ringing Indicator 
2 Printer Acknowledge 
3 VSync Pulse 
4 Power on reset- this should never appear in normal use 

5 IOCTimerO 
6 IOCTimer I 
7 FlO Downgrade- rese111ed for the use of the current owner of FlO 
8 Expansion card FlO Downgrade- this should nonnally be masked off 

9 Sound system buffer change 
IO Serial port oontroller interrupt 
I I Hard disc oontroller Interrupt 
I 2 Floppy disc changed 
I 3 Expansion card interrupt 
I 4 Keyboard serial transmit register empty 
I 5 Keyboard serial receive register full 

For models using the 82C710 or 82C7 I I peripheral ron troller (eg the A5000). the 
device numbers are: 

0 
I 
2 
3 
4 
5 
6 
7 
8 
9 
10 
II 
I2 
I3 
14 
I5 

Printer interrupt from 82C7IOI711 
Low battery warning 
Floppy disc Index 
VSyncPulse 
Power on reset- this should never appear in normal use 

IOCTimerO 
IOCTimer I 
FlO Downgrade - reserved for the use of the current owner of FlO 
Expansion card FlO Downgrade- this should nonnally be masked off 
Sound system buffer change 
Serial port interrupt from 82C7IOI7I 1-also mapped to FlO device 4 
IDE hard disc interrupt 
Floppy disc interrupt from 82C7 IOI7I I 
Expansion card interrupt 
Keyboard serial transmit register empty 
Keyboard serial receive register full 

(Device numbers 3 • 9 and 13- 15 have the same meaning as for early models.) 

Note that RISC06 2 does not support the82C7IOor82C71 I peripheral controller. 

1-111 



Device vectotS 

:;:;:;:.::;:;:;:; .;.;:;:;:;:;:;: ;:;.;:;.;-;:;.;.;:;:;.;.;-:-:·:·::;.;.;.;.;.;:;.;:,:;.;:;.;:;.~;-~:;:;:;.;.;:;.;::-:-::;: ;.:-:·:-:-:-:-:-:-:-:-:·.·.-.-:-:- :-:-:-:-;.::;..;.:-:-:-:•:-:-:-::;:;~:;:~x;::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.;.;.;:;.;:;:;:;:;:;:;:;::.:-;-;;s::;.;-:-:-:-:-:•:-:-: 

Device vectors 

IRQUtlls 

1·112 

Just like other v~ors In RISC OS, you can daim the device v~ors and aet them to 
call a different routine You do this using the SWI OS_CiaimDeviceV~or. 

Most of the device vectors only call the most recent routine that daimed the vector 
There Is no mechanism to pass on the call to earlier daimants. as it is not sensible 
to have many routines handling one device. However. old daimants remain on the 
vector. and If you release the vector using OS_ReleaseDeviceVector. the previous 
owner of the vector is re-installed. 

The exceptions to th1s are device vectors 8 and 13, which handle FlOs and IROs 
(respectively) which are generated by expansion cards. These can have many 
routines installed on them. as it is possible to add many expansion cards to the 
computer Each daimant specifies exactly which interrupts it is interested in. 
RJSC OS then ensures that only the correct routine is called. 

Avoiding dupl~tlon of drivers 

Note that when you claim a device vector. RISC OS will automatically~ from 
the chain any earlier instances or the exact same routine. 

Automatic Interrupt disabling 

If you release a device v~or. and there are no earlier claimants of that vector. 
RJSC OS will automatically disable interrupts from the corresponding device. You 
must not attempt to disable the interrupts yourself. There is thus guaranteed to be 
a device driver for each device number that can generate interrupts. 

After the release of RISC OS 2. a module called IROUtils was released to Improve 
In terrupt latency. 

The changes this made have now been incorporated in RISC OS 's kernel A dummy 
module named IROUtils has been included with an appropriate version number. so 
that applications written to run under RISC OS 2 that check for Its presence will 
still run correctly. 

tllerrupts and handling IMm 
;;;;s;.;:;;;:;:;:;:;:;:;:;:;:;:;:;:;:;:; :;:;:;: ;:;:;:; :;:;:;:;:;:;:;;;:;:;o;;;::;;:;:;:;:;:s:;.-«:;.;:;:;:;:;:;~5};:;:;:;:;:;::-:·:-:::=::;:;.;-;.:..:-:-: ... ~·:-$:·:·:·:•:•;..»;.~-:.:-~:-:-;.;-;.;.:-:·:·:·:-:-;:;.;-: .... X.;.;@>:;:;.;:;:;:;:;:;:;.;:;:::;:;:xc:o;:::;:;::-:-:-:-:v:-:-:¢. :-:-:-:-:-:-:-

SWI Calls 

Claims a device vector 

OS_ ClaimDevice Vector 
(SWI &48) 

On entry 

RO =device number 
Rl =address of device driver routine 
R2 =value to be passed In R 12 when device driver Is cal~ 
R3 =address of Interrupt status. If RO • 8 or ll on entry 
R4 = interrupt maslt to use. If RO • 8 or ll on entry 

On exit 

RO • R4 preserved 

Interrupts 

Interrupts are disabled 
Fast Interrupts are enabled 

Processor mode 

Processor is in SVC mode 

R~ntrency 

Use 

SWI is not re-entrant 

This call installs the devke driver. the address of which Is given in Rl. on the device 
vector given in RO If the same driver has already been Installed on the vector (ie 
the same parameters were used to Install a driver) then the old copy is removed 
from the vector. Note that this call does not enable interrupts from the device (d 
OS_ReleaseDeviceV~or) 

The previous driver Is added to the list of earlier claimants 

1·113 



OS_ CJaimDevic» ~ (SWI &48} 

....... ·.·.-.-:-:::~:-;.:-:-:;:.~:«««-.. • ........ow . .,... • * ...... ~-~~~-*~~~c~n~:=~~:~-~mJt-:--::::::-.:·m.:-:-:-:-:-:-:-:-z:..::::-:,.:-x-:::-:-:-:-:-:::-:-:-:-:-:-:-:-:-:-:-:-: -:-:..:-:-:-:-:-:-:-::: ____ 

1-114 

If RO = 8 Of 11 then the device d river routi ne is !Of an ~pansion card. R1 gives the 
address where the expansion card's I ntenupt status is mapped into memo!y- see 
paae 6-96 onwards of the chapter entitled Expusio" C.rh •*' EIUMio" ROMS. Your 
device dnver Is called II the ICC chip receiiii!S an intenupt from an expansion card. 
and ( LDRB [R1) AND R4 ) Is non-zero 

For all other values of RO. your d river Is called if the ICC chip receives an interrupt 
from the appropriate device. the corresponding ICC interrupt mask bit is set. and 
your driver was the last to cia 1m the vecto r 

RelatedSWia 

OS_ReleaseDeviceVectOf (SWI &4C) 

Related vectors 

None 

lii~MTUpCS 1111d hlltldling ~Mm 

,:; ____ :-:_____ .......... (I:.*''XY...:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-::z::::::::.:::;-:-:-:.,.:·:-;-:-x-;-:««-iM 

Releases a device vectOf 

OS _Release Device Vector 
(SWI &4C) 

On entry 

RO = device number 
Rl =address of device driverroutine 
R2=RI2value 
R1 = interrupt location if RO = 8 Of non entry 
R4 z interrupt mask if RO = 8 Of 11 on entry 

On exit 

RO • R4 preserved 

Interrupt a 
Interrupts are disabled 
Fast interrupts are ena bled 

PrOCMaor mode 

ProcessOf is in s~ mode 

Re-entrancy 

Uae 

SWIIS not re-entrant 

This call removes a driver from the list of claimants of a device vector. The device 
driver is identified by the contents of the registers on entry; RO • R2 (RO • R4 if 
RO = 8 or 11) must be the same as when the dev~ce dnver was mstalled on the 
vector. 

The previous owner ol the vector is re-installed at the head of the chain If there is 
no previous ownet then IROs from the correspond ina device are disabled . 

You must not attempt to disable a device's IROs yourself when you release its 
vector. 

Related SWia 

OS_CiaimDeviceVector (SWI &48) 

1-115 



OS_R919BSI109vk:eVec10r (SWI &4C) 

·:·:·:·:·:·:·:· ::: ·:·:·:·:·:·:·:·:·:~·:·:·:·.·.;-; .-:-;.:.:·:-:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:;:-;-x'W'!'·:;.:.;;:;:;:::::;:;:;::::::::::.;:;:;:;:;:;:;:;:;:;:;:;:;:;:~;:;:;:;::::;:-:::::::.:::::::·:::· 

1-116 

Related vector• 
None 

·.·.·.·.·.·.·.·.·.·.·.·.:·:·:·.·.·.·:·.·:·.·:·.·.·.·.·.·.·.·.·.;·;.;.:;:~;.;.; 

tiiiHnlpfS and handling them 
:-: :;:::::::::::::: :;:::::::::::::::::::::::::::5::;>::::::::::::::::»::::::::::::: :;:;:;:;:;<;:;:;.;::;;:::::::: :;:;:;:·:;:;:;:;:;::;.;:;:;.;:;:;:;:m;;:;:;::~..:.:-;.:.;:;.;::::·:·::::;.;.;.;:;.;.;.:.. .. :.x-:.:v:v:·:-:·x-;.:-~:·:·:·:·:·:·:·:: :·:·:·:·:·:·:·:-:::::·:· ::::~::·: 

Technical details 
This section gl~ you more technical details or how the RISC OS interrupt system 
works. You should rerer to It lr: 

• you are adding an lntenupt aenerallng device to your computer- such as an 
expansion card 

• you wish to use llmer I rrom the IOC chip. which Is not used by RlSC 05 

• you wish to change one of the derault RISC OS device driving routines. 

How a device driver Is called 

Interrupts are aenerated and the device driving routine called as follows: 

I The device t!l.t needs attention a lters 1M status of Its lntenupt request pin. 
which is connected to 1M IOC dllp 

2 The corresponding bit of one of the IOC's lntenupt status registers is set 

J The IOC's interrupt status registers are ANDed with Its lntenupt mask 
registers. and the results put In Its interrupt request registers 

4 lr the result was non-uro (lethe device's bit was set In the mask) then an 
interrupt Is sent to the ARM processor 

5 lr interrupts are enabled. the ARM saves R 151n R 14_1rq 

6 It then forces IRQ mode by setting theM I bit and dearing the MO bit of R 15. 
and disables Interrupts by setting the I bit 

7 The ARM then for~ the PC bits of R 15 to & 18 

I The instruction at &18 Is fetdled and executed. It Is a branch to the code that 
RISC OS uses to decode IROs 

9 RJSC OS examines the Interrupt request registers of the IOC chip to see which 
device number generated the Interrupt 

10 lrthe device number was not 8 or ll (lethe device was not an expansion card) 
then RJSC OS calls the last routine that dalmed the corresponding device 
vector 

lr the device was an expansion card. RISC OS checks each routine on the 
expansion card de-. ice vector. starting with the most recent dalmant. The 
contents of the mtenupt status byte are ANDed with the mask (as passed in R3 
and R4 when the routine was Installed) If the result is non-zero. the routine is 
called. otherwise the next 100$t recent claimant Is checked. 

1-117 



D.vice drivflf routine6 

'<i, .... ~ ....:-x:.-.. ;.:-:·:·:·:-:·:-:-:-:• .. .;-:•. 

Whatever the device number. If no routine is found to handle the interrupt 
then lrqV (the unkllown IRQ vector) Is called. By default this disables the 
Interrupt Ina device by clearinathe c:orrespondlna bit of Its interrupt mask
but the call may be daamcd by routines written to work under the old Arthur 
operating system 

II The device driving routine Is executed and returns control. 

The addresses of the IOC registers are eiven at the end of the chapter. 

Device driver routines 

Entry conditione 

When a routine that has claimed a device vector Is called: 

• the ARM is In IRQ mode with Interrupts disabled 

• R3 points to the base of the IOC chip memory space 

• Rl2 hasthesarnevalueas R2 had when the vector was claimed -this is usually 
used to point to the routine's workspace 

Servicing the Interrupt and returning 

Your routine must 

• service the Interrupt 

• stop the devace from eeneratine Interrupts. where necessary 

• return to the kernel ustne the lnstructaon MOV PC, Rl4. 

In dolna so. you may corrupt registers RO - Rl and R 12 

Restrictions 

1-118 

There are more restrictiOns on writing code to run under IRQ mode than there are 
under SVC mode These apply to· 

• speed of execution 

• re-enabling interrupts 

• callingSWis 

• not using certaan SWis . 

tl~ and lulndting INn! 
~»":"ow . .,.._::::::::: .-,...,m;·::.~;,;:;::,.~;:;:;;;:.:•:;.:-:•:W.•!;:.:,.Oh7N~.:>'h•>:Y:•:Y.:•:O:O;.:-;.~~:.:-~~:~.-.wvvo • 

Speed of execution 

Interrupt handlin& routines must be quick to ueo~te This Is because they are 
entered with interrupts disabled. so while they are runnine other hardware may be 
kept waitina. This slows the machine down considerably 

In practice. IOOJ&s is the lonaest you should leaYe Interrupts disabled If your 
routine will take toneer than this. try to make it shorter If all else falls. your routine 
must re-enable Interrupts. It should do so by clearina the I bit of R 15. using for 
example: 

110Y ·~•-.>, PC : t_att -t tn rsR 
!'EOP kteiiiP, f l_blt : •ote tEQ ta Uke &Oit: eo clear• t_ltt tn f Sit 

where I bit is a constant havine only the I bit set. You must not use the TEO 
tnstructi-;;n directly on the PC, as this mieht lockout other interrupting devices that 
need immediate attention before their hardware buffers OYerllow; for example. 
MIDI or the serial port. 

If your routine does re-enable Interrupts. It must be able to cope If a second 
Interrupt occurs. and hence the routine beina entered for a second time (le 
re-entrancy occurrina). 

Calling SWia 

Calling SWis from device driYer routines is quite similar to calling them from SWI 
routines. Again the problem is that RI4_$YC (the return address for SWis) may eet 
corrupted. For example: 

I A SWI is called by a proaram that Is runntne In User mode R 15 (the return 
address to the proaram) is copied toR 14_svc. and the processor Is put into 
SVC mode. The SWI routine is then entered. 

l While this routine is runnfna. an Interrupt occurs The devtce driYer routine 
calls a second SWI. The ARM enters SVC mode, and Rl5 as copied to Rl4_svc. 
overwritina the return address to the proaram. The second SWI executes. 

3 ContiOI is returned to the interrupt handlet 

4 When it finishes, control passes bad to the first SWI routine by loading 
Rl4_irq bad intoRI5. 

S The first SWI routine finishes executina. and tries to return control to the 
program by loadina Rl4_svc back Into Rl5. 

6 Because Rl4_svc was overwritten by the second SWI, control is not returned to 
the program; instead it passes back to the second SWI again. crashing the 
computer. 

1-119 



Error handling 

;.;:; ;;:;:;:;:;:;.;.;:;.;:;:;:;:;.;:;.;.;.;.;:; .;.;:;.;.;.;.;.;.;.;.;.;.;.;:;.;::~·:·:-:-:;;:;:;:;;;:;:;:;:::;:;:;:;: ;:;:;:;:;:;:;:; :;:;:;:;:;:;:;:;;.: .·.·.·.···; •• :.:;:;:;. ;.;:;.;.; ·!·:=:·!·!·!·! .;.;.;.;.;.;.;:; .;.;.;;;.;.;.;;;.;:;.:.;:.;;.;;;z:;!(.!;::;:;;;:;;:;:;:;»':-i,%:!:<,.~:;:x;;::.;:.;;;;:;:-~<:::::.-:-:~: 

Error handling 

Re-entrancy 

1-120 

Recommeaded procedue 

The solution used with device driver routines is the same as that for SWJ routines. 
Rl4_svc is pushed on the stack before the SWJ is called. and pulled afterwards. 
However. this Is more complex as you have to first change from IRQ to SVC mode. 
The recommended way of doing so is: 

MOY R9, PC : Sav• eurr.nt status/mode 
ORR IU, R9, t SVC_Mode ; Derive SVC• rrodo vertlon of tt 
T£QP kl, t O ; Enter svc mode 
HOV RO, RO ; No-op to prevent contention 
STHFO Rl3!, I R141 : Save JH~_svc 
SNI xxxx : Do tho SWI 
LOMFO JU3!, IR141 ; Restore lU 4_SVC 
TEQP R9, IO : ke ... entor ortqinal prooettor mode 
MOY RO, RO ; No-op to prevent content ion 

svc Mode Is 3. Of course, you must preserve R8 and R9 as well, using the full 
desrending IRO stack. 

Interrupt handling routines must only call error-returning SWis ('X' SWis). If you do 
get an error returned to the routine. you cannot return that error elsewhere. 
Instead you must take appropriate action within the routine. You may also like to 
store an error indication. so that the next call to a SWJ in the module that provides 
the routine (or the current call, if already threaded) will generate an error. 

There are some SWis you shouldn't call at all from an interrupt handling routine. 
even with the above precautions. This is because they are not rc-t ntrcnt: that is, 
they can't be entered while an earlier call to them may still be In prCJiress. One 
common reason for this is if the routine uses some private workspace. For 
example: 

I The SWI Is called from a prCJiram. lt stores some values in the workspace. 

2 An interrupt occurs. The interrupt handling routine calls the same SWJ a 
second time. 

3 The old values In the workspace are overwritten 

4 When control returns to the first instance of the SWJ, the workspace is 
corrupted and so the routine does not work correctly. 

A119rrupts and handling lh6m 

x.:v:~~:;:;:;:;:;:;:;:;:;:·: .·.·.·.·.·.·.·.·.·.·.·.·.· .. :.:;:;.; .... :;.;.;:: :;:;:;:;:;:;;;:;:;:;:;:;:;:; :;:;:;:;::::::~:: :;:;:;:;::::=.-:r.::;:;::;;~:;:;:;::;:::;:;:;:;:;:;:;:~:~:::::~::~::::::;:;:;:;:;:;:;:~;:: :;:;:;:;~;:;:;:;:;:;:;:·:·· :::::::::::::::::::::::::::z.;:::::::~ 

Donmeatlltloa olre1atr.ac, 

The documentation of each SWI clearly states If It Is re-entrant- ie If you can call It 
from an Interrupt handling routine. There are three common entries: 

• re-entrant can be used 

• 
• 

not re-entrant 

undefined 

must not be used 

the SWI's re-entrancy depends on how you call ft. or 
it is sub(ect to future change 

In general. OS_Byte and OS_Word calls can be used. OS_ WriteC and routines 
which use it should never be called. 

Clearing Interrupt conditions 

Before your routine returns. it must service the Interrupt- that is. give the device 
the attention it needs. which originally caused It to generate the interrupt. You 
must then clear the Interrupt condition. to stop the device carrying on generating 
the same interrupt. How you do this depends on the device. but will usually involve 
accessing the hardware that is generating the Interrupt. See the relevant hardware 
data sheets for information. 

Fast Interrupt requests 

FIQ devices 

There are actually two classes of interrupt requests. So far we have been looking at 
the normal intt,.,..,t '"'!Unt, or IRO. The second type is a fast inltrrupl rtqutst. or FlO. 
Fast interrupts are generated by devices which demand that their request is dealt 
with as quidly as possible. They are dealt with a t a higher priority than interrupts 
(ie nonnaiiROs). 

Fast interrupts are a separate system. There are separate registers in the IOC chip. 
separate inputs to the chip, and a separate connection to the ARM. The ARM has a 
processor mode reserved for FlOs. and a hardware vector. 

Devices handled under FIOs also have device numbers. Again. the device numbers 
correspond to the bits in IOC registers: these are the FlO interrupt registers. 

Device umber 
0 

7 

Correepoact. to: 

Bit 0 of FlO registers 
Bill of FlO registers 

Bit 7 of FlO registers 

1-121 



Similarili96 b9tw99n F/Oii and IROs 

. . ............ ·.·.·.·.·.·.·.·::;: ,:.:.:.:.:.:;:, •• ·.·.·.·.·.·.=:·:·:·:::;;:;;;:;:;:;:;:;.;:;:;.;-:-:·:·:·:····· -:·:·::::::::::::::::::::::.:-:::::::::-:::::::::::.:=:::::::.:-:~:•=: ::::::=:<:::::::::::: :::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::.-.;::.:x;;;:::::::•:w;:o:::•:::;: 

Just like IRQ device numbers, FlO device numbers differ between models of 
RISC OS computers. depending on the peripheral controller chips used. For early 
models (eg the Archimedes 300. 400 and 500 series. and the A3000). the FlO device 
numbers are: 

0 Floppy disc data request 
1 Floppy disc controller interrupt 
2 Econet interrupt 
3 C3 pin on IOC 
4 C4 pin on IOC 
5 C5 pin on IOC 
6 Expansion card interrupt 
7 Force FlO- this bit is always set. but usually masked out 

For models using the 82C710or 82C711 peripheral controller (eg the A5000) . the 
FlO device numbers are: 

0 Floppy DMA data request 
I Fl-11 pin on IOC 
2 Econet interrupt 
3 C3 pin on IOC 
4 Serial port interrupt from 82C7101711- also mapped to IRQ device 10 
5 C5 pin on IOC 
6 Expansion card interrupt 
7 Force FlO- this bit is always set, but usually masked out 

(FlO device numbers 2. 3 and 5 • 7 have the same meaning as for early models.) 

Again we make the point that RISC OS 2 does not support the 82C710 or 82C711 
peripheral controller. 

Similarities between FIQs and IRQs 
In many ways FIOs are similar to IROs. So FlO routines must: 

• keep FlO and IRQ disabled while they execute- if you're taking so long that 
you need tore-enable them. you should be using IROs, not FIOs 

Differences between FIQs and IRQs 
There are three important differences: 

• FIOs must be handled more quickly 

• FIOs are vectored differently 

• FIOs must u.er call SWis. 

1-122 

lnt&rrupiS and handling them 

:·:•: ·:···:·:·:·:·:·:·:·:·:·:·:·:· :-;.:-:-::;:;:;:;:;:;.;-:-: :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;;;~::::::;:;.:•:::;:~~;:;;;.r..:;:;:.;;;:x;o)'..:;;;;.;o:::::::::::;;:o-$.:;:::::;;;::{:;.;:;.:::::•:·;;::;::•:•:•:·:;;:;.::-:·:·:::.:;;. :-:·:·:·:·:·· .·.·.·.·.·.·.·.·.·.·.·.·:·:-::;:·.··· 

The default owner 

Using FIQs 

When a FlO is generated execution passes directly to code at the FlO hardware 
vector. By default, the code that is installed here handles F10s generated by the 
Econet module, if it is present. The Econet module is the Ufnll ow"" ot the FlO 
vector. 

When other parts of RISC OS want to use FIOs. for example to perfonn a disc 
transfer under interrupts. they daim the vector. replace the default code. and then 
release the vector. RISC OS automatically re-installs the default code. 

Obviously only one current FlO owner is supported. 

It is vital that you only claim the FlO vector for the absolute minimum time 
necessary. For example, AOFS uses FIOs to perfonn disc transfers: but it releases 
the FlO vector ~n each sector. 

You must follow a similar procedure if you want to use FIOs. This Is the sequence 
you must follow: 

Claim FIOs using the module service call OS_ServiceCall. You can daim FIOs 
either from the foreground, or from the background. 

To daim from the foreground. the reason code in Rl must be &OC (Claim FlO). 
This service call will always succeed. but will wait for any current back&round 
FlO process to complete. 

To claim from the background. the reason code in R I must be &47 (Claim FlO 
in back&round). This service call may fail. but this failure does not imply an 
error- merely that FIOs could not be claimed. You 111•.t leave your routine to 
allow the foreground routine to fin ish using F10s and release them. You 
should schedule a later retry; for example with a disc. you would retry next 
revolution ot the disc. If Rl = 0 on return, you su<XeSSfully claimed the FlO 
vector. 

2 Set the JOC fast Interrupt mask register to &00. to prevent fast interrupts while 
you are changing the FlO code. 

J Poke your FlO handling routine into addresses &IC upwards. You may use 
memory up to location &100 (ie the last possible instruction is at &FC). 

4 Enable FlO generation from your device. 

5 Set the bit oorresponding to your device In the IOC fast interrupt mask register. 

6 Start your FlO operation. You must either poll for its completion. or rely on the 
completion starting the finalise process in the steps below. 

7 End your FlO operation 

1-123 



How the FlO vector Is call~ 

~x::::;.;-:::::::::::::::::>~::~;-;:;:~~-:-:-;-x.~:w:~ ....... »:-»:•;.~~»-~«~->:::;:;;.::;:::•:=:=:.::=:•:•:•:=:•:::::::::::=: :::::::::::::::::::::::::::::::: ::·:·:·:.:=~:=:•:::::•:•:::.:•:·:·:•:;;:::.:=:=:·:•:•::.»"!::w:;:::::;:;;::~:-:-~:-:·:·:· :·:·:·: 

I Set the IOC rast interrupt mask register to zero. 

9 Disable AO generation rrom your device. 

10 Release FIOs using the module service call OS_ServiceCall. The reason code In 
Rl must be &OB (Release AO). It doesn't matter which w~ you orislnally 
daimed the AO hardware vector. 

How the FIQ vector Is called 

You may need to know in more detail how rast interrupts are generated and the AO 
hardware vector is called· 

I The device that needs attention alters the status of its rast interrupt request 
pin, which Is connected to the JOC chip 

2 The corresponding bit of one of the IOC's rast interrupt status registers Is set 

:J The IOC's rast Interrupt status resisters are ANDed with its rast interrupt mask 
registers. and the results put in its request registers 

4 Jr the result was non-zero (ie the device's bit in the mask was also set) then a 
rast interrupt is sent to the ARM processor 

S The ARM saves R 15 in R 14_1iq 

6 It then rorces AOmode by clearing the Ml bit and setting the MOblt or Rl5, 
and disables all Interrupts by setting both the I bit and the F bit 

7 The ARM then rorces the PC bits orRI5 to &IC 

I The AO handling routine at &IC is entered 

The addresses or the IOC registers are given at the end or the chapter. 

Disabling Interrupts 

1-124 

There will be times when you want to disable interrupts (ie IROs). You must only 
do so with great care: and particularly not ror long periods or time since this will 
have various unwanted dfects such as stopping the clock. disabling the keyboard, 
etc. 

SWI• provided 

The easiest way to disable and ~nable interrupts rrom user mode is to use the 
SWls provided These are OS_IntOfr and OS_IntOn. They have no enuy or exit 
conditions. and are described In full below. 

lniiHrupf$ and handling them 

:=:•:•:•:•:.::<:::::;::;:;:;:;: ;:;:;:;.;:;:;:;:;:: :;:;:;:;:;:;:;:;:;:;:;:;:;:·: .·.···; .• :;:;:;.;:;:;.;. ;:;:;:;:;:;.;.;:;.;.:,; ·:·:·:•:·:~·:-;.::;.;:;:;:;:;:::;.;.:,;.;.;:;:;:;:;;:.:-~~>:«*»:•::::::::;:;:;:;:::::::::::...:;::;;;;.; =:·:·:•:·:·:·:·:-:..:=:·:· :.::;.;:;:;:;:;:;:;:;:;:~::::::::•:-:-::;: 

More advanced ca ... 

To disable specific devices, or rast Interrupts, you need to be In a privileged mode. 
The example below shows you how to use the SWJ OS...EnterOS to enter SVC mode. 
This is described In m01e detail below. 

Normally you won't need to do this. because RISC OS places you In a privileged 
mode during module Initialisation, service and llnallsatlon entries -the times you 
are most likely to want to disable devices. or fast Interrupts. 

Once you are In a privileee<f mode. you can disable Interrupts by setting the I bit in 
Rl5. You can also disable rast Interrupts by setting the F bil 

To disable specific devices you must first ha¥e disabled lilt Interrupts. You then 
dear the relevant bits In any of the IOC's Interrupt mask resisters. This must be 
done in very rew (no more than live) lnstrudlons. Anally, you must re-enable 
interrupts: 

w:N k2, UCX: : Point a2 a t ICX: beton diilabllnq inte rrupt• 
!WI ·os_tnt eros• : Int e r svc .ocM 
I«)Y ao, PC : Get e t atua in ao 
ORk kl , RO. UOCOOOOI)O; let the interrupt a11t1 
ttOP IU , t O 1 Update PSIIl 

: Write to IOC he re in < ~ 1netruct1on t .- oq: 

LDilB Rl , ( A2 , tiOCUO'IokA) 
ORft IU,IU, f T1-rlllt; In able Tt .. rt 

; It IJC 11 u eed 1neteact of ou, TlJNtrl 1• diaa.bl ed 
StllB U , (A2, tiOCJ RQHekA) 

'l'EOP JtO , f l 
I10Y 10.0, RO 

: lnd of write to toe 

: Reetore entry et a te and twturn to u••r ft'IOd• 
: MOP to avoid contention 

AOs must be disabled because the mask has AO downgrade bits. U the current AO 
owning process alters these bits between your reading the mask and writing it. the 
process will not then get the IRQ that It just requested the FlO be downgraded to. 

1-125 



Ssrvice Calls 

:;.:·:·:-::::;:;.;.;~~:;:;:;:;:;:;:;:;:;:;:~;:;:;.;:;;--;..XX::~ ... -y;-;-.:::::::~;: ;:;:;.;:;:;. :-:·:·:-:::::::=:.:-:-:- .;:.:~~~~~.«'"fl}:-:::- :-:·: :;:;.;:;.;.;:;:;:;:;~:;:;:;::::z.:::::::::.~:;::--::::::Z:=-

Service Calls 

1-126 

ReleaseAO 

Service_ReleaseFIQ 
(Service Call &OB) 

On entry 

R I = &08 (reason rode) 

On exit 

Use 

Rl "'0 to daim, else preseM!d to pass on 

This service call must be issued by any module immediately after it releases the 
AO hardware vedor. You may claim this service call if you wish to usurp the default 
AO owner (the Econet module) and install your own rode on the AO hardware 
vector 

If no module da1ms this service call, then Econet does so. and installs its own code 
on the AO hardware vedor. Should even Econet not daim the service call- for 
example If the Econet module has been unpluaaed- then the kernel installs its 
default AQ handler. 

See the section entitled Usi"9 AOs on paae 1· 123 for details of other steps to take 
when dalmlna or releasina the FlO hardware vector. and also the chapter entitled 
Har~ ... , ~«tors on paae l-103 for additional information about the vector. 

tJIIHTUpls snd hllfldling !Mm 
:::::::::::::::: :::::.:::::::::::=:·:-~:-::~:-::-:=. -~:;:.;:::;.~;w..c;.:o:~x::;e,y,..:.;.;.:-:-:-:·:·:·:~.:;::.:~:::::::o:.::::::::::::::::::.:=:=:-:-:.:-:-:-:-:-:.:-:-:-:=:=:=:·:·:·:·:·:·:·:·:·:-:-:-:.:·:·:·:-:::·:·:=:·:·;.~-···· :-:- :•;o; 

ClaimAO 

Service_CiaimFIQ 
(Service Call &OC) 

On entry 

Rl • &OC (reason code) 

On exit 

Uae 

R I c 0 to claim, else preserved to pass on 

This service call must be issued by any module runnll18 as a foreground task (le not 
as an IRQ process) that wishes to claim the AO hardware vector. 

It Informs the cunent AO owner that It must release the vector as soon as it can 
deanly do so The cunent owner must complete without disruption any unfinished 
AO processln8. release the \'eCtor, and then cia 1m the servire call by settina R I to 
zero As soon as the claimant finds that the servace call has been claimed. it knows 
it has claimed the AO hardware vector. 

See the section entitled Usi.., AOs on paae 1·123 for details of other steps to take 
when daimina or releasina the AO hardware vector. and also the chapter entitled 
Har~ ... , l*lors on paae 1-103 for addltlonallnfonnation about the vector. 

1-127 



SINVicfi_CiaimF/OinBackground (SINVic:B Call &47) 

:::;;;::::-.:>:Q.<>X·:::;.<:.:;:.:::::: :·:·:·:!:.:·:·}:·:· ·:·:·:·:-::;:;:;.;:;.;:;.;.;.;.;.;:;:;.;:;:;.;.: .;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::::;.;:::=:::::::;:::~;:;;:;:::;:-:::::;:;;:;;:::-~~=<:::·:;;.;:~::.;·:·:·:;:.:·: ·:·:·:·:·: .;:: .;:;:;:;:;:;.;.;.;:;:: :;:;:;:;:;:;:;:::· 

1-128 

Service_ ClaimFIQinBackground 
(Service Call &47) 

Claim AO In background 

On entry 

Rl = &47 (reason code) 

On exit 

Use 

Rl = 0 to daim. else preserved to pass on 

This service call must be issued by any module running as a background task (ie as 
an IRQ process) that wishes to daim the AO hardware vector. It may also be issued 
by foreground tasks that wish to poll the AO vector for availability. Unlike 
Service_ClaimFlO. this call may return with Rl preserved (ie not claimed). meaning 
that the current AO owner has not released the vector. 

The service call informs the current AO owner that it must release the vector if it 
can immediately do so. If the current owner is busy with a FlO. It must take no 
action. merely passing on the service call: if however It is idle. it may release the 
vector and then claim the service call by setting R I to zero. If the claimant finds 
that the service call has been claimed. it knows it has successfully claimed the FlO 
hardware vector: however. if the claimant finds that the service call has not been 
claimed. it knows the current owner has not released the FlO hardware vector. in 
which case the claimant may reissue the service call at a later time. 

Background claims are released by Service_ReleaseAO. as before. 

See the section entitled Usi114 F10s on page H 23for details of other steps to take 
when claiming or releasing the FlO hardware vector. and also the chapter entitled 
Har~wcn wcto~ on page t-103 for additional information about the vector. 

kllfiiTUpiS and handling them 

·.·.·.·.·.···; •• :.:;: ... :;:;:;:;:;:::::::::;:;:;:;:;:;:;:;::::::--::::::;:;;;.;.;.:-:·:·:·:·:·:·:·:·:·::::;:;:;:;:;:;:::::=>::.->:~: :;:;:x::;:=:;:;;:;::::~:::.-::::;.;;:::-:·::::;:;:;:;:;:;: ;:;:;:;:;:;:;:;:;:;:;:;:;:;:::::>::::::::::»:_::>::r.:>:>:::>:::=:--::::;:.;:;:;;;:::;::·:·:·:·:·:·::;:;:; :;:;:;:; :::;:;:;:;: 

SWI Calls 

Enables interrupts 

On entry 

No parameters passed in registers 

Onexh 

Registers preserved 

Interrupts 

Interrupt status Is undefined on entry 
Interrupts are enabled on exit 
Fast interrupt status is unaltered 

Processor mode 

Processor is in SVC mode 

Re-entrsncy 

SWI is re-entrant 

Use 

OS_IntOn 
(SWI &13) 

This call enables Interrupts and returns to the caller with the processor mode 
unchanged. 

Related SWis 

os_tntOff (Swt &14) 

Related vectors 

None 

1-129 



OS_JntOtf (SWI & 14} 

:;:;:;:;:;:;::;:;;:;:;:;;;;;:::r-:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·: ·:·:·:-;.:-:·:·:·:·:·:·:·:·:·:..:·:·:·:·:·:·:·:..: ·:·:·: .;;;.;-:-:-:-:.:-:-;-;.;-;.;.;.;.;.;;;.:·:·»W.·:;::;.:-:.,.;~::::;;;:;.o;:;:;:::;;::;;;::;;:;:;:;:;:;:;:; :;:;:;:;:;:;:;:;:;;;.;-:·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·:·:;;:;.; 

1-130 

Disables interrupts 

On entry 

No parameters passed in registers 

On exit 

Registers preserved 

Interrupts 

Interrupt status is undefined on entry 
Interrupts are disabled on exit 
Fast interrupt status is unaltered 

Processor mode 
Processor is in SVC mode 

Re-entrancy 

SWI is re-entrant 

u .. 

OS_IntOff 
(SWI &14) 

This call disables interrupts and returns to the caller with the processor mode 
unchansed. 

Related SWis 

OS_IntOn (SWI &13) 

Related vectors 

None 

tllsrrupts Blld hiJfldljng them 

···.·.··:·:-:·:·:·:-:·:·:·:·:·:·:·:·:·:·:·:·:·:..·:·:· .·:·:·:·:·:···· · · ·• ·.·.;.;•:·:·:· :·:·:·:·:·:-;;:-:v:-:.::::-:-:.:-;.:.:.-.o~:·:·:::-:o;;-A·:--:.;:;-...:v:;-;:::::::::::.;;;.;:;.;;;.;:;;;.;.;.;.;:;.;;7 .. :·:.:·:-:·: ·:·:·:·:·:-::;.;.;"'::·:·:·:·:···· · 

Sets the processor to SVC mode 

On entry 

No parameters passed in registers 

On exit 

Registers preserved 

Interrupts 

Interrupt status Is unaltered 
Fast interrupt status Is unaltered 

Processor mode 
Processor is in SYC mode during the routine. and on exit. 

Re-entrancy 

SWI is re-entrant 

Use 

OS EnterOS 
(SWI &16) 

This call returns to the caller In SVC mode. This leaves you using the SYC stack. The 
interrupt states remain unchanged. 

Related SWis 

None 

Related vectors 

None 

1-131 



Hardware llddressfl6 

·:·:·:-::;;;.;:;.;.;. ;.;:;:;:;.:-:·:·:·;.:::·:·:·:·:·: .;.;.;.;.;.;.;.;:;.;.;~:;. ;.;.; .;.;.;.;.;.;.;.;.;.:-:·:·:·:·:·:·:·:·:·.·.·.·.·.·.·.·.·.·.·.·.·.:,:;:;: •• ;.;:;:;:;:;:;:;:;:;:;:;:;:;:;.;.;;.;:;:;:;:;: ;:;:;:;:;.&::;:;.;:;:;.;:;.;:;.;.;.;.;.;.;.;.;.;.;.;.;.;.·.;.;. ·.:::. "::; 

Hardware addresses 
It will help you to use interrupts to their full potential if you have a good knowledge 
of the hardware used to build the computer. We don't have the space to give you 
full details of every RISC OS computer built by Acorn in this manual 

Below we tell you where the IOC chip and some of the various peripheral 
controllers of a RISC OS computer are mapped Into memory on an Archimedes 
computer Although these may be taken as typical ol RISC OS computers. there is 
no guarantee that other computers will be similarly mapped Indeed, even the 
detatls below are subject to change; the peripheral controllers may be changed as 
improved ones become available. or the mapping may be redefined 

Ahr.,. •.e deft•ed dtware l•ter&ce.l• prefere•ce to dJrectly ~•1 tile 
IJardware. 

Finding out more 

II you need to know more, you can: 

• refer to the earlier chapter entitled ARM H•r"""'" on page 1-7 

• consult the /wfJt RISC M•''i"' f•,.iiiJ O.t. Ma"ual. VLSI Technology Inc. ( 1990) 
Prentice-Hall. Englewood Cliffs. NJ. USA: ISBN ()-13-781618-9. 

• consult the datasheets lor the various peripheral controllers used, available 
from their manufacturers 

• contact Acorn Customer Service. 

tl111rrupts and handling them 
·=·:·:•:·:·:·:·:«<:.}~'}»:-»:·:·:•:·:=:• :·:·:·:·:·:·:·:=:-::::::;::::::::::::«· :•:;;w;.:::;::•:•:·:•:~·:·:•:·:·:•:•:·:•:•:•:•:o:«<-s:;:.:~~.-»:·:·:·:;:-~:·:·:·:..:·: ·:·:·:·:·:·:·: ·:·:-:-:.:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·: ·:·:·:·:·:-:::::::.:::::::::: 

IOC registers 

The IOC registers are a single byte wide, and are mapped Into memory like thi.s: 

&3200000 
&32000()4 jKbdMI'IIIIr~ I Kbd Mrleilransmit 
&3200008 
&320000C 
&3200010 IAOatatua A 
&3200014 lAO reque~t A I IAOd-
&3200018 IAOm-.kA tAO mask A 
&320001C -
&3200020 IAOatatua B 
&3200024 lAO reque~t B 
&3200028 IAOmMkB I tAOmaskB 
&320002C -
&3200030 FIOatatua 
&3200034 FIOrequ.t 
&3200038 FIOmMk FlO mask 
&320003C - -
&3200040 TO count low TO latch low 
&3200044 TO count high TO latch high 
&3200048 - TO oo command 
&320004C - TO latch command 
&3200050 T1 count low T1 latch low 
&3200054 T1 count high T1 latch high 
&3200058 - T1 00 command 
&320005C - T1 latch command 
&3200060 T2 count low T21atch low 
&3200064 T2 count high T2 latch high 
&3200068 - T2 00 command 
&320006C - T2 latch command 
&3200070 T3 count low T31atch low 
&3200074 T3 count high T3 latch high 
&3200078 - T3 00 command 
&320007C - T31atch command 

Figwn 10 I Twriulou,.GriJ .. .,;"f if IOC r14isUrs 

1-132 1-133 



Hardwa£11 Bddrllssll6 

1-134 

-::::~---=~..:-:-z::;.: .. ,;;:;:;..-;.::r,:;,:;.;~=;::;;.;:::::::::::::::;.;;:::~:-::::;::o;x«-.·.-.. ................. ;::;; 

Coatrol rqt.ter 

The IOC chip's control rqister allows you to read and write its siJt external control 
pillS CO- C6. and to read two other pins. ~a in there are differences between 
models of RISC OS computers. depending on the peripheral controllers used. For 
early models (e& the Archunedes 300. 400 and 500 series. and the AJOOO). the bits 
of the control reaister are mapped as folloii!S· 

Bit Fuctloa 
0 IIC serial bus data 
1 IIC serial bus dock 
2 Floppy disc ready 
3 Reset enable (A5401R200 series only) 
4 Current level ofC4 pin on IOC (available on Auxiliary 110 connector) 
5 Speaker mute 
6 Current level or -IF pin on IOC (Printer Acknowledge signal) 
1 Current level ofiR pin on IOC (Vertical Flyback signal) 

For models using the 82C710 or 82C711 peripheral controller (eg the A5000). the 
bits of the control register are mapped as follows: 

Bit Fuctloa 
0 IIC serial bus data 
I IIC serial bus dock 
2 Floppy disc density 
3 Reserved 
4 Serial FlO 
5 Speaker mute 
6 Current level or -IF pin on IOC (Floppy disc Index signal) 
1 Current level of IR pin on IOC (Vertical Flyback sisnal) 

Allam we make the point that RISCOS 2 does not support the82C710or 82C711 
penpheral controller 

.,~ 1111d handling lhllm 

··.·.··:·:·:-:-:-:-:-:::-:-:-:-:-:-:::::::-:-:-::::::::::::::::::;.;;;;.:::::::x:::::::::~:::.=:=x-:-::::::::x:.~w=-~~ :...-, ...... •,•- :-:-:-:-:-:.:-:-:-:-:-:-:-:-:-:-:-:-

Other devices 

Other devices and peripheral controllers are mepped Into memory In these 
locations: on early model RISC OS com.puters (eat.he Archimedes JOO, 400 and 500 
series, and the AJOOO): 

;-~J~lt[ :: trt-··,,~, .... IC .,.. 
&3240000 SkM 4 - ln...,., Expansion cards 
&3210000 SkM 7 - Ex!emal Expansion cards 
&32COOOO Med 4 - Int..,., Expansion cards 

&3200000 Med 5 H063483 Held Otac regiater wrile 
&3200008 Med 5 H063483 Held Dlac DMA read 
&3200020 Med 5 H063483 Held Dlac reglsler read 
&3200028 Med 5 H063483 Held Otac DMA write 
&3310000 F•t 1 1n2 F1oppv dlac controller 
&3340000 F•t 4 - Int..,., Expansion cards 
&3350010 F•t 5 HC374 Prlnler O.ta 
&3350018 F•t 5 HC574 LltchA 
&3350040 F•t 5 HC574 LltchB 
&33AOOOO svnc 2 8854 Econet controller 
&3380000 SVnc 3 8551 Sertel pon controller 
&33COOOO SVnc 4 - Interne~ Expansion cards 

-- '-- - ----

Figler' 10.2 urtw *'IIIDI'Y ... ,u., a( ...,,..,oc uw.s a ...I ,m,fttral U~lllrlllltrs 

Current models that use the 82C710or 82C711 (e& the A5000) use this mapping: 

~Hmlr:nn?!IH,.._ t ac "-
&3010000 
&3012000 
&3240000 SkM 4 
&3210000 SkM 7 
&32COOOO Med 4 
&3340000 F•t 4 
&3350048 F•t 5 
&3350050 F•t 5 
&3350054 F•t 5 
&3350070 F•t 5 
&3350074 F•t 5 
&33AOOOO svnc 2 
&33COOOO Sync 4 

82C71 on 1 Pertpher'lll CXII'Itroller 
82C71 on F1oppv dlac DMA ronrol 

lntemlll Expansion cards 
Extemel Exi*'Sion cards 
lntemlll Expansion cards 
1ntem111 Expansion cards 
Video doclciSync polarily 
ASIC preaenca (r .. ds &5) 
(Ckldlapeed) 
Monitor 10 field 
VGA leal piniSCART sound 

6854 I ECXII'Iet controller 
Internal Expanslon cards 

Figwrt 10.3 Ttypul '""'DfY ~t~oppi"f of 11011·IOC 4tvius ... ~ PfiVU..al c011trollm 

1-135 





:;:::::::;::: :·:·:·:·:·:·:·:·:·:·:·>:·:·:·:·:·:·:::::::::::::::::::::::::~·· •.. :.:::::::::::::: ::::::::::::::;;::::::::::::::::::::::::::::m;::::::::::::::::::::::::::::: ::::::::::::::::::::::;:::::::::::: ::::::::::::::::::::.:::::::::: ::::::::::::::::::::;::;.w...z..-:::;:::::: :::::::::::: ::::::::::::::::::~::::: 

11 
;:;:;:;:;:;:;:;:;:;:.:···· · 

Introduction 

Events 
:;:;:;::·:·:·:·:·:=:=::;:;:;:·:···· · ·:;:;:;:;:;:;:;:;: ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;;::;:;:;:;:::::;:;:;.:-:·:·:·:·::;:;:;:;:·:.::;:; :;:;:; :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:; .;.;.:-:·:·::;:;.;:;:;: 

Events are used by RISC OS to indicate that something specific has occurred. 
These are typically generated using the SWJ OS_CenerateEvent when RISC OS 
services an interrupt. The following events are available: 

Namber 
0 
I 
2 

4 
5 
6 
7 
8 
9 
10 
II 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

Eweattype 
Output buffer has become empty 
Input buffer has become full 
Character has been placed in input buffer 
End ol ADC con~~erslon on a sac VO expansion card 
Electron beam has reached last displayed line (VSync) 
Interval timer has crossed <~ero 
Escape condition has been detected 
RS423 error has been detected 
Econet user remote procedure has been called 
User has generated an event 
Mouse buttons have changed state 
A key has been pressed or released 
Sound system has reached the start of a bar 
PC Emulator has generated an event 
Econet receive has completed 
Econet transmit has completed 
Econet operating system remote procedure has been called 
MIDI system has generated an event 
Reserved for use by an external developer 
Internet has generated an event 
Reserved for use by an external developer 
Reserved for use by an external developer 
Reserved for use by DevlceFS 
Reserved for use by an external developer 

Note that you may generate events yourself. using event number 9. which is 
reserved for users. You may also get an allocation of an event number from Acorn 
if you need one- for example. if you are producing an expansion card that 
generates events. 

1-137 



Enabling and disabling 11ven1S 

:;:;:;.;.;.;:;.;.;.;.;.;:::::::;.;:;.;.;-::;:;:;.;.;:;.·.;:;:;.;:;:;:;.;:;:;.;.;:;:;:;.;:::;.;.;.;:;.;.;.:·:·:-:·:·:·::;:;.;;;.:;: ;:;.;.f::;:;:;:;:;:;:;:;:; :;:;:;:;:;: ;:;:;:;:;:;:::::::;:;:;:;:;:;:;:; :;:;:;:;:;:;:;:;:; :;:;:;:;:;:;:;:;.;.;.;:;:;.~:-::."<{·::;:;;:.;.;.;:;:;:;:;:;.;.;;;.:<·~-:·:·:·:·:·:·: 

Enabling end disabling events 

Generatlna events all the time would use a lot of processor time To avoid this. 
events are by default disabled. You can enable or disable each event Individually 

To avoid problems with several applications usina events at the same lime. 
RISC OS keeps a count for each event. This count Is Increased each lime an event Is 
enabled. and decreased when an event is disabled. Thus dlsablln11 an event will not 
stop It bel na aenerated if another proaram still needs the event 

RJSC OS sets all event counts to zero at each reset. althouah some of its system 
extension modules may need events. and so Immediately Increment the counts 

Expansion ct~rd modules 

If the module that is us ina events has been loaded from an expansion card. It must 
behave as follo'llls: 

• enable the event on all kinds of initialisation 

• call OS_Byte 251 on a reset to find out what type it was· 

• If it was a soft reset. enable the event 

• If It was a hard reset or power-on do nothina. as the module will just have 
been initialised. and so will already have enabled the event 

• disable the event on all kinds of finalisatlon. 

Using events 

1·138 

To use event(s). you must first OS_Ciaim the event vector Even tV. See the chapter 
entitled Softw~r~ wdon on pa11e 1·59 for further details of vectors. You must then 
call OS_Byte 14 to enable each of the events you wish to use. 

The event routine 

When an event occurs, your event routine (that claimed the event vector) Is 
entered The event number Is stored in register RO; other information may be 
stored in R I on'lllards. depend ina on the event- see below. 

The restrictions which apply to interrupt handlers also apply to event handlers
namely. event routi nes are entered with interrupts disabled. with the processor In 
a non-user mode They may only re-enable interrupts if they d isable them aealn 
before passma on or interceptina the call. and they must ensure that the 
processma of one event is completed before they start processina another The use 
of certai n operat tna system calls must be avoided For further details see the 
seal on entl tied Rnltidio•u on page 1·118. 

EVMIS 

;.:·:·:·:·:·:-::::::::::::: :;:::::::::::::::::::::;:;:;:;:;:;::<:«-Y.-:·:·:·:·:·:·:·:·:·:-:-:·:·.-:;;.xv:.:-:*:..:-:·:->:·>::.::::::::::.::.::::::::;;:.;:;:;::::::::.:««-::;.;:: ·:·:·:·:·:·:..:.:.:-:-:·:·:·:·:· :·:-::;.;-:::::::~·:..:::«·:':>x·:·:·:·:-:::.-:;;.;::;:-.::::::;::::..:-::;.;-:::::::::: 

Finishing with events 

When you finish uslna the events you must first call OS_Byte 13 to disable each 
event that you orfRinally enabled. You must then OS_Release the event vector 
Even tV. 

1-139 



SWICalls 

.. ·.·.·.;.:-:·:·:·:•:•:-:·:·:·:.:-;. • :;;«;;;;;,. ":' •• ~~~~:-:-:-:-:·:·:·:·:·:·:·:·:·:-:·;;:;;.;;;;;;;;;;;;;;;;;;;~:;.;•:•: .;:;.;:;.;::-:·:· .. . •••• ':~-;.;.:-:-}:·:·:·:·:·:-:·:•:•:•:-:-:•:•::;:;:;:;:;:;:;:;:;.;:; ;.;.;:;::.;: •• );< 

SWI Calls 

1-140 

Disables an event 

On entry 

RO=ll 
Rl =event number 

On exit 
RO preserved 
Rl • old enable state 
R2 corrupted 

lnterNpta 

Interrupts are disabled 
Fast interrupts are enabled 

Proc .. sor mode 

Processor is in SVC mode 

R-ntrancy 

SWIIs not r~ntrant 

u .. 

OS_Byte 13 
(SWI &06) 

This call disables an event by decr~ina the count or the number or times that 
event has been enabled. lr the count Is already tero. it is not altered. The previous 
enable state or the event is returned in Rl 

R I • 0 previously disabled 
R I > 0 previously enabled 

Note that to disable an event totally. you must use OS_Byte ll the same number or 
times as you use OS_Byte 14. 

Related SWia 

OS_Byte 14 (SWl &06). OS_CenerateEvent (SWI &22) 

EviKIIS 
···.·.·•::;:;:;.;.::;;x::.~:-.. ~;;:.;.:-:·:·:-:-x-:·:·:·:·:·:·:·:·:·:·:·:-»:-:•~:•:.:o:•:;:.;.;-:-:·:·:•:•:·:·:·:·:·:·:·:·:·:«««-x·:~ :-:·:·:·:-:·:·:·: ·:·:·:·:·:·:·:·:·:·:·:·:·:· :-:·:·:·:·:· :·:·:· :·:.:·:@~:.:.;.J»:v'":"~v:.;-•• .;«·.·:·:· ·.;. :-:· 

R ... ted vectors 
EventV, ByteV 

1-141 



OS_Byl914 (SWI&CJ6) 

:;:;;;:;.;:::;:;.:-:-;~Y.· -:-:.:-::;:•:;. :-:-:-;:;:;:;:;::::;.;.;-: ::;:;:;::::x::;;;.:;-;::;:;:;.;:;:;:;:;:;:;:;;;:;:;:;:;:;:;;;:;:;;;:;:;:;:;:;::.:-: ::-:-:-:-:-:-:.:·:·:·:·: -:-:-:-:=:•:·:·:·:·:·~ -:•:=:•:•:-:=:•:=:=:•:•:•:•:=:•:•:-:-:;;;:•:•:•:-:•:•:•:·:•:·:•:-:-x•:-:·:·:•:-:-;-:-:-::::e 

1-142 

Enables an event 

On entry 

RO •I4 
Rl • event number 

On exit 
RO preserved 
R I " old enable state 
R2 corrupted 

Interrupts 

Interrupts are disabled 
Fast Interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

OS_Byte 14 
(SWI &06) 

This call enables an event by increasing the count or the number or times that 
event has been enabled. The previous enable state or the event is returned in R I . 

Rl "0 previously disabled 
R I > 0 previously enabled 

When you finish using the vector, you should disable it again by call ins OS_Byte 
ll 

Related SWis 

OS_Byte I l (SWI &06). OS_GenerateEvent (SWI &22) 

EVIH'IIS 

:;:;:;:;:;:;:;:;:;:;:;:;:;;;:!{;:<;:.:.;:~:--:-: .... :.:·:·:·:-: .;.;.:-:-:-:•:-:•:-:-~.:;.;.; -:-:•:-:-:-:-:-:o>:.c«{:;.;.,:{:~~~·>:-~»:;;~».,'\$::;;;.:;:.;.;:;.; -:-:-:-:-:-:-:.:-:-::;.; .·.·.·:·:·:·:·:·:·:-:.:-:;:;:;:;:;;~-::::::;:;.;:::;::;;-;:;:}. 

Related vectors 

EventV, ByteV 

1-143 



OS_ GeniKiliBEVIKII (SW/ &22) 

.;;::;.,.;;..;«-;•::·:·»:·:·:·:·:·:-:-. '""' .._. '-'·'JJ_,._._____ ... ;;;:: -:~-:-:-:-:-:-:-:-:-:-:·:-;;;.;-;.;.;.;.:-:;:·:-~::m:wm.~;;;;; • ! ; X:<: 

1-144 

Generates an event 

On entry 

RO = event number 
Rl =event parameters 

On exit 

All registers preserved 

Interrupts 

Interrupt status Is undefined 
Fast Interrupts are enabled 

Proc:ea110r mode 

Processor IS in SVC mode 

Re-entrancy 

Not defined 

u .. 

OS_ GenerateEvent 
(SWI &22) 

Note that. as usual. the event vectorwtll only be called if the event number given In 
RO has previou.sly been enabled using OS_Byte 14. 

ReletedSW1a 

OS_Byte 11 and 14 (SWI &06) 

Releted vectors 

Even tV 

Events 
x;z:;::·~=-1" ::::·--~~:::::;:;:;:;:;:;:;:;:;:;::-:-:-:-:-:-:-:· 

Detells of events 
Details o( all the eYents and the values they pass to the event routines are given 
below. 

Output buffer empty event 

RO=O 
Rl =buffer number 

This event is aenerated when the last character has just been removed from an 
output buffer (e.g. printer buffer. senal port output buffer) which has output empty 
e~~ents enabled. or an attempt Is made to rei'TlOYe another character from the buffer 
once it has been empt.ied. See the chapter entitled &/fm on page 1-151. 

Input buffer full event 

RO= I 
R I = buffer number (bits 0 ·)()) and byto'blodt operation f1aQ (bit J I): 

bit 1 I clear~ byte operation - R2 holds byte 
bit 1 I set~ block operation- R2 points to block of length R1 

R2 = byte that could not be inserted Into buffer (If byte operation). 
else R2 =pointer to data not Inserted (If block operation) 

RJ = number of bytes not Inserted (if block operation) 

This event is flenerated when an Input buffer (which has Input full events enabled) 
is full and when the operati"ll system tries to enter a character Into the buffer but 
fails. See the chapter entitled &{fmon page 1-153 

Block operations do not occur in RISC OS 2. nor do they occur for buffers that are 
not handled by the buffer manager. 

Character Input event 

R0=2 
Rl =buffer number (bits 0 ·)())and bytelblodt operation Oag (bit Jl) 

bit J I clear~ byte operation - R2 holds byte 
bit J I set~ block operation- R2 points to block of lenflth RJ 

R2 =byte to be inserted Into keyboard buffer (If byte operation) 
else R2 =pointer to data inserted (If block operation) 

RJ = number of bytes inserted (if block operation) 

This event is aenerated when a key Is pressed, Independent ol the Input stream 
selected. In the case of block transfers you are given pointers to the original data 
block. See the chapter entitled Curaa.r I"""' on page 2·117 for a description of 
buffer values for the keyboard buffer. 

1-145 



Dlllails Of IIVIIfiiS 

;:;:: :;:;:;:;:;:;<!;::;~;;:;;;;;;;:: ·:·:·:·:·:·:·:·:·:;;:;;;:;;;:;;;;;;;.;.;.;;;.;. ;:;:;:;:;:;:;:;:;:;:;:;:;:;.;:;:;:;:;::~-:?:<»:;;:;;;;;.:;:::-:·:· ·:·: .;.;.;:;.;.;.;-:.:-: .;.;:;.;.;:;.;.;;;.;.;:;.;.;:;:;:;:;:;:;:;:;:;:;:;::>;:;:;..-:;;_.e;:;.:;:<;.:·:·:·:·:·!-:·:·:-:·::;;;.;. ;:;:;:;:;:;.;:;: :·:·:·:·:·:·:·:·:·:·:·: 

1·146 

Block operations do not occur in RISC OS 2. nor do they occur for buffers that are 
not handled by the buffer manager. 

ADC end conversion event 

RO = 3 
Rl =channel that just converted 

This event is generated when the analogue·tcrdigital convertor on the B8C VO 
expansion card finishes a conversion. See the documentation supplied with the 
card. 

Vertical sync event 

R0=4 

This event is generated when the electron beam reaches the bottom of the 
displayed area and is about to start displaying the border colour. This event 
corresponds to the time when the OS_Byte 19 call returns to you.ln low-resolution 
modes this will be every fiftieth of a second; in modes requiring a multisync 
monitor it will be more frequent. 

You could use it. for example. to start a timer which will cause a subsequent 
interrupt. On this interrupt you could change the screen palette. to display more 
than the usual number of colours on the screen at once. 

Interval timer event 

RO = 5 

This event is generated when the interval timer. which is a five-byte value 
incremented 100 times a second. has reached zero. SeeOS_Wori. 3 (SWI &07) on 
page 1·404 for details of the interval timer. 

Escape event 

R0=6 

This event is generated when either Esc Is pressed or when an escape condition is 
received from the RS423 input port. See the chapter entitled C~aradtr htpltl on 
page 2· 337 for a discussion of escape conditions. 

EVIIfiiS 

;:;:;:;:;:;:;:;:;:;:;:;:;:;;;:;:;;.;:;{>»:·::;::::::;.;-;;; :;:;:;:;:;:;:;;;:;:;:;:;:;:;;;:;:;:;:;:;:*;:::;:;:::::::::::--:-».~·!-!·:·:-: :;:;.;:;:;:;:;:;:;:;:;:;<:::::::::--:~ .. }'::;;;;:<;.;:.:.:<:::-::;;;.;.;.;.;.;:;; .;:;.;:;:::::;:;:;:;:;::;:;:;:;:;:;::::::::=:<·:·: 

RS423 error event 

RO = 7 
R I = pseudo 6850 status register shifted right I place 
R2 =character received 

This event is generated when an RS423 error is detected. Such errors are parity 
errors. framing errors etc. On entry. the bits of R I have the following meanings: 

Bit 
5 
4 
3 

Mealllaswltea~ 

Parity error 
Over-run error 
Framing error 

Econet user remote procedure event 

R0=8 
Rl =pointer to argument buffer 
R2 = remote procedure call number 
R3 =station number 
R4 = network number 

This event is generated when an Econet user remote procedure call occurs. See the 
chapter entitled EcoiVt fOf further details. 

User event 

R0=9 
R I .. =values defined by user 

This event is generated when you call OS_CenerateEvent with R0=9. The other 
registers are as set up by you. Note that this is entered In SVC mode. not IRQ 
mode. 

Mouse button event 

RO= 10 
Rl =mouse X co-ordinate 
R2 =mouseY ro-Ofdinate 
R3 = button state 
R4 = 4 bytes of monotonic centi·second value 

This event is generated when a mouse button changes. ie when a button is pressed 
or released. The button state is given in R3 as follows: 

1·147 



Details olev9flls 

:·:·:·:-:..:~-:.:?: ·:•:·:•:·:•:·:::;:•:::-:•:=:•:::::•:•:::o:O?.IX-:=:.-::~::::: :::::: ::::::::::::::;::::;.;;;.;;;;;.;-:::;:::: :-:-:·:·:·:·:··-:::-:•:::;:•;;x:::o:-~:=:::::•;;:::::•:::;:::::::•:•:•::::::::x. :::::::::::::::::::::::=:-:::::;:-:-:;:::.:- :-:-:-:-::: ........ -:=:·:·:·:·:•:=:·:·:·. 

1·148 

Bit 
0 
I 
2 

Meaal•l wllea eet 
Right-hand button down 
Centre button down 
Left·hand button down 

Key up/down event 

RO= II 
Rl = 0 for key up, I for key down 
R2 = key number 
R3 =keyboard driver ID 

This event is issued whenever a key on the keyboard is pressed or released. The key 
number. R2. is a low-level internal key number transmitted l7y the keyboard to the 
IOC device. and does not relate to other codes used elsewhere. The table below 
lists the values for each possible key, giving the high and low hex digit of the key 
code: 

high 0 1 2 3 4 5 6 7 
low 0 Esc Home p G c Alt(A) SNct 

1 Ft 1 PageUp I H v Ct~ (A) Menu 
2 F2 2 Numl.od< I J B ... Adj..t 
3 F3 3 I \ I( N J. 
4 F4 4 DIM«e L M -+ 
5 F5 5 , Copy 0 
8 F6 6 Tab Page()own • 
7 F7 7 a 7 Return I Enlor 

• F8 8 w 8 4 Shift(A) 
9 F9 9 E 9 5 t 
A FlO 0 A 8 1 
8 Ftt T Ct~(L) + 2 
c Ft2 . y A Shit (L) 3 
0 Prinl u s Capolock 
E ScroHLock I 0 z A. (L) 
F BrNk lnM<t 0 F X Space 

Figurt 11.1 low-Wei illllrlla] if¥ IIWIII6m 

Where there is some ambiguity, eg the digit keys, it should be dear from referring 
to the keyboard layout which code refers to which key. The keys are numbered top 
to bottom. left to right. starting from Esc at the top left corner. 40 is unused on the 
UK model. but may be used on some other models for an extra key. 

Note that the keycodes given in this event bear 110 relationship to any other code 
you will see. They are not, for example. related to the INKEY numbers described in 
the chapter entitled C.Ura'ur l11pwt. They apply to the keyboard supplied on the UK 
model. 

EVIHIIS 

;:;:;:;:;:;:;:;:;;;:;:;:;:;:;:; :;:;:;:;:;:;;;;:-:-:-:-::;:-;.·. -:·:·:·:·:·: -:=:=:·:·:-:-: -:=:·:·:·:·:=:·:·:=:·: ·:-::;.;;:;:oz;oh:"~:::<:::::.:-.. ~:::::~-:::::::::::.::::-:::::::: ::::::::::::::::x::: :::::::::;:::·:·:·:·:;;.:-:-:-:-:.:;;.;«.;::;:;:..-.:::-:-:::-x·:·:·:·:·:.; 

Sound start of bar event 

RO= 12 
Rl =2 
R2 =0 

This event is generated whenever the sound beat counter is reset to zero. marldng 
the start of a bar. See the chapter entitled T'• ~* svs11111 on page 5-335 for more 
details. 

The 0 in R2 may change In future versions to give the invocation number of the task 
causing the event. 

PC Emulator event 

RO= 13 

This event is daimed l7y the PC Emulator package. 

Econet~veevent 

RO= 14 
R I = receive handle 
R2 = status of completed operation 

This event is generated when an Econet reception completes. The status returned 
in R2 will always be 9 (Status_Received). See the chapter entitled Etollll on 
page 6-1 for further details. 

Econet transmit event 
RO= 15 
Rl =transmit handle 
R2 =status of completed operation 

This event is generated when an Econet transmission completes. The status 
returned in R2 can have the following values: 

0 Transmitted 
I Line Jammed 
2 Net error 
3 Not listening 
4 Nodock 

See the chapter entitled &011« on page 6-1 for further details. 

1-149 



091ails of 9VMIS 

·:·:;:::: ,:;:;:;:;:;:;;::;:;:;:;:;;;:;:;:;:;:;:;:;:;:;::::::::::::::•:<:::•:::::.:~~:-:;;:;.;.;:;.;:;.;.;:;.;.;:;.;.·:•:·:·:•::;.;:;:;:;:;~,;:;;:::;;:;:;:;::-:-:.:-:.:•:-: -:·:-::;:;:;.;:;.;:;:;:;: :-:-::;:;. :-:· -:-:;;.:-:·:·:·:-:·:·:·:.:·:·:·:·:·::;.;-:-x-:: :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;«:..,;;:; 

1-150 

Econet QS.gmote procedure event 

RO= 16 
R I =pointer to araument buffer 
R2 = remote procedure call number 
R1 = station number 
R4 = networlt number 

This event Is aenerated when an Econet operatinQ system remote procedure call 
occurs. Current remote procedure call numbers are· 

0 Character from Noti ly 
Initialise Remote 

2 Cet View parameters 
3 Cause fatal error 
4 Character from Remote 

See the chapter entitled EcDIIII on paQe 6-1 for further details 

MIDI event 

RO= 17 
R I = event code 

This event is aenerated when certain MIDI events occur The values Rl may have 
are: 

0 II byte has been received when the buffer was previously empty 
I II MIDI error occurred In the backQround 
2 The scheduler queue is about to empty. and you can schedule more 

data. 

These events only occur if you have fitted an e.xpansion card with MIDI sockets.~ 
the manual supplied with the card for further details. 

Internet event 

RO= 19 
R I = event code 
R2 = sodtet descriptor 

This event is aenerated when certain lntemet events occur The values R I may have 
are: 

0 A socket has input waitina to be read 
I An uraent event has occurred. such as the arrival or out-of-band data 
2 II socket connection is broken. 

These events only occur if you are usinQ the Internet module supplied with the 
TCP/IP Pror-1 S~titt See the TCP/IP Progra11u1ttf's Cuiit for further details. 

EVMIS 

:;:. :-:·:·:·:·:·:·:·:· ;:;:;:;:;:;:;:;:;:;:;:;::•:.:. .. *:•:·:·:·:·:·:-:-;-;:;:::~;..:.:·:·:<·:·&t:"::::.:-::;.;.;. ;:;:;:;:;:;:;:;:;:::::::o.~;;:-:-:·:·:-:-:-:·:·:·:·:·:·:•::;.;:;:x;;.;-:-:-~-:-:-:-:-:-:-: -:·:·:·:·:-:-:-:-:-:·: :;:;:;:;:;:;:;:;:;:;:;.::;:;:;:;;.:;::;:;.;:-:;;~:.:-:;;.;:;.;-;.;:;.;-:-

Device overrun event 

Internet receive freme event 

Internet trenemlsalon stlltu• event 

1-151 





;;:::::>:;:::::::::::::::::::::::;:::;::m::~-:--::;.:::;:::;;;;;;; :·:·:·:·:·:·:·:·:·:=:·:;:::::·:·:·:: :::::::::::::::::::::::.::::::::::::::::~;;-~:::::.':~«~x-:=:·:·:·::::::::: ::::::::::::::::::::::::::::::::::::>::::::::::::::::::::::.«»':o.~:·:~;:.:=:::;:~:.:::::-:.:-:-::::::·:··· 

12 Buffers 
::'-:~:r.-::~::::::::~::::::::w:::: .·.·.·.· ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::-;:*>,;:~::::::::::::::.."<:>.:x:~::~~:::::::::::::::::::::::::::::~::.::.::::::::::::::::::::::::,::::::~::-x.:::::::~::::::~::::::~:::::::::::::::::::::::.;::::::::: ::::::::::::::::::::::.: 

Introduction 
The interrupt system on a RISC OS computer makes extensive use of buffers. These 
act as temporary holding areas for data after you (or a device) generate it. and 
bdore a device (or you) consume it. For example. whenever you type a character on 
the keyboard. that character is stored in the keyboard input buffer by the keyboard 
interrupt handler, and it remains there until your prot~ram is ready to use it. 

The buffer manager 
The buffer manager is a global buffer managing system used by OevlceFS to 
provide buffers for the various devices that can be accessed. It provides a set of 
calls for setting up a buffer. inserting and removing data from a buffer. and 
removing a buffer. For more details about the buffer manager see the chapter 
entitled T~ &[fer Maru~grr on page 5-407. 

Filing system buffers 

Use of buffers 

We are not concerned with filing system buffers in this section. However. these are 
areas where RISC OS holds whole areas of files In memory to increase the 
efficiency of file access. The use of file buffers is generally Invisible to you: there Is 
no direct way of accessing their contents. 

The buffers we are looking at are known as first-In first-out. or AFO. buffers. This is 
because the characters are removed from the buffer in the same order in which 
they were inserted. Many operations on buffers are implidt. For example. when you 
send a characterto the printer or RS423 port. a character is inserted into a buffer. 
When you read from the keyboard or RS423 port using OS_ReadC. a character is 
removed from the buffer. 

Additionally. there are several explldt buffer operations available. These Include: 

• inserting a character Into a buffer 

• removing a character 

• counting the space in a buffer 

1-153 



Details of buffers 

-:-:-:-:-:-:-:-:-: -:-:-:-:-:-:-:-:-:-:-:-:-·-:-:-:-·· ·.·.~;~·:«·:.:-X»»:--n)";:~~n'cao::~ ::~~~ m.Y =m::-:W.~:·:;;.;;;;::::;.;;:::;: -:=:-:-:-:-:-:-:-: :-:::;:·:·=~-~-=.:;::;;:.:.::.~ 

• elt<lmlnlna the ne~t character Without removina 1t 

• puralna a buffer (deanna Its contents) 

All these operations are Implemented as OS_Bytes- see below. 

The buffer Is also purled Implicitly when the esape condition is cleared- see the 
chapter entitled c.-.,.,w 1"1"'1 on paae 2·337. 

Details of buffers 

1-154 

There are ten buffers. numbered 0 - 9. Their uses are as follows: 

N•111ber u.e Size 
0 Keyboard 255 
I RS42l (input) 255 
2 RS42l (output) 191 
3 Printer 1023 
4 Sound channel 0 3 
5 Sound channel I 3 
6 Sound channel 2 l 
7 Sound channel 3 l 
8 Speech 3 
9 Mouse 63 

Buffers 2 to 8 are output buffers. They hold data you aenerate until a device is ready 
to consume It The others are Input buffers These store bytes aenerated by the 
keyboard, RS42l and mouse respectJVely until you are ready to read them. 

Buffet"a 4 to 8 

Currently, buffers 4 to 8 are not used by RISC OS. They are provided for 
compaubthty with 88C Micro software. Sound buffenna and speech are 
implemented differently on RISC OS hardware than they were on BBC hardware. 
These buffers are not considered further. 

D•ta form.l 
The format of data In all buffers In current use. except for the mouse buffet is 
byte~rlented ASCII data The mouse buffer contents refer to buffered button 
dicks. The format is as follows : 

s,te 
0 
I 
2 
l 

Val• e 
Mouse x coordinate low 
Mouse x coordinate high 
Mousey coordinate low 
Mousey coordinate hiah 

Buffers 

~:-:;::::;.;-::::::.:-:-:-:-:-:·:·:·:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:·:·:·:-:-:-:·:·:·x ·~·~--·~=--::~:-;;-;w..~--;:;;;;;:-::;:;; ,..,..;.; ............ :-:««· 

.. 
5 
6 
7 
8 

Button state 
nme o( button chanae. byte 0 
nme ol button chanae. byte I 
nme o( button chanae. byte 2 
1lme ol button chanae. byte l 

The bytes are listed in the order In which they would be removed uslna 
OS_Byte 145- see paae 1-162. 

Usually OS_Mouse reads data from the mouse buffer If none is ava1lable. it returns 
the current state instead. The mouse buffer Is 63 bytes lona. so 7 entries may be 
held at once. 

OS_Byte c.lls provided 
The OS_Bytes used to control buffers are described below. 

They are. in fact.(ust an interface to the vectored buffer routines described on 
paae 1-aQ onwards ol the chapter entitled Scftwerr wc:tm. Usually. the OS_Bytes are 
easier to use. How~r. there are times when It Is preferable. or necessary (for 
example to read the number o( bytes free In an Input buffer) to use the vectors. 
They can be called directly usina OS_CaiiA.Vector. 

It is possible to chanae the operation of the machine by repladna these calls In 
particular. you could write a module whkh OS_Cialms all three buffer vectors. then 
replaces, say, the printer buffer with a much laraer one. You would claim the 
memory for this from the relocatable module area The module could have its own 
confiauration byte held i n CMOS RAM to spedfy the slu o( the buffet whkh it 
would daim on initialisation. 

1-155 



OS_Byte 15 (SWI &06) 

:;.:-:::::::::::::::::::::::.:::::;:;:::::•:•:•:•:.:·:-;;.:.;.:.:·:·:·:..·:·:v:·:·:·:·:·:·:·:>:·:.:::-:. :::.;-:::.:·:·:·:-::::xy:.:;:;:::::•:•:•:-:o::x::.c««•m.;:::•:·:'.:::.: ·=·=·=·=·:·:·:•:•:-::::;.;:· .:~"-·::::::o:;:;:::~-.::::::::.:::::::::::::::::~::::.:·:·:•:-:~·:·:~·:•:•· 

1-156 

Flushes all buffers. or the current input buffer 

On entry 

RO= 15 
Rl =reason code 

On exit 

RO preserved 
R I. R2 corrupted 

Interrupt• 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

R ... ntrancy 

Not defined 

u .. 

OS_Byte 15 
(SWI &06) 

This call nushes either all the buffers or only the C\Jrrent anput burrer: 

Rl = 0 Oush all buffers 
Rl = I Oush the C\Jrrent input buffer (kA!yboardiRS423) 

The contents of the bufrer(s) are discarded. Individual burrers may be Oushed uslns 
OS_Byte 21. 

Related SWI• 

OS_Byte 21 (SWI &06) 

Related vector• 

ByteV 

ButrtKS 
;:;.;:;:;:;:;:::;o;;;:;:;::::::-':':1:=!-X-:•: .;.;.;.;.;.;.;.;:;..~}%:~:-;.: ·:·:·:·:·:·:·:·:-::;:;:;:;:;:;:;::::::::::.;.:;;:;.;:;:;:;.;.;.;.;.;.;.;.;:;.; :;:;:;:;:;:;:;:;:;:;:;:;:::::x;::;:;:;:;:;:;:;:;:;::~'"!·:·:::.; ·.·.·.· • ...- ;:;:;:;:;~;:;:;:;:;:;:;:;:;:;:~:::::~-:·:•:··· 

Flushes a spedfied buffer 

On entry 

R0=21 
Rl • buffer number 

On exit 
RO. R I preserved 
R2 corrupted 

Interrupt• 

Interrupt status is undefined 
Fast Interrupts are enabled 

Proc•sor mode 

Processor is in SVC mode 

R ... ntrancy 

Not defined 

U•e 
ThIs call Ous hes the sped fled buffer 

RefatedSWI• 

OS_Byte 15 (SWI &06) 

Related vector• 

ByteV 

OS_Byte 21 
(SWI &06) 

1-157 



OS_Byts 128 (SWI &06) 

·:·:·:· :·:·:·:·:·:·:·:·::;:;.;.;.:-:·:·:·:·::;.;.;.;.;.;.;.;:;:;.;.;.;.;.;.;:·. ·:-:.:·:·:·:·:·:·:·:·:·:·:·:·:-:..:~·:-'.-:;;.;..;;.:-»:"{;;.;.:•:;.:v..:".«:.::::::::x:~o:::o:;;.o;r;:o:<:::::::;-;:::::::::.:-: :;:::::::::::::;.;;;;;: :=:·:·:=:·:·:·:; •. ·:;;;:;:;.;.;.;;;.;:; 

1-158 

OS_Byte 128 
(SWI &06) 

Gets mouse coordinates. or number of bytes in an input buffer. or number of free 
bytes in an output buffer 

On entry 

RO = 128 
R I = reason code 

On exit 

RO preserved 
Rl . bits 0 • 7 = low 8 bits of answer 
R2. bits 0 • 23 = high 24 bits of answer 

Interrupt• 

Interrupt status is undefined 
Fast interrupts are enabled 

Proceasor mode 

Processor is in SVC mode 

Re-entrancy 

u .. 

Not defined 

The action of this call depends upon the reason code in R I . It returns either the 
current x or y position of the mouse. or the number of bytes in a particular input 
buffer. or how many bytes there are free in a particular output buffer: 

Oa eatry Oa exit Rl & R2 coaUila tile: 

Rl = 7 mouse x position 
Rl = 8 mousey posi tion 
Rl = 246 number of bytes in the mouse buffer 
Rl = 252 number of bytes free in the printer buffer 
Rl = 253 number of bytes free in the RS423 output buffer 
Rl = 254 number of bytes in the RS423 input buffer 
Rl = 255 number of bytes in the keyboard buffer 

Buft9f'S 
·.·.·.;.;.;.;.;.;.;.:-:·:·:·:·:·:·:·:·:·:·:=:·:·:·::;:;:;.;.;.;.;:;.;:;:;:;:;:;:;:;.;:;.;.;.;.;.;.;:;.;.·.;.;.;.;.;.;.;,;.;,;:;.;.;.;:;.;,:.;.;.;:;:;:;:;:;:; .;.;.;:;.;.;.;.;:;.;.;:;.;.;:;.;.;:;:;.;.;.;..;.;:;.;.;:;:;:;:;:;.;:;:;:;.;:; ··.·.·.·.·.·:·:- ::;:;.;:;:;:;:;:;:;:;.;.;:;:;:;;.;.·.· 

Obviously we are more concerned with the calls where R I ~ 246 here. Note that 
Rl = (255- buffer number) in these cases. If you want. you can also calculate this 
as ( (-(buffer number+ I)) AND &FF }. 

Related SWia 

None 

Related vector• 

ByteV.CnpV 

1-159 



OS_Bytei38(SWI&06) 

•:•:•:•:•:•:•:·»!•:;:•:•:•:·:·:··· :-:-:-;.:., ·:·:•...:·:;;.:;: :·: ->:•:<:-:">)»:·:•:•:•:•:::•:•:•:•::;:;:;::•:•::::x•::: :;:;::•::::.;;.::;:;:;:;:;::•: :;:;:;:;:: :;:;:;:;::::;:.;s:-:««•:•:·:·:::-x•:.:•:•:·:•:•:•:•:•:•:;:-.o/.·:·:·:·:·:•:·: •:•:·:·:·:·: ·:•:·:·:·:·:·:•:•:-x·:•:-~x·: · ·:·:·. :·: 

1-160 

Inserts a byte Into a buffer 

OS_Byte 138 
(SWI &06) 

On entry 

RO = 138 
Rl =buffer number 
R2 = byte to Insert 

OnexU 

RO • R2 preserved 
C Di!i = 0 If character Inserted 
C Di!i = I If buffer was full 

Interrupt• 

Interrupt status is undefined 
Fast Interrupts are enabled 

Proc:esaor mode 

Processor Is In SVC mode 

R ... ntrancy 

Uae 

Not defined 

This call inserts the byte specified In R2 Into the buffer identified by Rl If C= I on 
exit, the byte was not Inserted as there was no room. 

Inserting bytes into the mouse buffer isn't recommended. but If you must. you 
should be careful to Insert all nine bytes with Interrupts disabled, to prevent a real 
mouse transition from entering data Into the middle of your data You must do so 
as quickly as possible to prevent latency in the interrupt system 

If the current escape character (usually ASCU 27) Is inserted. then appropriate 
action Is taken: see the chapter entitled Cfllracl6 I "Pill on page 2·337 

Related SWis 

OS_Byte 145 (SWI &06), OS_Byte 152 (SWI &06). OS_Byte 151 (SWI &06) 

8uff9fS 
>'5'.;,-::•:•:::::::::o:•:;:;:::m;.::;:;:;:::::~:~•~x;:;:•:·:•:·:·:-:·: ·:·:·:-:·:·: ·:·:•:•:•:•:-:::C-:.;-:::;;.:-:·:-X·:·:·:·:~.:«·:·:·:·:·:·:-:"·:·:·:·:·:• :·:·:•:•:•::;:;;.:•:•:•:«-:•x::•:::::::•:::::::•::;:;:;:;:::;:;:;:::;:;:;:;:;:;:;~;::;;:;,-:;::~~~·=-:-:• :·:·:·:•:·:-:::•:·:·:·:·:•:·· 

Related vectors 

ByteV,InsV 

1-161 



OS_Byts 145 (SWI &06) 

•:·:·:·:·:-:.:o?.Q.;r..:;:•:.::-~x-:-:-:-:-:::·:·:·:·:·:·:·:·:·:·:·:-:.::-:-:·:·:·:·:·:·:·:·:.:·:·:·:·:·:-:•:·:::.x-:•:·:.:·:•:::•:•:::::•:·:::.:·:·:·:•:·:-:·:·:·:·:·:·:·:·:·:-;.:-:·:·: .;.;.;;:-:-:o:.-.::•:•:o:.;(;y~;:::•:•:•:.:?>m:-:-x:.:;:::~·:::•:•:•:·:•::M.-:?.~: 

1-162 

Gets a byte from a buffer 

On entry 

RO = 145 
R I = buffer number 

On exit 

RO. Rl preserved 
R2 = byte extracted 
C Oag = 0 if byte read 
C Oag = I if buffer was empty 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

R .. ntrancy 

Notdeflned 

Use 

OS_Byte 145 
(SWI &06) 

This call extracts the next byte from a specified buffer. If the buffer was empty then 
the C Oag is set. and R2 will be invalid. 

Refated SWis 

OS_Byte 138 (SWI &06). OS_Byte 152 (SWI &06). OS_Byte 153 (SWI &06) 

Refated vectors 

ByteV. RemV 

BufftKS 

:::::::-:::::::•:::•:·:•:•::xq/#h~:::•:::::::::::~-z:o:<:.:·:•:•:::::'!::o:w..:--:·: ·=·=···:···:·:·:·:·:·:·:·:·:·:·:·:.:-:.::::::::;.;::::;;::::~.:~~.:=:•:o:<:=>»":·>':·:·:::•::::-;:.-:.:-:o:o.~:o-».o?.«·»:·:•:.x-:.:·:·:?:«•:•:•:·:•:;:.;;:.x;.:;,:;:..;.;:;.;.:;:·:···:···· ••• 

Examines the status of a buffer 

On entry 

RO = 152 
R I = buffer number 

On exit 

RO. R I preserved 
R2 =next byte in buffer. or corrupted if buffer was empty 
C Oag = 0 if bytes were in buffer 
C Oag = I if buffer was empty 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

R .. ntrancy 

Not defined 

Use 

OS_Byte 152 
(SWI &06) 

This call returns the status of a specified buffer; the carry Oag is set if the buffer is 
empty. If a byte is available, it is returned in R2 but is not removed from the buffer. 

Related SWis 

OS_Byte 138 (SWI &06). OS_Byte 145 (SWl &06). OS_Byte 153 (SWI &06) 

Related vectors 

ByteV. RemV 

1-163 



OS_Byte 153 (SWI &06) 

;;::.·· ·.·:.:;::;.:::::::.:-:::::::•:::::::::::::::::::.;. .. ~::;:;:-:.:·:·:·:·:•:·:•: ·:·:·:·:·:•:•:·:·:·:·~·:·:·:·:-:-:::::::::::·:•:•:•:•:•::::;:;:::;:;::::::•wn:-:.-;:-:•:•:•:=:•:·:·='**>=<·:•:·:•:·:·:·:•:·:·:·:•:·:•:·:·:-:•:.'»..<:.:-:-. -·~.·.·.·•:•::::::::::::::::::w~;o.lR:':O:-;;:::•:=:•:•:=:•: 

1-164 

Inserts a byte Into one of the two input buffers 

On entry 

RO = 15J 
R I = buffer number (0 or I) 
R2 = byte to Insert 

On exit 

ROp~served 

R I . R2 corrupted 
C flag= 0 if byte Inserted 
C flag = I i f buffer was full 

Interrupts 

Interrupt status Is undefined 
Fast interrupts a~ enabled 

Processor mode 

Processor is In SVC mode 

Re-entrancy 

Not defined 

Uae 

OS_Byte 153 
(SWI &06) 

This call enables bytes to be Inserted into one of the two mput buffers as follows: 

R I = 0 Insert byte into the keyboard buffer 
Rl = I insert byte into the RS42J Input buffer 

If the buffer was full and a byte could nO( be inserted. then the C flag is set on 
return. 

If the cur~nt escape character (usually ASCII27) Is Inserted. then appropriate 
action is taken: see the chapter entitled C~ra'llr '""Itt on page 2-JJ7. 

ButrtKS 
.;:;:;:;:;:;:;:;:;:;:;:;:::::;:;:5):~<»>:-:-:·:•:;;:;.;.;-:-:-~ :;:.;::::·:~:;:;:;:;:;:;:;;:::-:;:;::~:<:·:·:·:"'·:·:·::;:;:;:;:;:;:;:;:;:;:;:;:::::::;:;:;:;:;:;:;:;.;:;.;::::::.:<-::~;:;.;:;:;:;:;:;:;~:::;:;:;:;:;:x;.::;:;:;:;:;:;::-'}:~:·:·:·:· :-:·:·:·:·:·:·:·>:·: ·:·:•:· 

RelatedSWia 

OS_Byte 118 (SWI &06). OS_Byte 145 (SWI &06). OS_Byte 152 (SWI &06) 

Related vectors 

ByteV. InsV 

1-165 



co 
co 
..... . ..... 



;;;.:.::.·:·:·:·:·:·:;::;.;;:::;::::::::::::::::::;;;.;.:-:-:;:·:·:·:·:;:·:·:·: ·:·:·:·:· :·:·:·:-:-:-:-:-:-:;:::;:·:· :::::::::::~;;:::;.;;:·:·:;;;;.;;x.;.:-:·:·:·:·:·:·:-:-:·:·:-:-:-:::;:::::::::::::::::::::::-::.·;:;x<-"..Z:::-:-:·:·:·:·:·:·:·:·:·:·:·:·:·: ·:·:·:···:·:·:-:-:-:-:::::::::::::o-.o:::;;.;.;.;:;.x.:-:.:;:;.· 

13 Communications within RISC OS 
! __ ..,..: .. -:~:::::::::::::::::::::::::.:::-;;:.;-:-:· :~ ...... :::::::::::::.::::w:::~ ...,...;-.NW:=X>"::X:=xi$k::#. ·z:::::::::::::::::::::::::::::::~ 

Introduction 

Service calls 

There are some important SWI calls that RISC OS uses to communicate between 
different parts of itself. or to communicate with application prosrams. Because 
these SWI calls are used by lots of different parts of RISC OS. you will find they are 
referred to in many different places in the manual It's therefore important that you 
know of these SWls to understllnd such referencrs Most of the SWis belona to 
modules that are described elsewhere in the manual. so we (ust crass reference 
them here. 

OS_ServiceCall is used to pass a service a round modules Modules can decide 
whether they w1sh to provide the service, and if so whether they will then pass the 
service call on to other modules A reason code in R I Indicates the type of service 
You have already seen some examples of OS_ServiceCall -the reason codes to 
daim and release FlOs. 

This call is fully documented on pace 1·243 onwards of the chapter entitled 
MCH!wt.s. 

Window manager SWis 

Up Calls 

The window manaaer provides various SWis that enable It to communicate with 
window based prosrams (notably Wimp_Poll); and further SWJs so that prosrams 
can communicate with and pass data to each other (notably Wimp_SendMessaae) 

These calls are all fully documented in the chapter entitled T~ Wirti.aw MalYI'' on 
pace 4-83. 

The kernel provides the SWI OS_UpCall. which warns applications of particular 
situations It calls the vector UpCaiiV To use UpCalls. you must either dalm the 
vector and install a routine on it (see the chapter entitled Softw.rr "ldDn on 
pace 1·59). or nstall an UpCall handler (see the chapter entitled i>rogra111 
EI!Virv•1111•t on pace 1-277) 

1-167 



UpCatls 

;.;::::::=x===:=:::: ::::::::::::.x::::::::::::::::::~ :;: :::::::::::;;.::::·:.···· .;.;.;.;.;.::J:·=«<~;;:o:~::::;:;:;:;:;::;:.;::~:::;;.;~;:;:;:: :;:;:;:;:;:;:;:;:;:;:;:;:;:;.;:;:;:;.;.;:;.;:;:;:;.:-:·:·:·:·:-:-:;:-:;.:.:-:.:·:·:·:-:.:~:O:·:•:·:·:•:::•:•:::::;~:::-;;:;:;:;:: 

1-168 

They are called UpCalls because they are calls that RISC OS makes •P to an 
application. rather than calls that the application makes dow• to RISC OS. They 
occur in the foreground. and are hence different to Events. which occur in the 
background. 

There are a number of different reason codes, each of which is described below: 
Some are made for information only. others allow the application to take 
appropriate action (such as to prompt for a missing floppy disc to be inserted in 
the drive). The caller of the UpCall (normally RISC OS) may then look at any 
returned state. and decide what action to take next. In many cases it will generate 
an error if the application has not dealt appropriately with the situation. 

Writing code to handle UpCalls 

Routines t hat deal with UpCalls should be viewed as system extensions. and so 
should only call error-returning SWis ('X' SWis) . 

If a routine installed on the vector does deal with the situation it should intercept 
the call to the vector. as there is no longer any point informing any other routines 
or the UpCall handler of the situation. If it cannot deal with the situation it must 
pass the call on, as another may be able to do so. 

Ccmmunlcalions wftflln R/SC OS 
:·:·:·:·:·:.:-:·:·: .... :.:·:.=-w.o:•::?.•:•:·:•:•:.~{'t>:•:::::;:~«-::::::::::::::;•:::::::::•:::::::•~"':-::::::::;;:::: :::::::::::;:::::::;:::::::::;:·:·:·:·:·:-:::;:::.: .·.··:·:·:·:·:·:·:-:·:::·:~·:-:·:•:::•:.-..:::~m:=:=:::.»"n:::::::::::::•::~x:::::::::::::::::::::::::::::· 

OS_ UpCall1 and 2 
(SWI &33) 

Warns your program that a filing medium Is not present (OS_UpCall I) or not 
known (OS_UpCall 2) 

On entry 

RO = I (Media not present) or 2 (Media not known) 
Rl =filing system number (for a list. see the chapter entitled FileSwit.:i) 
R2 =pointer to a null-terminated medium name string, or-1 if irrelevant 
RJ =device number. or -I if irrelevant 
R4 =iteration count for repeated issuing of the call (0 initially) 
R5 =minimum timeout period (in centiseconds) 
R6 = pointer to a null termina ted medium type string 

On exit 

RO = 0 if medium changed. -I if medium no longer required. else preserved 
R I - R6 preserved 

Interrupts 

Interrupt status Is unaltered 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call is made 1:rf RISC OS filing systems when a program tries to access: 

• a filing medium that it has previously used but can no longer access (RO = I) 

• a filing medium that it has not previously used (RO = 2). 

It calls the UpCall vector. 

1-169 



OS_UpCa/11and 2(SWI &33) 

.:::: -:-:-:::::.:-x-x-:-····:·x::.:-:-:-»:«-x«.:««.:.:·'X«<.-:-: -:·: -:-:::..-.:-:-:·:·:-:.:-:::-:-:-:-: -:-:-:-:-:-:-:::·:·:·:·:·:·:·:-:::::::::::::::::::::::::::::::::::::::::::~;;:::::::::::::::::::::::::::::m:«o?.::::::::::::.:::::::::::-."<-:::.:::::.;:;::::::::::.;::::.~-x 

1-170 

To use OS_UpCall I or 2. you must either daim UpCaiiV and Install a routine on 
the ~or, or install an UpCall handler. Your routine should: 

• prompt you to supply the medium with a string built up uslna. 

I lhe medium type string (passed in R6) 

2 the filing system name (obtained by calling XOS_FSControl13 acting on 
the value of R I -see page l-110 for details) 

J the medium name (passed in R2) 

for example; 

Please Insert cll.c: ..tb:M.Ike and press Space (Esc to abort) 

• aive you a way of indicating that you have e ither supplied the medium. or wish 
to cancel the operation 

• intercept the vector with RO =-I if you w ish to cancel the o peration 

• Intercept the vector with RO = 0 ifthe timeout limit Is reached. or if you say you 
have supplied the medium 

When you Intercept the calf to the vector. control passes bad to the fi ling system 
rouune that called OS_UpCall : 

• If RO = - I . then the routine calls OS_UpCaff 4: it then returns an error to say 
that the medium was not round . 

• If RO = 0, then the routine checks for you that the medium has been changed 
and the correct one supplied. If so. it calfs OS_UpCaff 4: otherwise It just calfs 
OS_UpCaff I or 2 again. after incrementing R4. 

The timeout period In R5 is set to a small va lue for media that can detect when the 
medium has been changed (such as floppy disc drives) and to a large value 
(typically &-FFFFFFFF) for other media. In the former case. this means that RISC OS 
will automatically detect that new medium has been supplied. and check that It Is 
the correct one 

The most common use of OS_UpCalll and 2 is to request that a floppy disc Is 
Inserted 

Related SWls 

OS_UpCall 4 (SW! &-13) 

Related vectors 

UpCaffV 

Communicadons within R/SC OS 

;:;.;.;.;.·-:·:··-::;.;.;;;;;;}:~:'.(«:::::::::::;:;.;.;.;-:.;.:-:<( .;:;.;.;:;:;:;:;:;.;:;.;:;:;:;:;:;.;.;:;:;:;.;.:~:::::;:;:;~::~-~-x«:»)~::::~;.: ·!·!·!·!·!·!·!·::;.;:;.;:;:;:;:;:;:;:: :;:;:;:;::,;:;:;:;:;:;:;:;:;:; :;:;:;::::::::;:<>~;:;.;:;:::;.;; 

Warns your program that a file Is being modified 

On entry 

RO = 3 (Modifytna file) 
Rl • R7 vary. depending on the value of R9 
R8 = filing system Information WOld 
R9 = reason code 

On exit 
All registers presetved 

Interrupts 

lnterru pt status Is unaltered 
Fast interrupts are enabled 

Processor mode 

Processor Is In SVC mode 

Re-entrancy 

SW! is not re-entrant 

Use 

OS_UpCall3 
(SWI &33) 

This call warns your program that a fife Is being modified. The reason code In R9 
tell s yo u how 

R9 

0 
I 
2 
1 
4 
6 
7 
8 
257 

Meeal•l 

Saving memory to fife 
Writi ng catalogue Information 
Writing load address only 
Wntlng execution address only 
Wntlng attri butes only 
Deleting file 
Creating empty file 
Creating d irectory 
Creating and opening for update 

1·171 



OS_UpCal3 (SW/&33) 

~;:·:·X~';-;«.;;:,.;~;;;;:-:·:;;;;.;:;;:·:v:-;·:·:-:-:·:·:·:·:·:·::'.;·:·:-:-·.:·:~:·=-::::::-~~~~~~g~~~~~~" ..... ::w·~·c~·;::::·;:·:·:·::v:-:-.~;-~:;:::::::::::.:-:-:-:-:-:;:::::.:·:: :-:-:-:-:-:-:-:;:-:-:-:::::::.:-:-: 

R9:0 

R9 = 1 

1-172 

258 Opemng for update 
259 Closi ns file 
520 Renamlns file 
521 Setting attributes 

It Is made when a program calls one or several SWis prOYided by the FileSwitch 
module 

• reason codes 0 - 9 are caused by calls to OS_File (SWI &08) 

• reason codes 257- 259 are caused by calls to OS_Find (SWI &OD) 

• reason codes 520- 521 are caused by calls to OS_FSControl (SWI &29). 

You may find It helpful to examine the documentation of the above FileSwitch SWI 
calls . 

The following general points apply: 

• all strings are null terminated except "'here specified 

• all object names will already have been expanded by FileSwitch. checlced for 
basic validity. and had filing system prefixes stripped. 

Note that if a filename Is invalid t'or a given operation (eg you try to create a file 
with a wildcarded leafname) FileSwitch will generate an error. and no UpCall will 
be generated 

The call is used by the desktop filer to maintain its directory displays. It is provided 
for information only, if you wish to use this UpCall. you must not intercept it. nor 
must you alter the contents or any or these registers used to pass parameters: 

Saving memory to file 

R I = pomter to filename 
R2 = load address 
R3 = execut100 address 
R4 = pomter to start or buffer 
R5 = pomter to end or buffer 
R6 = pointer to spec~al field (or 0) 

Writing catalogue information 

R9 :2 

R~ :3 

R9:4 

R~ : 6 

R9:7 

;-:vt-:-:-:·:·:·:-:-:·:·:-:.;-:-:-:-:·:·:.:·:·:-:·:·:.!·:·:.:.:-:-:-:«< .. ..:-~ .... 

Rl =pointer to filename 
R2 = load address 
R3 = execution address 
R5 = attributes 
R6 = pointer to spedal field (or 0) 

Writing load address only 

Rl =pointer to filename 
R5 = pointer to end of buffer 
R6 = pointer to spedal field (or 0) 

Writing execution address only 

Rl =pointer to filename 
R3 = execution address 
R6 = pointer to special field (or 0) 

Writing attributes only 

R I = pointer to object name 
R5 = attributes 
R6 =pointer to special field (or 0) 

Deleting file 

Rl =pointer to object name 
R6 = pointer to spedal field (or 0) 

Creating empty file 

Rl =pointer to filename 
R2 " load address 
R3 = execution address 
R4 =start address 
R5 = end address 
R6 = pointer to spedal field (or 0) 

Communlcatons wflhin RISC OS 

1-173 



OS_UpCIIII3 (SWI &33) 

:;:;:;:;:;:;:;:;.;.::~·:·: ' .;.;:;:;:;:;:;:;:;:;~;::;:;::;;:;:;:;:;:;:;:;.;:;:;:;:•:•. . ::: .;.;.;:;:;:;.;:;:;:;:;:;: ;:::;:;::::=~:::.~·:·: ·:·:·:·:·:-::;:;.;:;:;:;:;:;:;:;:;:; ,.;.•:;:;·:;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.; .;:;.;.;.;~;.;.:;::;-:.;:;:;:;:;::;:<!-:";;:>:::;::.;;:::::;.:;c;;.;•:·::: 

1-174 

Rlh8 

Creatl nfl dIrectory 

Rl "'pointer to directory name 
R2 "" IOild address (to be used as timestamp) 
R3 =execution address (to be used as timestamp) 
R6 = pointer to special field (or 0) 

R9 = 257 

Creatlnfl and openinfl for update 

R I = polnterto filename 
R2 =external handle that file will be fliven (if successfully opened) 
R6 = pointer to special field (or 0) 

R9 = 258 

Openlnfl for update 

R I = pointer to filename 
R2 =external handle that llle will be fliven (If successfully opened) 
R6 = pointer to special field (or 0) 

R9 = 259 

Closlnfl file 

Rl =external handle 

R9 = 520 

Renamlnfl file 

R I .. pointer to current obfect name 
R2 = pointer to desired obfect name 
R3 .. execution address 
R6 = pointer to current special field (or 0) 
R7 =pointer to desired special field (or 0) 

R9 = 521 

Settinfl attributes 

Rl = pointertoobfect name 
R2 =pointer to attribute strinfl (control character tenninated) 

)·:· 

Communlcatons within R/SC as 
.;:;:;:;:;:;:;:;:;:;:;: ;:;:;:;:;:;.;:;.;.:-::::~~ .;.;:;:;:;:;:;:;:;~;:;;::;:;:;:;:;::;:.~~ ;.;.;:;:;:;~:;: ;:;:;:;:;::::·::~-..,.~·=·~~·:•::;:;:;:;:;:;:;:;:;:;:;:;:::::::::::~;;.;.:·:·:·:·:·:·:·:,;.;.;.;.:·:·:·:·:::.~:·:.::;;;:;;;.;;:·:·:.:· -~;:;:·:~;;.; 

RetatedS~ 

None 

Related vectors 

UpCaiiV 

1-175 



OS_UpCaH 4 (SWI &33) 

o:::::::o:o::z:.:-:.:.:·:·:·:·:.:·:•····· :·: :·:·:·:.:.:·:.:·:~-:-:.:·:·:.:-:·:·:·:·:·: ·:-··:·:·:···:·:···:·:·:·:·x·:.:-7=-:-:.;.:--:;:;;.:;:;;:;.:-:·:·:•:::;;w:;;;;;::o:•:•:::::::".O:•:<-;~:;:;:;:;:;:: :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;;;;;;;:;.;.;.;.·:.·· · 

1-176 

OS_UpCall4 
(SWI &33) 

Infonns your program that a missing filing medium has been supplied. or that an 
operation involving one has been cancel led 

On entry 

RO = 4 (Media search end) 

On exit 

RO preserved 

Interrupts 

Interrupt status is unaltered 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call is made by RISC OS to inform your program that a missing filing medium 
has been supplied. or that an operation involving one has been cancelled. It is 
always preceded by call(s) of OS_UpCalll or OS_UpCall 2. It calls the UpCall 
vector. 

To use OS_UpCall 4. you must either claim UpCaiiV and Install a routine on the 
vector. or install an UpCall handler. This call is typically used to remove error 
messages displayed when OS_UpCall I or 1 was first generated. 

Related SWis 

OS_UpCall I and 2 (SWI &33) 

Related vectors 

UpCaiiV 

Communications within R/SC OS 

···.·.··:·:·:·:·:·:· :·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:· :·:·:·:·: ·:·:.:·:·:;;.:~=:·:·:·:·:«·: .;:;-:.:·:•:-:v:::::•:;:::-:·:".Y.o?~;;;.:;;;:::o:::::o:::::::::::::::.;::~~~o;~::::::::::~!~;::x•:::;,~;:.A...,.::M~;.;·;;.:;:::::::.-;:;:::.;·:-.:-x·~:-:·:·:.: 

OS_UpCall6 
(SWI &33) 

Informs the Task Window module that a task wants to sleep until some termination 
condition is met 

On entry 

RO = 6 (Sleep) 
R I = pointer to poll word (in a global memory area. eg the RMA) 

On exit 

RO = 0 if UpCall dalmed 

Interrupts 

Interrupt status Is unalte~ 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re~ntrant 

This call is made by a task that wants to sleep until some termination condition is 
met. signalled by the contents of the poll word becoming non·zero. It is not 
available in RJSC OS 2.0. 

Control _, ret• no to the task before the poll word becomes non..zero. but is only 
panoateecl to ret•n if and when the poll word becomes non-zero. 

While the task is sleeping other tasks will continue to be polled by the Wimp. 

If lhe termination condition can be reqnised externally (ie in another Wimp task 
or under interrupt) hence causing the poll word to be set non-zero. the calling task 
should set the poll word to zero on entry. Otherwise the poll word must be 
non-zero on entry, so that control will return to the calling task after each Wimp 
Poll. 

1-177 



OS_ UpCal/6 (SWI &33) 

• ;.-.. ~,...:.:.-,.;o:«o.""-:-:·:·:-:·:·:·:·:·:·::::;:;;::;:;:;:::::::;:;:;.·.;.;.;:;.:·:• 1*•;;-:::o::::::: :;:;:-:;:;:;:;:;:;:;:;:;:::::-::;:;:;:;:;::::::-:w.::.:•s:;.:":·:·:o!C:=.:::.;-:.;.;.;.;:;.;.;.;.;.;.;:;:;:;.;:;:;:;.;.;.;.; ·!·!·!·!·!·!·::;:;.;:;:;. ;:;:;:;:;:;:;:;:;:;::;.~::·:-:·: 

1-178 

Note that a task must not use this UpCall if it i.s not re-entrant. Of may have been 
called by a task which is not re-entrant. 

The calling task must be running m a task window. The TaskWmdow module 
intera!pts this UpCall: you should not do so yourself. These two restrictions may 
be removed in future versions of RISC OS. 

Related SW1a 

OS_UpCall7 (SWI &33) 

Related vectora 

UpCaiiV 

CommunlcaNons within R/SC OS 

:·:·:·:·:·:·::;:;:;:;~:;:;:;.;:;:;;;;.;;.'(;:.;.;.;.;.;.;!;:;:;:;:;:;:;:;.;:::;:;:;:;:;:;:;:;:;:;:;:;.:..:.:l!O»)-:.;.;:;;;:::;:;:;:;:;::::;::s;x::-:;:-:-:·:·::;:;:;:;:5::,:~~«:;:;:;:;:;:;:;:;::::::~::::-:::~~:·:·:•:•:•:·:·:-:·· ;:;>;;;:;:;:;:;:;:;•»:=:~~::::::::-':·:•:::.:-;.; . 

OS_UpCall7 
(SWI &33) 

Informs the TaskWindow module that an open pipe has been dosed or deleted 

On entry 

RO = 7 (SieepNoMore) 
Rl =pointer to poll word (In a global memory area. ea the RMA) 

On exit 

RO preserved If V flag dear 
RO = pointer to error block if V flag set 

Interrupti 

Interrupt status Is unaltered 
Fast interrupts are enabled 

Procesaor mode 

PrOa!SSOr Is In SYC mode 

Re-entrancy 

Use 

SWI Is not re-entrant 

This call Is made bv Pipef'S If an open pipe is closed or deleted It is not available 
in RISCOS20 

The Task Wmdow module then traps this and obte<:ts i f any of Its tasks are currently 
waiting for the poll word related to that pipe to become non-zero. by returning an 
error. 

This prevents a •shut command from deleting the workspaa! wh ich Is being 
accessed by the Task Window. which could potentially cause address exceptions. 

Related SW11 

OS_UpCall6 (SWI &33) 

1-179 



OS_UpCal7 (SWI &33) 

«-:·:-:..:-:-:-:-;.:-;.:-:-:-:.:-:-:--:-:-:-~-:-·· _______ : •• :·:::::~ • . J~JJ~;·,..·;;wv·······~-$:.:.._-~~~':"':-:·~-- :·.·:·:·:-;:;.;:;.;-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-::::..::;:;:;:;;;:·· __ ;-;-;-:-:·:·:·. 

1-180 

Re&ated vector• 

UpCaiiV 

'"'-~~.-m ..... ~;~::;;;>:~~»=<«"»»»»·-:···-:·=:-:·~@~f~ '"" ........... 

Buffer filli"i 

On entry 

R0=8 
Rl =buffer handle 
R2 =0 

On exit 

All registers preserved 

Interrupt• 

Interrupt status Is unaltered 
Fast interrupts are enabled 

Proc:es.or mode 

Processor is in SVC mode 

Re-entrency 

SWI is not re-entrant 

u •• 

Commvnlcalions wl1hin RISC OS 

OS_UpCall8 
(SWI &33) 

This is issued when data is inserted into the specified buffer. and the free space 
becomes less than the sped lied threshold . 

ReletedSWI• 

None 

Releted vector• 

None 

1-181 



OS_ UpCaH 9 (SWI &33) 

:;:;:;;;;;:;:;;;;;:;;;:;.:-:·.·.·:;x;;;;;;:;:;;;;;;;;;-:-:vn.v -:,-.;.:-:-: .. ~:•:·:·:·:·:·:·:·:·:.;.;.;'X,:-:.:- :-:· :-:-:-:-:·:·:· :-:·:·:·:·:·:·:·:·:·:·:· 

Burrer emptying 

On entry 

R0 • 9 
R I • buffer handle 
R2 •-1 

On exit 

All registers preserved 

Interrupts 

Interrupt status Is unaltered 
Fast lnte"upts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

u .. 

·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:-:-::;;;:;.;;;.;:;:;:;:;:;:;:;:;:;.;.;:S::;.;•:·:·:-:·:·:•:·:-:•:·:·~·:-:-$~.;{ 

OS_UpCall9 
(SWI &33) 

This is lssu~ when data Is removed from the specified buffer. and the free space 
becomes greater than or equal to the current threshold. 

Releted SW11 

None 

Releted vector• 

None 

1-182 

Communlcallons within R/SC OS 

-:-:-:-:.:·:·x·:-:-::::;.;;.;;:.;;;:.x::.:.:-:· :·:·:·:·:·:-:·:·:·:·:·:::;:.;;;.:-:-:;;.:-:·:·:-:-:-:::::::.:-:.:-:·:·:·:·:·:-::.:-:·:-:-$>:·:-;;."";:;;~:·:·:·:·:-:.:«o:.:.:-:.:~;,.-..x-:o.-.;•:.:•::;:;:;~»:>:-:•:·:·: ·:·:·:· :·:·:·:·:·:·:·:·:· ......... 

Stream creat~ 

On entry 

RO= 10 
Rl =device handle 

OS_UpCall1 0 
(SWI &33) 

R2 = 0 if created for transmission (else creat~ for reception) 
RJ =external handle used for stream 
R4 = internal handle used for stream 

Onexh 

All ~isters preserved 

Interrupts 

Interrupt status is unaltered 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

This is iss~ when a stream is created. It serves as a broadcast. and all registers 
should be preserved. 

Related SWia 

None 

Related vector• 

None 

1-183 



OS_UpCal11 (SW/&33) 

·.·.·.··:·:·:·:· ;.;:::-:::;:=:;>/&.;:;;oy..:<-:.:' • -.«- • :-:·:·:·:·:·:·:-::;.;.;:;:;.:-:·:·:·:·:·:·:'·:·:·;:;.;. 

1-184 

Stream closed 

On entry 

RO= II 
R I =device handle 

OS_ Up Call 11 
(SWI &33) 

R2 = 0 if dosed for transmission (else dosed for reception) 
RJ =external handle used for stream 
R4 = internal handle used for stream 

On exit 
All registers preserved 

Interrupt• 
Interrupt status Is unaltered 
Fast interrupts are enabled 

Procesaor mode 

Processor IS in SVC mode 

R...ntrancy 

u .. 

SWI is not re-entrant 

This is Issued when a stream Is dosed It serves as a broadcast. and all registers 
should be preserved. 

RelatedSWia 

None 

Related vector• 

None 

·:·:·:-:::·:·:-:::-:::::.:-:-:::=:·:=::-:-:-:-:=:·:·:·:·:·:·:·:·:·:=:-:::.:.:::tt=w.-::;.;;::=-w~ 

Communbfons wtthln RISC OS 

OS_UpCall256 
(SWI &33) 

Warns your program that a new application Is 8(>1ng to be started 

On entry 

RO = 256 (New application) 
R2 = proposed Currently Active ObJect pol nter 

On exit 
RO = 0 to stop application, else RO Is preserved 

Interrupt• 
Interrupt status Is unaltered 
Fast interrupts are enabled 

Procesaor mode 

Processor Is in SVC mode 

R ... ntrency 

Uae 

SWI is not re-entrant 

This call is made Just before a new application is going to be started- for example 
due to a •Run or module command. It calls the UpCall vector 

To use OS_UpCall 256, you must either claim UpCaJJV and Install a routine on the 
vector. or install an UpCall handler. 

One reason to use this call is so that an application can tidy up after Itself before a 
new one starts. eg remoYing routines frorn vectors. For more details. see the 
chapter entitled Pnlg,..,. Eltlliro~ .. ,." on paae 1·277. 

Another reason to use this UpCallls to prevent an application from starting If you 
don't want the application to start. your routine should set RO to 0, and Intercept 
the call to the vector. This will cause the error Unabl e to a t a rt application 
to be given. Otherwise. you must pass the call on with all registers preserved. 

1-185 



OS_ UpCa/1256 (SW/ &33) 

,,.,·.·:·:·:-:::.:•:. ;ow;·:•:•:·:·:•;.;;:.:;;;:::-:·:·:•:•:::•:•:•:;%:•:•:•:•:~•:·:<:·:-:::•:-~:•x-:-m:•:·:•:-:-:·;--.,.. 

1-186 

ReletedSWis 

None 

Releted vectors 

UpCaiiV 

"""':.;·.·;·:·:•: .;:;:;:;.;:;:;:;:;:;:;:;:;:;.;:;.;.·:·:·:·:·:·:·:·:·:·:·:·:·.·:··;:;:;:;.;.:•:•:•:•:•:-:~:·X·!·!·! jt·>:·:·:·:·:····· ·:;:;:;:;:;:;:;:;:;:;:; :;:;:;:;:;.:;:• ·.•.•:;;;.;.;:;:::::>~"*-:::;:;:;::::.;:;:;:;:::::::::::;:;;;;:::;;.;-: 

Communlcs•ons within RISC OS 
·:·:·:·:·:·:·:·::;:;.;.;.;:;:;:;:;:;:;:;:;:;:;:;:;.;«~w;~;:<:;;.;:;.;:;.;:;:;.;.;.;. ;.;.;:;:;:;:;:;:;:;:;:;:;:;:: .. .;: 

OS_UpCall257 
(SWI &33) 

Informs your pqram that RISC OS would like to ITIOIIe memory 

On entry 

RO = 257 (Movlntl memory) 
Rl =amount that application space l.s golna tochanae by 

On exit 

RO = 0 to pennlt memory move. else RO Is preserved 
R I is preserved 

Interrupts 

Interrupt status Is unalte~ 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrency 

Use 

SWI is not re-entrant 

This call Is made lust before OS_ChanaeDynamicArea tries to move memory. The 
call is only made If the a.mently active oblect is in the application space. It calls 
the UpCall ve<.tor. By ~ault (If you do not claim the vector) the memory is • ot 
lTIOIIed 

To allow the memory to be ITIOIIed. you must either claim UpCaiiV and install a 
routine on the vector. or Install an UpCall handler Your routine must shu me your 
application's works~ so that the memory move can 110 ahead It must then set 
RO = 0. and pass on the call to the vector. 

Related SWis 

None 

1-187 



,:·: 

I ill I ~~ !Ill Ill 

I 



.... . .... ~
 



! 



::::::::;.;:::;.;:: ::::::::::::::::::::::::::::::::=:::::::::::;:::::~::;:::::::::::::;;:;:;;:;.:::::::~::::::.=.::::~~~;,.;:~:·:: -.:-:·:·: :;:;:;.;::::·:·:=:-:::::::::::::::::::::::: :::::::::~::~~::::::::::::::::::-:::~~s:':::.:::.-:=x·:·:;::: :;:::;:::::::::. 

14 Modules 
;:;:;:;:-;::,:;:;:;:;:;~:;:::::::::~:::::~:::~:;:;:;:~~::::::::::x~~.:::~::::;:;::::~:;:::::;:;".::::::::::x:~:;:; :;:;::··:;:; .. :.:.:.:.:;:;::::::=::::;:;:;:;:; :;:;:;:;:;:;::::::;¥,,<$~'X:=~::::~:::~::::::::*:::::::..'<:.::::~:::: :;:;:;:;:;:;:;:: :;:;:;:;:;:;:;:;: 

Introduction 
A relocatable module Is a piece of software which. when loaded into the machine 
acts as either an extension to the operating system or a replacement to an existing 
module in the operating system. Modules can contain pi'OiJramming languages or 
filing systems; they can be used to add new SW!s and • Commands. 

Relocatable modules run In an area of memory known as the Relocatable Module 
Area (RMA) which is maintained by RISC OS. They are 'relocatable' because they 
can be loaded at any particular location In memory. Their code must therefore also 
be relocatable. 

RISC OS provides facililies for integrating modules in such a way that. to the user. 
they appear to be a full part of the system. For instance. the operating system 
responds to the "Help command. extracting automatically any relevant help text. 

Several SW!s and • Commands are pro~rided by the operating system for handling 
modules. For example. loading a module file from the filing system. 

A major piece of software written for RISC OS should only be designed as a module 
if it fu lfi ls the followin8 requirements: 

• it is an extension to RISC OS or an enhancement to an exlstln8 RISC OS 
module 

• it is shared by many applications: for example the shared C library 

• it needs to be persistently RAM resident over many invocations (even then you 
should try to do this another way) 

• it is small enough 

or if: 

• it is a desktop application- or part of one- which cannot be paged out (eg it 
has Econet control blocks active). 

Such prCJ8rams must use RMA for workspace. and are hence easiest to write as 
modules. 

This chapter describes what is needed to write a module. 

1-191 



0V9flli6W 

;;;:::~:<::;;:::::::::;:;.;::;:;:;:;:;:;:;;;:;:::: :;:;:;:;:;:;;;:;:;:;:;:;:;:-: .·.·.·.·•·•· ••........... ::::::::::::.:.::;.;.;.;:;;;.;:;;;. :·:·:·:·:·:= .;.;:;.;.;;; :;:;.;:;;;:;.;.;.;. ;:;:;:;:;.;.;.;:;.;.;.;.;.;.;:;.;.;.;.;.:,.;.;.;.;.·.··· ;.;:;.;:;:;.;.;:;:;:·:-

Overview 

Using modules 

This chapter is divided into two basic areas; using modules and writing them. 

Use of modules is centralised around the SWI OS_Module. This contains a number 
or operations that can: 

• load. initialise. run and remove a module 

• examine and change the amount of RMA space used by a module 

• examine module details 

• modify instantiations of modules. 

All of the operations that a program Is likely to need to operate with modules are 
in this SWI. You could treat the RMAas a kind of filing system. since there are 
commands to load things into it. remove them and run them. 

Some modules are supplied with the computer in ROM. These may be 'unplugged' 
and upgraded versions of them loaded into RMA. They may also be deliberately 
copied from ROM into RMA. since modules in RA.M will execute significantly 
quicker than in ROM. 

There are a number of • Commands that replicate several OS_Module commands 
at a command line level. You can also obtain convenient lists of all modules 
currently in the RMA and the system ROM using a • Command. 

Instantiation 

1-192 

A module may be initialised more than once. This means that whilst only a single 
copy of the code is kept in memory. multiple copies of its workspace are created. 
The workspace is the area where all the data used by the module for dynamic 
storage is kept. Note that constant data. such as lookup tables is kept inside the 
main body of the module. with the code. Changing which workspace is used 
changes the context of the module and allows it to be used for several purposes 
concurrently. Each copy of the wort.space. coupled with the code. is referred to as 
an instantiation. A module is deemed to be reincarnated when a new instantiation 
is created. 

Only a single copy of the code is needed because it is not changed by being used 
concurrently. The data is the only thing that provides the context for an initialised 
module. 

Modu/QS 

···.·.·.;-:-:; ::<: :::::::::::::::::::::::::::: :::::::::::::::::::::=:::::::::-~:::::::::;::. .. ~w.w:;.:-:·:=:·:·:-::;.;:;.:.;:~;;:.:;:o:-:::~:=::::::};:;.:-:.:-:.-.. :.:.;.:-~ .. :.:·:':'::;:: .;:;.·:;.;.;::·:·:·:. :·:·:·:·:·:-:.x-:-:::-: ·:=:·:·:·:·:·:·:·:·:·:·:·:·:-::-:-···· 

An example of the use of instantiations is in the module FileCore. This module 
provides a core of commands that are common to all filing systems with an ADFS 
structure. ie ADFS and RAMFS. It appears In one Instantiation for each filing 
system that is usina it. 

For example. typing •Modules. you can see all the modules that are currently 
loaded. including the various instantiations of the FileCore module: 

*Modules 

28 0 3839698 018114C4 FlleCore\RAM 
03839698 01804374 FlleCore\ADFS 
03839698 00000000 FlleCore\Base 

This e·nables you to refer to particular instantiations of a module. For example: 

*RMKlll WaveSynth\Base 

Writing a module 
The core of all modules is the module header. It is a table of II entries. each a word 
in length. These are called by RISC OS to communicate with the module. 

Module heeder 
The entries in the header table desaibe the following things in the module. All but 
one are pointers to code or some larger piece of data. such as a string. or table: 

• Where to start executing in the module. This Is used by languages and 
applications. 

• Where to call initialisation code. This has to be called before all the others. 

• Where to call finallsation code. This is called before removing the module. It 
allows the module to shutdown any hardware it is using and generally tidy up. 

• A title for the module. 

• A help string. This is used automatically by RISC OS when help is requested. 

• Detailed help on • Commands. 

• Entry points for • Commands. RISC OS will decode the • Commands and call 
the riaht entry point for a command for you. 

• A table to convert to and from SWJ names and numbers. 

• Entry points for all the SWJs in the module. 

1·193 



Writing a module 

·:;:;:;:;:; :;:;:;:;.;. ;:;:;:;:; :;:;: ;:;:;:;:;.;: :·:·:·:·:::.:·:·:·:·:·:·::;.;.;.;.;.;.;:;:;:;:;.;.;.;:;:;:;;;;:;;o:;;;:~:;.;;.::;o:;:;;:;:;:;:;:;;:;;:;;••QS!:,'){"~~~;;;:;:;::::::~;::-;;:o;.:.:..<>.;::::;:;.;.;.:::·:·:·:·:·:·:•:·:•:·:•:-..-.. .. :.:«««.;'.:·:•:-::;.;:;.;.;.;;;:;:;.»:;;:;.;., 

• The chunk number for the module. This is the number that Is the base for SWJ 
numbers There can be up to 64 SWJs in a module. all offsets from this chunk 
number This is the only entry in the header that isn't a pointer. 

• Service call entry (see below). 

All communication from RISC OS to a module takes place through this table As 
you can see. several features are used by RISC OS without you having to write code 
to deal with them, such as the help text. and SWJ names to numbers conversion 

Semce~• 

A number of special occurrences in RISCOS are passed around all the modu~ by 
RISC OS Some of these can be dalmed. This means that if a modu~ decides that 
it wants to take control of that occurrence then it stops it being passed on to the 
rest of the modules Others cannot be claimed and are used by RISC OS to 
broadcast some occurrence to all modules. Here is a brieflistofthe kinds of things 
that can be sent as service calls. The first part are claimable service calls· 

• Unknown command. OS_Byte. OS_ Word. •configure or •status. 

• · Help has been called. This allows you to replace this command when you 
detect a particular help call being made. 

• Memory controller about to be remapped. This allows an application to stop a 
memory remapping if it doesn't want it to happen. 

• Application Is about to start. This allows a module to prevent an application 
from starting. With this. a module could prevent any other tasks running. 

• Lookup file type. This converts the 3 byte file type into a string. such as 'BASIC' 
or Text' . 

• Various international services, such as handling different alphabets and 
keyboards. 

• The fast interrupt handler has been claimed/released. This is used by device 
drivers for high data rate devices that depend on the state of the last interrupt 
system 

These are the service calls that cannot be daimed and are used to allow modules 
to perform some action to cope with the occurrence. without stopping It being 
passed on to all modules: 

• All error has occurred This is called before the error handler. but is only for 
module's information. not claiming. 

• Reset Is about to happen/has (u.st happened. 

Modu/96 

:«#.x•:•:•:•:=:•:=:•:o:•:·x·:-:-:·:·:·:·:· :-:::::-:-::::::::::::::::: :::::::::;.;;:::: ::::::::::::::::::::~~<:-~:::.::-x•:;:.~:x::::::;;..»w.;::::::::::::::.;;xo»:o:•:•::::~:•:•~:•:•:«oW:::::::::::;:~:::::::::::::•:::::::;::::::~.;~:::::.:::::::::::::<>-m:..~: 

• Filing system re-inltlallse. This is called when AleSwitch has been 
re-initialised and this Is broadcast to all filing systems that use it to do the 
same. This Is necessary, because otherwise a filing system could get out of 
sync with the context In FileSwitch. 

• A screen mode change has occurred. This means that all modules can be aware 
of the screen state and re-read VDU variables. for Instance. 

By monitoring these service calls. a module can be aware of many things that are 
occumng outs1de its control In the system. 

1·194 1-195 



T9dlnlcal DelaJis 

:;:; :;:;:;:;:;:;:;.;:;::;.:;:.;;::,:;;;.:-~· .... ~~:::~~:::::::;.:-::;:;:::::: ;-;v:-;:;:;:;:;:;:;:;:;:;:;.·:·· .. ~: 

Technical Details 

Module Initialisation 

1·196 

When RISC OS is started it automatically Initialises all modules in the computer In 
RJSC OS 2 0 it does so in the order It flnds modules. omitting any that are 
unplu~ 

The way in which the kernel lnlllahses modules has been challied in later versions 
o( RJSC OS. If there is more than one version of the same module present in the 
main ROM, expansion cards or extension ROMs then only the newest version of 
the module is initialised. where newest means the version with the highest version 
number. 

If there are two copies of the same version. then directly executable versions (le In 
main ROM or in a 32-bit wide extension ROM) are considered newer. If they are 
equal in this respect. then the later one In scanning order is considered to be 
newer 

The kernel first scans all modules In ROM (whether they be in the system ROM. 
expansion cards or extension modules). building a list of modules and their 
version numbers. It uses th1s list to determine which is the newest version o( a 
panicular module. 

2 The kernel then scans down the list o( modules in the system ROM For each 
module in this list. the kernel initialises the newest version of that module 

Hence if an expansion card or extension ROM contains a newer version of a 
module in the main ROM. the kernel Initialises that newer version at the point 
where the main ROM version would have been initialised. This allows main 
ROM modules to be replaced without any problems associated with 
Initialisation order. 

3 The kernel next scans down the list of modules in expansion cards. For each 
module in this list. the kernel Initialises the newest version of that module, but 
with the hardware address (in R II) corresponding to that of the expansion 
card. 

If a module is present both in the main ROM and in an expansion card, the 
kemeltherefore initialises the newest version of that module when scannins 
the main ROM (as above). and then remitialises the same module when 
scannlns the expansion cards 

4 The kernel finally scans down the list of modules in extension ROMs. For each 
module in this list. the kernel cheds that It is the newest version of that 
module, and that it has not already been Initialised In lieu of a module in the 
main ROM or on an expansion card. If a module meets both these criteria the 

kernel initialises it. 

Modulll& 

-::;.;.:;z.::~~~:' •••• ::·:·:-:YX::::::;:::;:;.;:;:;:;::.;;:::x:::;:;.;:;~;.::;:;:x;;~»X-;::;:;:;::~,:;~~·:·:·:.:·:·:·:·:·:·:·:·:·:-:·:·:·:·:=:·:·:·:·:· :-:·:·:·:·:<·:·:·:·:·:-:·:·:::;x; .... : ... 

Using modules 
OS_Module (SWI &IE) is the main application interface to modules. In Its 
description you will find a complete list of its calls and details of each 

1\ number of • Commands exist. most o( which use OS_Module directly Below is a 
table summarisins OS_Module entries and the •command equivalent 

Eauy M...... •eo..uc~ eqld,...eat 
0 Run "RMRun 
I Load "RMLoad 
2 

3 
4 
5 
6 
7 
8 
9 
10 
II 
12 
11 

Enter 

Relnit 

modu~pendent - usually 
JXovided by the module. es "BASIC 
"RMRelnit 

Delete 
Desttibe RMA 
Claim RMA space 
Free RMA sp110e 
Tidy modules 
Clear 
Insert module from tnemOIY 
As above. and move to RMI\ 
Extract module Information 
Extend bkxi in RMA 

14 Create new instantlatlon 
15 Rename Instantiation 
16 Make preferred Instantiation 
17 Add expansion card module 
18 Loolt·up module name 
19 Enumerate ROM modules 

"RMKill 

"RM'lldy 
"RMOear 

"RMFaster (if in ROM) 
"Modules & "ROM Modules 

20 Enumerate ROM modules with version 

Tidyins- as mentioned above- refers to flnalisilliall the modules. movins them 
tOKether so that free RMA space Is In a sinsle block, and then re-lnitlalislns them 
This solves problems with memory frasmentatlon . 

"RMEnsure is a command that will check that a Biven module and version number 
Is loaded Into memory, and will try and load it if it is not. 

•unPius will disable the ROM version of a siven module. Th1s i.s used If an 
upgraded version o( a module Is released and can be loaded from a fillns system. 

1-197 



Werts pace 
:::::: :::::::::::::::::.:-::.:-:-::;.;-::;:;:;:;.;-::;:;.;.;::~·=~·:·:·:·:·:·:·:·:·ll:·:·:-:-:-:-:·~:·:·:·:·:·:·: ·:·:·:·:·:·:·:-:.:·:·:·: ;;.;.;::-::;.;.;.;:;.;.;:;.:.s:.:;X<Y::~~:;:;:;:-<<-:~:;:;:;:;:;:;.;:::;.;. :·:.:.;-;.:::·x·:.:·:·:·:·:·:.:·:·':~t-:..~:v:.:-::;.;.;.;::-:-:·:·:·:0::::: 

Workspace 
The operating system allocates one word or private workspace to each module 
Instantiation. Normally, the module will require more and it is expected that It will 
use this private word as a pointer to the workspace which it daims rrom the RMA 
using as_Module 6. Whenever the system calls a module through one or Its 
header flelds. It sets R 12 to point at this private word. Hence. ir this word Is a 
pointer to workspace, the module can obtain a pointer to its true workspace by 
perfonnmg the instruction. 

LOR Rl2, (Rl2) 

The system works on the assumption that the private word is a pointer to 
workspace da1med in the RMA It therefore p1011ides suitable derault actions on 
that basis For example. the system will attempt to rree any workspace daimed 
usinc this pointer 

Also. the system relocates the value held in a module's workspace pointer when 
the RMA Is 'shuffled' as a result or an RM'Tidy call . 

Note that workspace allocated through XOS_Module will always lie on an address 
&XXXXXX4. This enables code written ror time-critkal sortware (eg sound voice 
generators and AO handlers) to be aligned within the module body. 

Errors In module code 
Any module code which provides system extensions (SWis and • Commands) must 
behave In a manner which Is compatible with the operating system iran error 
occurs. This means that only X SWis are called, and 1r anything goes wrong. the 
module must: 

• set up RO to point to the error block 

• preserve all appropriate registers 

• return with V set. 

lr no error has been encountered. V must be.dear. and appropriate registers 
preserved on ex! t 

The above does not apply to application code within the module; this can follow 
any convention It wishes 

Module header format 

1-198 

The module Indicates to the system ir and where it wishes to be called by a module 
header ThiS contains offsets rrom the Start or the module to code and information 
within the body or the module 

Modules 
:·:·:·:-:.;.;.;.:-:-:·:·::;.;.;;;-:-: :•.;:;.;:;:;~;:.;~;:--::;.:-:·:·:·:·:=:.:-:-:~·:·:·:·:·: .;.;:;.;.::;:;.;:;:;.;-;.;:;.;:;.;:;>;.:.y..;.;;:.:~;;.v.:.;.;:;.;:;:;;;:;:;«*xv;.;:;@:>:o::;:;:;:;:;:;:;:;;.»;.;:;. ;.;:;.;.;:;:;:;:;.;.;:;:;.; 

Service calls 

Off !let 1Jpe Co•W•• 
&00 offset to code start code 
&04 orrset to code Initialisation code 
&08 offset to code flnalisalion code 
&OC offset to code service call handler 
&10 offset to stri nc title strinc 
&14 offset to strinc help strtnc 
&18 offset to table help and command lteyword table 
&IC number SWI chunlt bese number (optional ) 
&20 offset to code SWI handler code (optional) 
&24 offset to table SWI decoding table (optional) 
&28 offset to code SWI decoding code (optional) 

All modules must have fields up to &Ill HoweYer. any or these offsets can be zero. 
(which means don' t use this entry since the module does not contain the relevant 
data/code). apart rrom the title string This Is the offset to the zero-terminated 
name and iritis zero. the module cannot be referenced. 

All code entries must be word aliened and Inside the module code area. otherwise 
the checking perfo~ by RISC as will oonslder It invalid. All tables and strings 
must similarly be within the module or else It will be rejected. 

The SWI handler fields are optional and are only used If they contain valid values. 

The module header entries are described In detail in the rollowing section or this 
chapter. 

Service calls are made rrom RISC as to a module to Indicate an occurrence or 
some ltind. Some are claimable. and some are intended as broadcasts or the 
occurrence only. See the desaiption In as_ServlceCall (SWI &30) ror a complete 
list or all service calls. It Is followed by details or each call . Some of these service 
calls will also be relevant to other parts or this manual that describe modules. For 
example. there are service calls that are p1011ided explicitly to serve the 
International module. 

OS_Byte 141 Is an obsolete way or callinc as_ServfceCall It Is documented. but 
must not be used, as It IS here only ror compatibility with earlier Aa>m operating 
systems. 

1-199 



Module Mlly poinrs 

.·:·:.:·: :::;.::::::::::::::::::mY.··r.,q.;~:::::::::::xw.':=:;;.~::::::::::::::~:::::::::::::: :.:·:::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::~:::::: :::::::::::::::::::::::::::::::::: ::::::::::::::::=:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:-:-:·:·:·:·:-:::::·:·:·:=::::;.·.· · 

Module entry points 

Start code 

1-200 

Start executing at the start point of code in a module 

Offset In header 
&00 

On entry 
RO =pointer to command string. Including module name 
Rl2 =pointer to currently preferred instantiation of the module 

On axlt 
Doesn't return unless error occurs. 

Interrupts 

lnte"upts are enabled on entry 
Fast interrupts are enabled 

Processor Mode 
Processor Is in USR mode 

Re-entrancy 

Use 

Entry point is not re-entrant 

This is the offset to the code to call if the module is to be entered as the current 
application. An offset of zero implies that the module cannot be started up as an 
application. ie it is purely a service module and contains only a filing system or 
• Commands. etc. 

This field need not actually be an offset. If it cannot be interpreted as such. ie it is 
not a multiple of four. or any bits are set in the top byte, then calling this field will 
actually execute what is assumed to be an instruction at word 0 in the module. This 
allows applications to have a branch at this position and hence be run directly. eg 
for testing. Once entered, a module may get the command line using OS_CetEnv. 

Whenever the module is entered via this field. it becomes the preferred 
instantiation. Therefore Rll does not refer to the instantiation number 

Modules 
::::::::: ;;.;.;::·:·:·:·::-~;.:·:·: ·:·:·:·:·:-::-::: ·:·:=:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:···:·:·:·:·:·:-::; :;:;.;:;.;:;.;:::::::::::;.;::.:.x-:.-:-:::::.:::·:~:;::;::;;m::::::x-::;::::.;.;.;•:·:::>:·:;:.;;;:;;;;::;:;.;;:;;.:::::.:·:·:::::.:·:·:·:·:.:·:·:.:·~:;:;:::::.;::;;.:·::,.:;.":;:-:-:.:·:-x·Y .. :·:······ · 

You must exit using OS_Exit. oc by starting another application without setting up 
an exit handler. 

Start code is used by OS_Module with Run or Enter reason codes. 

Initialisation Code 
Set up the module. so that all other entry points are operating 

Offset In header 

&o4 

On entry 
RIO= pointer to environment string (~ initialisation parameters supplied by caller 
ofOS_Module) 
Ri I = 110 base oc instantiation number 
R 12 = pointer to currently preferred Instantiation o( the module. 

If the word ot 0, this Implies refnltlallsatlon. 
RIJ =supervisor stadt 

On exit 
Must preserve processor mode and interrupt state 
Must preserve R7 - R II and R 13 
RO- R6, Rl2, Rl4 and the llais (except Vof course)can be corrupted 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 
Processor is in SYC mode 

R ... ntrancy 
Entry point is not ~ntrant 

1-201 



Initialisation Cod9 

•:::::;:;:;:;:;:;:;:;:;:;:;~:;:;:;:;:;:;:;:;~:;:;::;::~;;;:;:;:;:::::::;.;::~"m.~::;;:;;;;;:::;:;:;om:::::~~;--:;;::o:::::::.;::.;::;~:;::~::::;:;~-;:;:;:;:;:;::;:::::.o:;m:w.;:;:.om.::~::::::--::::;:~::::::::;:;:;::;wx.::::::::;:;.;.::;::;::::: 

Use 

1·202 

This code Is called when the module Is loaded and also after the RMA has been 
tidied (C6_Module with Tidy reason code). lt is defined that the module will not be 
called via any other entry point until this entry point has been called. Thus the 
initialisation code is expected to set up enough information to make all other entry 
points safe. 

An offset of zero means that the module does not need any initialisation. The 
system does not pr011lde any default actions. 

The Initialisation code is used by OS_Module with Run. Load. Rein it and Tidy 
reason codes. 

If the module is being re-entered after a OS_Module 'tidy' . the private word may 
contain a non-zero value. This Is the contents of the private word before the 
finalisation . relocated (if necessary) by the system. 

Typical actions are claiming workspace (via OS_Module) and storing the workspace 
pointer in the private word. Other actions may include linking onto vectors. 
declaring the module as a filing system. etc. 

The module can refuse to be initialised. If an error is generated during 
initialisation. the system removes the module and any workspace pointed to by Its 
private word from the RMA. Any error should be dealt with by setting RO to be an 
error indicator and returning to the module handler with V set 

The module is also passed an 'environment string' pointer in RIO on initialisation. 
This points at any string passed after the module name given to the SWI. 

Rll indicates where the module has come from: if R II = 0. then the module was 
loaded from the filing system or ROM or is already in memory: if Rll is 
> &Q3000000, then the module was loaded from an expansion card and R II points 
at the synchronous base of the expansion card. Other values of R II mean that the 
module is being reincarnated and there are <R II> other instantiations of the 
module. 

On exit. use the link register passed In Rl4 to return: 

MOV PC,Rl 4 

Return V set or clear depending on whether an error has occurred or not. If an error 
has occurred. it returns RO as the error indicator. 

Modu/96 

;:;:;:;:;:;:;:;:;:;:;:;.;:;.;:;:;:;:;:;:;:;:;:;:;:;:;:;::-::;~:::::::;::~~S«-~::;:;:;:;::;)..;,o;::x;;:;;;::::::~:::X.:·:·:·::::::::::::::::::::::::::::::::::::::::::::::::::::::<::~"'::::::::;:;:;:;:;:;:;2;::::;;:;:;:;~:~::~::;:;.;:;:;:;:;:;;;:;::;:::. 

Flnellsatlon Code 
Called before killing the module 

Offset In header 

&Q8 

On entry 

RIO= fatality indication: 0 is non-fatal. I Is fatal 
Rll =instantiation number 
R 12 = pointer to currently preferred instantiation of the module. 
R 13 =supervisor stack 

On exit 

Must preserve processor mode and interrupt state 
Must preserve R7 • Rl I and Rl3 
RO • R6. R 12. R 14 and the flags can be corrupted 

Interrupts 

Interrupt status Is not altered 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

R ... ntrancy 

Use 

Entry point is not re-entrant 

This Is the reverse of initialisation. This code Is called when the system is aoout to 
kill all instantiations of the module either completely or temporarily whilst it tidies 
theRMA. 

If the call is fatal.the module's workspace Is freed. and the workspace pointer is set 
to zero. If the call is non-fatal (eg the call is due to a tidy pperation). the workspace 
(and the pointer) pointer will be relocated by the module handler. assuming they 
were allocated using a>_Module's 'daim' entry. 

The module is told whether the call is fatal or not by the contents of R 10 as follows: 

R I 0 = 0 means a non·fatalfinalisation 
R 10 o: I means a fatal finalisation 

1·203 



ServQ can handlflr 

;:::::::::::::::::::::x::·:·:·:·:·:::·:·:·:·:·:·:·:·~· =;-;·:·!=:·:·:·~·=·~·:·:·:······· ·:«-~~««~ 

Rll contains the dynamic Instantiation number: lethe position of the 
Instantiation in the instantiation list. This will not be the same as the R 11 given to 
Initialisation. Position in the chain can vary and the length of the instantiation list 
can also change. 

If the module generates an error on flnalisatlon. then it remains in the RMA. and Is 
assumed to still be Initialised. The only 'llil'f to remove the module from RMA In 
this state Is by a hard reset. 

If the module has no finalisation entry, Its workspace is freed automatically. 1f the 
pointer contains a non-zero value 

Use link register given for normal exit Set RO and return with V set If refusln8 to 
die 

The module Is (possibly temporari ly) 'de-linked' when called. so you can't. for 
example. execute SWJs that you recognise yourself. 

Used on OS_Module with Relnit. Delete, 11dy and Clear reason codes. Also when a 
module of the same name is loaded the old one is killed. 

Service call handler 

1·204 

Called when a service call is issued 

OffMt In hNder 

&OC 

On entry 

R I .. service number 
Rl2 • pointer to currently preferred Instantiation of the module 
Rl3 • a full. descending stack 

On exit 

Rl c:an be set to zero irthe service is being daimed 
RO, R2 • R8 can be altered to pass bac1t a result, depending on the service call 
Registers must not be corrupted unless they are returning values. 
R 12 may be corrupted 

Interrupt. 

Interrupt status is unaltered 
Fast Interrupts are enabled 

Madill«; 

:;.::::;:;;::~:·:•~:=:·:·?.w.«~::t·:·:·:·:·:·: -:-:::·:·:·:·:·:·:-:;.::::::;.;:::::::::::::::::::~:::::::::~~w:::::::;:~:•:•:•:•:•:•:•:•:::;:::::•:=:::::::::::-.:::::~»:.:;x-:--m.;.:~<·:·:·:·:·:·~:·:·:·:·:·:·:·:·:·.·.·.·.·.·.····· 

Proc•aor Mode 
Processor is in SVC or IRO mode 

R.-.ntrancy 

u .. 

Entry point is not ~trant 

This allows service calls to be recocnised and acted upon. If the module does not 
wish to provide the service it should exit with Rl preseNed. if it wishes to perform 
the service and to preYent other modules also performing it. it should set R I to 
z:ero before retumlnc, orherwise It should preserve the registers in order that other 
modules may have a chance to deal with the call. An offset of zero means that the 
module is nor interested In any service calls. 

It is important that you refect unrecocnlsed service calls as quickly as possible. 
This example shows the recnmmended oode to do so. It assumes the module 
recoQnises three savlcr calls, but you can easily adapt It for other cases· 

S.cvice AOUT 
TEO JU. f .. notoe_ <1> 
Tt.QINt lll, f S.ntce_<2> 
TEQIIE. U, f S.n"tce_<l> 
IICMitS PC, U 

St'MFO llll!, f JW91• t•r• , U. ) 
w~ ~u. (al2) 

TEO JU. t servtce <l> 
BEO •vc_) -
t£0 Al, tS.rvtce <2> 
BEO avo_2 -

IVC_l code to lultdl• ··~Joe C• Jl J 
LDHFD R.l)!, ( ~J•t•c•, PC )"' 

•vc 2 code to Jwtt4Je ••rvtoe c• lJ Z 
- LDMFD kll !,C '""9'Jeter• , PC)"' 

..vc_l C'OCM to ~adl• .. rvloe c.JJ ~ 
LOttF"' Jt.ll!, I .r.,te t en, tc J"" 

Mjeet u.nrecoqnt•ed c.alh •••P 

if wortapace pointer r~tced 

now find which call we've qot 

if not J or 2, then lllilt be 1 
and return 

aNI return 

a.nd. ret.um 

Some service calls can Indicate an error condition by the contents of registers on 
exit (the V set convention cannot be used). Others, like unknown OS_Byte. can 
either claim the service. In which case there Is no way of Indicating an error. or 
i11nore it, in which case an error will be Biven (if all modules ignore It) If you want 
to provide things like unknown OS_Bytes, and be able to generate an error for. say. 
Invalid parameters, you should use the OS_Byte vector Instead. 

1·205 



Title string 

.;.; ·:·:·:·:~:::-::;.;.;;;~:.:-:-:-;.:-:~: .;.;.;.;.;:;:;.;.;-:-:-::;.;:;;:·:·.·.·.·.·.·.·.· ·.·.·.·.··.·.·.·.·.·.·.·.·:·:·:·:·:·:·:·:·:·:-:-;:;.;.;:;;;:;:;;;:;:;;;:;:;:;.;.;:;:;.;:;;;:;:;:;:·:·:·:- :;:;:;:··.·.·.·.·.·.:.:.:.:.:.:;:;:;:;:;:;:;:; :;:;:;:;:;:;:;:;:;:;:;:; 

Note that only RO- R8 can be passed into a service call. 

The service call handler is used when a service call is issued or via an OS_Byte 143 
(SWI ~I or OS_ServiceCall (SWI &30). The service calls are described in the 
section on OS_ServiceCall. 

Title string 
Offset of a null-tenninated module name 

Offset In header 

&10 

Use 

This is the offset of a null-terminated string which is used to refer to the module 
when OS_Module is called. The module name should be made up of alphanumeric 
characters and should not contain any spaces or control characters. This must be 
present for the module to be reCQinised. 

Module names which contain more than one word should follow the convention of 
the system modules. eg 'FileSwitch'. 'SpriteUti ls' . The case of the letters in a 
module name isn't significant for the purposes of matching. 

The string should be fairly short and descriptive. eg WindowManager or 
DiscTooiKit. 

Used by OS_Module with reason codes Delete. Enter and Rein it. Also printed by 
the •Modules command. 

Help string 

1-206 

Used when •Help prints infonnation from the module 

Offset In header 

&14 

Use 

This is the offset of a null-terminated string printed out by •Help before any 
information from the module. eg •Help Modules. •Help Commands.lt is advisable 
that this string is present to avoid confusion. The string must not contain any 
control characters (except Tab. which tabs to the next multiple of eight column. or 
character 31 which acts as a 'hard' space) but may contain spaces. 

Modul96 

·:;:;:;:;:;:;:; :;:;:;:;:;:;:;:;:-;::;:;:;:: :;:;:;:;:;:;:;::::;::::;:;:;~::<:«m:~;;;;;::::::~::::;o;:;:;:;:;:;:;:::: ~·:•;:::;;:::::•:=:·:·:·:=::;;;:;;;;;: ;:;:;;;:;.;. ;.;:;.;:;: ;:;.;.;.;.;.;:: .;:;.;:;.;:;.; .;:: .;::·:·:·:·:·:·:·:·:':·:·:·:·:·:·:·:·:::-;:;.;::;;;;:::;.;:;. :·:·:<:::·:·:·:·:·:·: 

To make the output of •Help Modules I~ neat. you should adopt the same 
spacing and naming conventions as the system modules. The fonnat is as follows: 

module_name Tab[ Tab) v. vv (DD HI>H YYYY) 

The module name Is followed by one or t1110 Tab characters to make it appear 
sixt~n characters long. The version number contains three digits and a full stop. 
eg 1.00. The creation date is of the form 06 Jun 1987. 

Help and command keyword table 
Get help on • Commands or enter them 

Offset In header 

&18 

On entry 

Rl2 =pointer to currently preferred instantiation of the module 
Rl3 =pointer to a full descending stack 
Rl4 =return address 

On exit 

RO =error pointer if anything goes wrong 
R7- R II must be preserved 

Interrupts 

Interrupts are enabled on entry 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Entry point is not re-entrant 

Use 

This table contains a list of keywords with associated help text and. in the case of 
commands. an entry address to the command code. Other associated data 
provides infonnation on the type of command. the limits on the number of 
parameters it can take. etc. 

1-207 



Help and command keyword table 

·;·:·:;:;:;:;;;;;;:;;;:-:-:·:·:·:·:·:·: ;;;:;.;.;.;:;.;.;.;.;:;:;.;:;::-:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:· ;.;.;.:,.:-:·: ·:·:·:·:·:·:·:·:·:·:·:·:·:-:.:·:·:·:·: ·:·:·:·:·:·:·:~·:·:·:-:::·:·:.;.;;:;-.;:;:;;:;."f.:".;.:;;;:::;:;;;;:~;:::;:;:::;:;:;:::::::;: ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:-;;:;:;:;:;:;:;:;:; 

1-208 

Used when OSCLI. •status, ·confieure and •Help wish to look for user-supplied 
keywords. 

The string to match should contain only the valid characters for its entry type. For 
example, commands matched by OSCU cannot contain any characters that have a 
spedal meanine in filenames. In general it is best to stidt to alphanumeric 
characters and the ·_· character. The case of the letters does not matter in 
command matching. but should be chosen for neat output from ·Help. The 
standard adopted by the system modules is the fonn 'Echo', 'Sef!Ype' etc 

The table consists o( a sequence of entries, terminated by a zero byte. Each entry 
has the following fonnat: 

String to match, null termlnaled 

ALIGN to word boundary 

Olfset of code from module start. or zero if no code 

lnlormatlon word 

Olfset of Invalid syntax message from module start, 
or zero lor default message 

Olfset of help text from module start. or zero for no help 

Figur1 14.1 Fonut t:f ntrils i11 fulp a.U c:o,.,. • .u RIIJ"''fi !4bll 

The code offset is used for commands. A zero entry means that the string has help 
text only associated with it. The code is entered with RO pointing at the command 
tail and R I set to the number of parameters (as counted by OSCLI. which means 
space(s) separate parameters except within double quotation marks). You may not 
overwrite the command tail. 

htfoi'!Mitlol word 

The infonnation word contains limits on the number of parameters accepted by 
the command, and also 16 flags. The fonnat is: 

Byte 

0 
I 
2 
3 

Collelt. 

Minimum number of parameters (0 • 255) 
OS_GSTrans map for first 8 parameters 
Maximum number of parameters (0 • 255) 
Flags 

Modu/6& 
;.;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;;;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.;:;:;:;:;:;:;:;:· .:.:;:;:;:;:;:;:··.·.·.·.·.·.·.·.=:-;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.;:;:;:;:;:; :::::::::::::::::::::::·:···· 

The command can. therefore, accept between zero and 255 parameters. OSCLI 
counts parameters by starting at the start of the oommand tail and lookine for 
items (quoted strings or continuous characters) separated by spaces. This is why it 
is advisable to use spaces as parameter separators and not commas. as In 
commands which are compatible with the B8C series of microcomputers. 

Byte I works as follows. Each bit corresponds toone parameter (bit zero of the byte 
equals the first parameter and so on). If the bit Is set, the parameter is GSThms'd 
before being passed on to the module. If the bit is clear. the parameter is passed 
directly to the module. This is useful for filing system commands which need to do 
filename transfonnations that are normally done by FlleSwitch. 

The flags are as follows: 

Blt31•1 

The match string Is a filing system command and is therefore only matched after 
OSCLI has failed to find the command In any of the module tables as a 'nonnal' 
command. osaJ only looks at flline system commands in the filing system 
currently active. Commands that need this flag set are. therefore. the filing 
system-specific ones such as •aye. •~..ogon, etc. 

Blt30•1 

The string is to be matched by •status and ·configure. The code in this case 
should scan the command tail and return a status string or set non-volatile 
memory as appropriate. The code Is called with RO set as follows: 

RO = 0 •configure has been issued with no option. The module prints a 
syntax string and returns . 

RO = I •status Df'liool has been issued. The module should print the currently 
configured status for this configuration Df'liDII. 

If RO is neither of the above. it means that •configure "'lio" has been issued: RO is 
a pointer to the command tall with leading spaces skipped. The module must 
decode the arguments and set the configuration acx:ordingly. lf the command tail is 
incorrect. the module should return with V set and RO indicating the error as 
follows: 

RO=O 
RO= I 
RO= 2 
RO= 3 
RO > 3 

Bad configure option error 
Numeric parameter needed error 
Configure parameter too large 
Too many parameters 
RO is a pointer to an error block for ·configure to return 

Note that this facility duplicates two of the service code entries. You should use 
this method in preference. as the OS performs decoding of the option keywords for 
you. 

1-209 



SWI cflunk base number 
"':;;o;.;.;:;:;:;:;:;;;;~-:.o;o.;;;.;.;.-:«w«•:•X•:•'•;;;.;.;.,.;:;;~:«·:-:..~:-;:mv:.:·:·:·:·::;.:.:-:-;.;.; .;:;:;.;.;.;.;:;:;:;.;.;.;.;.;.;.;:;:;: ;:;.;:;:;:;:;.;.;.;.;.;.;:;.;-;-;-;:; :·.·.·•:•:•:•w:::->."*::::::::::: 

Bltl9 • I 

•Help offset refers to a piece of code to call ror that keyword,lnstead or the offset 
or a text strins The code Is called with the foll0111lns entry conditions: 

RO points at a burrer 
Rl Is the buffer lensth 
Rl • R6 and Rl2 can be conupted 

On return. If RO Is non-1.ero. it is assumed to point at a zero-terminated strinsto 
pretty-print (see below). 

Ol•er com-•ta 

Other Oa115 should be zero for upwards compatibility. The Invalid synw messase Is 
used by 05CU as the text or an error me;sase. If the parameters, which are siven. 
fall outstde the range sped lied U a zero offset issiven, a default ' Invalid number of 
parameters' error Is siven Instead. 

The helptextlsused by •Help Ua keyword in the • Help command tail matches the 
match strins. then the help text is pretty·prtnted using the RISC OS intemaltoken 
dictionary Rerer lo OS_PrettyPrlnt (SWI &44) for a full list of the token dictionary 

A zero offset means no help text is to be printed. The strins may contain carrtase 
returns to force newlines. Tab (ASCII9) is also a spedal character: It forces 
alignment to the next multiple of eisht columns. Finally, ASCIIll is a 'hard space'. 
around which words lines will not be split. 

SWI chunk base number 
The base or chunk numbers ror the module 

Offset In huder 

&IC 

Use 

This offset contaln.s the base ol chunk numbers for the module Note that it is the 
only orfset that does not contain a pointer RISC OS reads this offset to enable it to 
call the module when a SWI uslnslts chunk ranse is issued. 

SWI handler code 
Called to handle SWls bel0011in11 to the module 

1-210 

Modulf/6 
:•:-:;:..::::~::::: :::::::::::::::: :;::::::::::::::::::::~::::::::::::::::::::::::::::::::::::;;;:~•:o:.:«-»:-~:-~···x-:o:-:-:-:-:·:=:-:::::::::.:-x~:.;v:-;.:.:•:·:·:·:=:-:.:·:-x-:-::;.;:::::::: -:-:-:::-:-:::::.:-:•:· ::: -:-:=:-:-:--:-.:::: ::::::::::::::::::-.o:»>.--:; 

Offset In header 

&20 

On entry 

Rll = SWI number modulo Chunk Size (le 0 • 61) 
R 12 = private word pointer 
Rl3 =supervisor stadt 
Rl4 contains the flass ol the SWI caller 

On exit 
RIO· Rl2 may be corrupted 

Use 

MOVS PC, Rl4 

to retum. havins altered Rl4 flap • appropriate (q settlns v ror an error). 

Interrupts 

Interrupts are unchansed on entry 
Fast intenupts are enabled 

Interrupts should always be enabled lfSWI processlns will take a long time (say 
> 20jl.s) and the routine can cope with IROs belns enabled. The code to enable 
IROsis: 

MVN 

TSTP 
Rn, fl_bit 
Rn, PC 

To disable IROs explldtly: 

MOV Rn, PC 
ORR Rn, Rn, t l bit 
TEQP Rn, t O -

Processor Mode 

Processor is in SVC mode 

Re-entrency 

Entry point is not ~ntrant 

- ,08000000 
preaerves other flags 

1-211 



SWI handler axle 

-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-::-.-.· 

u .. 

1-212 

........... ..,... ............ ~ ..... .::.·.· ..... :.~ ___ ::::~~-;;:-:-M::0.'5X::·;::;;.;:;.;;;:;::-;;;;;;:::::: :-:-:::-:-:-:-:::-:-:-~-:-:-;::~-:-::.-.-.. _...:.:::: 

These entries allow a module to ask to be given a range of otherwise unrecognized 
SWis The SWI chunk number Is the base of the range to be intercepted. SWls in the 
range· 

base to (base+ SWl chunk s~e- I) 

are passed to the handler code The module SWI chunk size is defined by the 
operating system to be &40 (64). For example. this entry in the Wimp module is 
&400CO. implying that it can accept SWls in the range &400CO- &400FF. 

These fields are optional: If they contain implausible values. the system will ignore 
them. The checks made are: 

• base Is a multiple or the chunk size and has a 0 top byte 

• code offset is a multiple of four with the top six bits zero. 

See the section entitled SWI "ltiii Nrs i" UU.il on page 1-24 for more details on SWI 
and chunk numbers. 

When the SWI handler code is called. the SWI number reduced to the range 0 to 
(chunk size- I) is passed in R II. The module then checks whether it is one which 
it recognises and 1f so. deals with 11 appropriately. The su&&ested code for doing 
this is: 

.SWientry 
LOa 
CMP 

ADOCC 
I 

Ill 2 , ( IU 2) : 911t vork.apaee pointer 
a.11 .. f (End0f.1UJII)bble - J'WIIpfdle ) /4 
PC .. PC, ltll , LSL t 2 ; d.1apatch if 1n ranqe 

• .1\UII»T•ble 

• 
I 

UniEnownSWi e rror 

llySWI_ O 
llyiWI _ l 

a NySWl_ n 
. tndOtJ._Tabl• 
.UnknovnSWilrcoc 

ADA ao, e rrtteeq 
ott" I'C, U 4, IOYertl.., _Fla9 

. errtt.aq 
~ouo nu 
~QCJS •unknown .odul• operation"' 
EOUI 0 

; unknown Stfl 

;S&IM! •• ay•t•• -•••gre 

Note that the address calculation on the PC to jump to the appropriate branch 
instruction relies on there being e~actly one instruction between the ADOCC and 
the B MySWI_O instruction. 

TheRI4 given totheSWI codecontalnsthe flagsoftheSWI caller. except that Vhas 
been cleared. So. to return without updating the flags. use 

ModcM/16 

-:-:-:-:-:-:-:-:-:-:-:-:-:-:::-:-:-:-:-:-:-:-:::-:-:-:-:::'!:.-:-~~~ .. 0-~~~·~ ' ~:::~~»-·:-:-;. 

HOVS PC, R14 

Otherwise alter the lint ~I stet for HIIITipie by eaecutlnc 

ORRS PC, R14, tCarry_Flaq 

Note that all the f1ass returned to the system are returned to the caller. so use(s 
conditional code must be written with this In mind. 

Bit 17 in the given SWl number is n« significant. The code is called on the 
assumption that it is the 'bit 17 set' version of the SWl. This means that the code 
must set RO and return V set on encountering an error. Ally error is then 
automatically dealt with by the system If the user actually asked for the 'bit 17 
deaf version. 

SWI decoding table 
Pointer to table of SWI names 

OffMt In header 

&24 

u •• 
When the SWis OS_SWINumberf'romString and OS_5WlNumber'lbString are 
called. there are two ways that the conversion can ocx:ur. If the table pointed to by 
this offset contains the string for the required entry Is there. then that is used. If it 
isn' t there and the table pointer Is 0. then the following olfsetls called. to allow the 
module code to perfonn the conversion . 

The table fonnat is: 

SWI group prefix 
Name of Oth SWl 
Name of 1st SWl 

Name of nth SWl 
0 byte to terrni nate 

All names are null terminated. The group prefix is the first part of the full SWI 
name: ie the first SWI's full name is Crow~x_Nutl(~lst. For example. the shell 
module's table is: 

1-213 



SWI d9COding cod6 

:;;;;;:;:;:;:;.;:;:;.;.;.;.;:;.;•:·:·:·:·:·:::..:«•:•:•::;;;;;;;;;.;.o.:;:;;:::;.;:;;:;;-:>:-:•:::.;.;.;:; .•• ::~:;.;.;:;:;.;::.;.;.;:;.;-;: :·:···:·:·:-:·:·:·:·:=:·:· ;:;.;:;:;:;:;:;:;:;.;:;.:-:·:·:•:•:·:•:·:·:·:·!·!·:'·:·:{.;;;.;;;.;:;;;.;.;~;;;.:o. .. >:.:·:-::: .;.;.;.;.;.;.;.;:;.;.;.:;.:,:;.; 

EOUS "Shell" 
EOUB 0 
EOUS "Create" 
EOUB 0 
EOUS "Destroy" 
EOUB 0 
EOUB 0 

In this example. the chunk base number is 405CO. The SWI405C I would therefore 
be con~rted Into 'Sheii_Destroy' if passed to OS_SWINumber'ToStrlng 

The OS adds an 'X" If the SWJ has bit 17 set. followed by the group prefix. followed 
by·-·· then the Individual SWJ name. If the table does not contain enough entries. 
then the SWI name field is filled in by the offset from the chunk base (in decimal) 

If the table field Is 21ero. then the code field is used (see above). This field Is also 
used when con~rtlng from strings to numbers. 

SWI decoding code 

1-214 

Entry for code to convert to and from SWI number and string 

Offset In header 

&28 

On entry 

Rl2 =private word pointer 
R ll "'supervisor stack 
R 14 • return address 

Text to number 
RO • any number less than zero 
R I • pointer to the strin11 to convert (terminated by a control character) 

Number to text 

On exit 

RO • SWI number ANDed with 6l: ie offset within module's chunk 
Rl • pointer to output buffer 
R2 • offset within output buffer at which to place the text 
Rl ,. siz.e of buffer 

R 12 preserved 

Modul66 
;.;:;:;:;o:;:;xo::;:;:;:; :;:;:;:;:;:;:;: ;:; :;:;:;.;:; :;:;:;:;:;:;:;:;:;:;:;.;:;:;:;~.;;:;;;:;:;:;:;:;::::;;;:;:;:;:;:;:;:;:;:;::;:.::-::;.;.:::*::::;;:;»::;:;.;:;:;:;:;:;:;:;:~:::::::::~:;.;:x.;.;.;:;:;:;.;-:·:·:·:·: :;.;.;.;.;.;:;::·:·:·:·!·!·!·:•;:;:;:;:;:;:;:;:;:;.;.;:;.;. ;.;.;. ·!·!·:-:-:-:-::.: 

Text to number 
RO =offset Into chunk (0- 6l) lfSWI re<:oinlsed. <()otherwise 
R I • R6 preserved 

Number to text 
RO preserved 
Rl preserved 
R2 =updated by lenath of text 
R l • R6 preserved 

Interrupts 

Interrupts are enabled on ently 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Entry point is not re-entrant 

This entry is used where a SWI name Is not defined In the SWI decode table. If it 
cannot be decoded. and the table pointer Is 0. then return with the re11isters 
unchanged and RJSC OS will provide a suitable default. 

When converting from number to text. RISC OS will append a null at the position 
after the length you returned. 

1-215 



SWICB/Is 

~:;;.;.;.:-:-:-:-:-::;:;;:~:-: -·;•, ~t;X.y.t;;;;::;-;:::::::;:;;;:_-_-:;z_"'_-_"';_-_- __ "';;;;;;~:--:.""' --_ --... _ _,... .... 't!-.~;-;.,...-."5:.:-.. .:- :-:::=:-:-:-:-·- ,.;.;.;:;.;.;.;.;.;.;.;:;.;.:-:-:·=~-=-·-·~-

SWI Calls 

1· 216 

Issue module service call 

On entry 

RO = 143 
R I = service type 
R2 =argument for service 

On exit 

RO. R I preserved 
R2 =may contain a return argument 

Interrupt• 
Interrupt status Is not altered 
Fast interrupts are enabled 

Proce .. or Mode 

Processor Is in SVC mode 

Re-entrancy 

Not defined 

u .. 

OS_Byte 143 
(SWI &06) 

This call is prcwlded for compallblhty with the BBC series ot microcomputers. and 
i.s used for cal line the modules' service entries. Only OS_ServiceCall should be 
used in new code 

Related SWia 

OS_ServiceCall (SWI &30) 

Related vectora 

ByteV 

Modul66 

~.--.-...... -. ._._._~:;::·.=:-.=:-:=-:::::;;.;;;:;.;-:-:-:-:-:-:-:-:-:.;-::;.;:;:;:;:;:;.;:;:;:;:;;;:;:;:;:;:;:::::::::::w.:zc:~~:-:<-~-: : :::::::: ~-----.-~.om:»Yi',;;-;;~ 

Pelform a module operation 

On entry 

RO = reason code 

OS_Module 
(SWI &1 E) 

other registers are parameters and depend upon the reason code 

Onexh 

RO preserved 
other register states depends on the reason code 

Interrupt a 
Interrupt status Is undefined 
Fast interrupts are enabled 

Proce .. or Mode 

Processor is in SVC mode 

R...,.trancy 

Not defined 

u .. 
This SWI proyides a number of calls to manipulate modules The value m RO 
describes the operation to perform as below: 

RO Meeala1 
0 Run 
I Load 
2 Enter 
3 Relnit 
4 Delete 
5 Describe RMA 
6 Claim 
7 Free 
8 'lldy 
9 Clear 

1·217 



OS_Modui9(SW/&1E) 

;:;:;;;:;;:·:·:·:·:·:·:·:·:·:·:·:·:·:·:· .·.·:·:·:·: .;.;:;:;:;.;.;;;.;.:;:.~-:';~~;:;:;:;:;:;:;:;:;:;:;:; :;:;:;:;:;:;:;:::::;:;:;::=x,.;:,:;;:::::;::xx::::::;:;:;:;:;::«::::: ..... .. .. ...•....... . . . . ··.·.·.·.·.·.·.·.·.·.·.·.·.·::·:·:·:·:·::·:·:·:·.·.·:·:·:·:·:·:·:·:·:-:-:.;.;.;.:-:·:-!-:·:{ 

1-218 

10 
II 
12 
13 

Insert module from memory 

Insert module from memory and move into RMA 
Extract module information 
Extend block 

14 Create new I nstantlation 
15 Rename Instantiation 
16 Make preferred instantiation 
17 Add expansion card module 

18 Lookup module name 
19 Enumerate ROM modules 
20 Enumerate ROM modules with version 

This call performs simple checks when deleting and moving modules. These 
actions give an error if the system 'thinks' you are applying them to a module 

currently active, for example, if you try to "RMKill BASIC from within BASIC. 

This check is applied whenever the system Is about to call a module's finalise entry. 
Hence simple applications need not keep checks on this explicitly. More complex 
modules which, for example. run subtasks. need to keep their own state checks in 

order to avoid being removed when they are due to be returned to at some point . 

Many of the OS_Module calls refer to a module title. This has some general 

restrictions . The name passed is terminated by any control character or space and 
can be abbreviated with a full stop. For example. 'Eco.' is an abbreviation for 
'Econet' . The title field in the module is similarly terminated by control characters 
and spaces. The pattern matching ignores the case of both strings. and allows any 

characters other than space or full stop. You should restrict your titles. however. to 
alphanumerics and·_· for future compatibility. 

As usual, errors are Indicated by V being set and an error pointer in RO. These 
errors may be generated by one of the modules. and the error block addressed by 
RO might reside in a module's code. You should therefore not rely on the error 
block remaining in the same place across calls to OS_Module. 

As the checks within this call cannot tell which instantiation of a module is active. 

no instantiation may die when one of them is the current application. The module 
name can also have an instantiation postfix. This consists of ''r.' followed by the 
instantiation name. This name field can be abbreviated in the same way as the 
module name. If no Instantiation is given. the currently preferred instantiation is 
referenced . 

In the following pages, the reason codes for this command are fully explained. The 

details of general SWI operation are as per this description. 

Related Swts 

None 

Modu/9& 

:-:-:$.::-:::;;;;;;;;:;.;::<::}..~0::::.;;;;;.;:;:;:;.;.;-: ·:·:·:·:·:·:·:·:=:·:·:·:·:=:· ;:;:;:;:;;;;;;;:;:;::·:·: ... :: •.• ·.·.·.·.·.·.·.-::: :;:;:;:; :;:;:;:;:;:; :;:;:;:;:;~:;:;:;:;~;:;:::::::;:;:;:;:;:; :;:;:;:: :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;;;:;:;:; :;:;:;.;.;:;;;:; :;:;.;:;:;:;:;::~::::::;:;:;:; :;:::;:;:; 

Retated vectora 

None 

1-219 



OS_Module 0 (SWI & 1 E) 

:-:=:·:·:·:·:·:;;:;..; :;:;.;:;:;:;:;:;:;:;:;:;.;:;:~;~:;: ;:;:;:;:;:;~:;:;:;:;:: :;:;:;:;:;:;:;:;:;;;:;:;:;:;:;.;:;:;:;:;:;:;:;:;:;: ;:;.;:;:;:;:;:;:;:;:;:;:;:;:;;;:;;;.;:;.;.;.;:;::. ;.;.;:;:;.;:;:;.;-::;.; ·:·:·:·:·:·:·:·:-:.:·:·:.:·:·: ·:·:·:·:-::m-~..:;:·~:~~/n:::::<-.. ":;~~ 

1-220 

Run 

On entry 
RO = 0 (reason code) 
Rl =pointer to path name plus optional parameters 

On exit 
Does not return unless error occurs 

u .. 

OS Module 0 
(SWI &1E) 

This call is equivalent to loadin8 then enterin8 the module. If the module can be 
started as an application. it will be. and so the call will not return . 

Possible errors are 'File not found'. 'No room in RM.A;, 'Not a module'. 'Duplicate 
module refused to die'. and 'Module refuses to initialise'. 

Related reason codes 

1.2 

Modules 

:::::::•:o:::::;oM:::;oM:·::;;;::o:·:·:•:-:·:•:;:.;~;;::;.;.:•:•:•:::;;~~-:;:::~xq~.;~:-;::;:;;:;;;;;~;::;;::·:·:·:0>:"'-~::>:"-::;::<;.;:~.;;.~.;~.<-.~.<-::.:o:'-:·::;.;.;.;:::;.;-:.:.;;::; .;.;:;.;.:.;.;:;;:.;.;::.:·:·:• :-:::·:·: .;.;.;.; 

Load 

OS_Module 1 
(SWI &1 E) 

On entry 

RO = I (reason code) 
Rl =pointer to pathname and optional parameters 

On exit 

Use 

RO. R I preserved 

This reason code attempts to claim a blodofthe RMAand •Loads the file If it has 
the correct file type of &fl'A. The header fields of the module are then checked for 
validity. 

If another module has the same name. It attempts to kill the duplicate module. 
This will8ive an error if the module refuses to die. Note that this allows system 
modules to be UP8raded with new versions simply by loadin8 the new version. All 
instantiations of the duplicate are killed. 

It sets the private 1IIOrkspace word to 0, calls the module throu11h its initialise 
address and links it to the end of the module list. or replaces the old module of the 
same name. The module is initialised as instantiation 'Base'. 

The filename should be terminated suitably for OS_File. The terminator can be 
space, in which case there can be a parameter strin& after the filename to pass to 
the module initialisation. 

Possible errors are 'File not found'. 'No room in RMA'. 'Not a module'. 'Duplicate 
module refused to die' . and 'Module refuses to initialise'. 

Related reason codes 
o. 2 

1-221 



OS_Module 2 (SWI &1E} 

;:;:;:;:;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;::· .;.;.;.::: :;:;:;: :;:;:;:;:;:;:;:;:;:;:: :;:;:;:;:;:;:;:;:;:;:;.;.;.; :;:;.;:;::.s.:;:.::;;:;;;;.;-: .;.;.;;;:;:;.:-:·:·:·:·:·:·:·::;:;:;:: :;:;:;:;:;:~;:;:;:;.·>'•'' 

1-222 

Enter 

OS_Module 2 
(SWI &1 E) 

On entry 

RO = 2 (reason code) 
Rl =pointer to module name 
R2 = pointer to parameters 

On exit 

Use 

Does not return unless error occurs 

If the module doesn't have a start address. then this call simply returns. If it does. 
this call resets the supervisor stack. sets user mode and enters the module. hence 
making it the current application. Any specified Instantiation will become the 
preferred Instantiation. The possible error Is 'Module not found' . 

For a description of how a module is started up as an application. refer to 
OS..}'SControl 2 (SWI &29) . 

Related reason codes 

0 

Modul86 

:=:·:· :-:-:-:-:-:.:·: .;;;.;;:.:::..~~m.m;x.:.::-:-:.:;:-: ·:·:·:·>:·:·:·:·:·:·:·:-::::::::::;.:::::::::::~: -:=:·:=:=:=:=:·:·:·:·: =:·:·:·:=:=: :::::::::;.::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::;.;::·-:::::::::::~ ·:·:·:-x:: ..... ':.::::::::=:·:···· 

Re-Initialise 

OS_Module 3 
(SWI &1E) 

On entry 

RO = 3 (reason code) 
Rl =pointer to module name plus any parameters for initialisation 

On exit 

Use 

RO. R I preserved 

This is equivalent to reloading the module. It is Intended for use in forcing 
modules that have become confused into a sensible state. without having to 
reload them explldtly from the filing system. The Instruction calls the module 
through its finalise address and deletes any workspace. It then calls It through its 
initialisation address to reinitialise it. If the module fails to initialise it is removed 
from the RMA. Possible enors are 'Module not found' and others dependent on the 
module. 

Related reason codes 

8.9 

1-223 



OS_Modu/s 4 (SWI & t E) 

:~::::::::::::::::;:;:;:;:;;;;;::::::.:·:·: .;.;::·:·:·:·:·:-:::-.:«·:·:.:>:.:::;::::x-:--::~:.;:::0W/N~::::::: :;:;:;:;:;:;:;:;:;: ·:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.;:: .;:;:;:;:;:;:;:;:;:;;~;:;:;:;; •·.·.·.·.·.·.·.· . . ·.·.·.-............................... ·.·.·.·.·.·:·:·:·:·:·:··;····. 

1·224 

Delete 

OS_Module 4 
(SWI &1E) 

On entry 

RO = 4 (reason code) 
Rl =pointer to module name 

On exit 

Use 

RO. Rl preserved 

This reason code (and •RMKill) kill off the currently preferred instantiation of the 
module or the one specified in the name. For example: 

*RMKlll FlleCore,Base 

This calls the module throu8h its finalise address. frees any workspace pointed at 
by the private word. delinks the module from the module list and frees the space it 
was occupying. Possible errors are ·Module not found· and others dependent on 
the module. 

Related reaaon codes 

None 

Modu/96 

:;x-:::-: ·>:···:·:·:·:·:.:·:. :·:·:·:·:·:·:·:·:·:·:·:·:.:-:::;:;:::.;.;::-:~«-:;;.; ·:·:·:·:·:·:·:·:·:·:·:-:.:·:·:·:·:·:·:·:· :·:···:=:·:-:::·:·:·:·:·:·: .... :=:·:·:·:·:·:·:·:·:·:· :·:·:·:·:;:.;.:.:-:..:.:·:::::. ;.:;;:;.;:;:;;:.;.;-:.:-:.;.:.;.:.:·:=:.:.:·:· ;.;.;:;;:;:;:;:~_.:;~::~::;.;::::·:·:·=·:·:-:.; 

Describe RMA 

On entry 
RO = 5 (reason code) 

On exit 

Uae 

RO preserved 
R2 =size of lar8est block available in bytes 
RJ = total amount free In RMA in bytes 

OS Module 5 
(SWI &1 E) 

This call returns infonnation on the sta te o( the RMA. It does this by calling 
OS_Heap with the appropriate descriptor. 

Related reaaon cod• 

6 

1-225 



OS_ Module 6 (SWI & 1 E) 

:o:::~:::::::;;.'*:::~~:::::..o;;;::.:::::;::.:w:::::::::::::::~:>:::-"!=::::.-::::::::::::::: :·::::::::::··:=:-.:::::::;.:::::::: :;:::::::::::··:-.:.:.:.:.:;::::::.:::::.::::::::::::::::::::::::.;:;.·· •.••• :;.:-:·:·:·:-:-:-:·:·:···:·:;;.;.;.;::·:·:-:::.:x-:-:::.:;;::::.:::::;:::::<:::'=::..~:=:=:";=* 

1-226 

Claim 

OS_Module 6 
(SWI &1E) 

On entry 

RO = 6 (reason code) 
RJ =required size 

On exit 

Use 

RO preserved 
R2 = pointer to claimed block 
R3 preserved 

This calls the heap manager to daim workspace in the RMA. If it fails and 
application workspace is not currently being used then it will attempt to reallocate 
this memory and retry. It returns with V set if it Is still unsuccessful. This call is 
useful for claiming workspace during the module's Initialisation. but may also be 
used from other module entries. 

The possible error is 'No room in RMA'. 

Related reason codes 

5. 7 

Modules 

::::~:-... ~~.,.~*"":;,.-~::;;.~;x;x«~v:::·: ·=·:-:::·=·=·=~·= ·:·:·:·:=:=:~<:-~:;:::::~;~;.::::::~:=::.:::;:;:::::::::.::::::::::::: :::: :::: ·:·:=:-::::: ·:=::.:::::::::=::9'~:::::::~:>:::::::-~~=:;:::::~~~ 

Free 

On entry 

RO = 7 (reason code) 
R2 = pointer to block 

On exit 

Use 

RO preserved 
R2 preserved 

OS_Module 7 
(SWI &1 E) 

This calls the heap manqer to free a block of workspace daimed from the RMA. 

The possible error Is 'Not a heap block' . 

Related reason cod• 
6 

1-227 



OS_ Modu/9 8 (SW/ & 1 E) 

.<'m!:;:;:;:;:;:;:;:;:;:;:;:;;:.;:;.;.;.:.;.;.;.Y/.-!-'/.·X.!·!·!·!·!·!•J!'l!·!·!· ;.;.;.;.;.;.;:;.;.;.;.;.;. ;.;.;.;:;.;.;.;.;.;.;.:;;.;.:--.. :-;..-_.:;;:o;;;;:;:;.::;.;:;:::::;:;:::::;:;:;;;:;:;::;,;;o-,..:'"O:::;;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:; :;:;:; :;:;:;:;:;:;;;:;:;:;: ;:;:;:;:;:;:;:;:;:;:;:;:; :;:;:;:;:;:;:;:;:;:; :;:;:;:; 

1-228 

Tidy 

OS_Module 8 
(SWI &1 E) 

On entry 

RO = 8 (reason code) 

On exit 

u .. 
RO preserved 

This gives each instantiation of all modules in tum. from the end or the module list 
and working backwards. a non-fatal finalisation call. Instantiations of a particular 
module are killed in the order they appear on the current instantiation list. 

Should any instantiation refuse to die (temp:>rarily), and another module be 
called. then the module that has already been called with a non-fatal finalisatlon Is 
re-initialised . If it cannot be re-initialised, then that module is deleted from the 
system. 

The SWI then exits with the original error. If it succeeds. then it collects the RMA 
together Into one large unfragmented block and reinitialises the modules again. 
Any private words containing pointers to workspace blocks in the RMA are 
relocated. This should enlarge application space. 

Related re .. on cod" 
3. 9 

Modui91S 

::~::::::: :::::::::::::::: :::::::::::::::::::::::: ::::::::.::::::: -:·:=:=:=:-:::::;:::::::::.:::::::::::::::::::::::::::::.::::::::: ::: :::::::::::::·· •• :.:.:.:.:.:::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::":"-:::m::::~z::::::: ;:;:;:;:;:;:;:; 

Clear 

On entry 

RO = 9 (reason code) 

On exit 

RO preserved 

u •• 

OS_Module 9 
(SWI &1 E) 

This deals with each module in tum. removins lt from the module list and calling it 
through its finalise address. If It Isn' t a ROM module. Errors are generated if 
modules fail to d ie. 

Related rea•on cod• 
3, 8 

1-229 



OS_Module 10 (SWI & 1E) 

:-: :;:;:;.;:;:;:;:; :;:;:;:;:::;:;:;:;-:::-: -:::::.;:;.;:;.;.;.;.;:;:;:;:;.;.;.;.;.;::·:·:·:·:·=·~:-:...o-;::-:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·: .;.:-:·:·:·:·:·::;:;.;.;.;.;.;.;.;:;:;.;.;:;.;.: -:·:·:·:·:·:·:::;;:;.;.;:;.;.;:;.;:;.:,;.;:;.;.;:;.;.;:;.; :;.;:; .;.;.;.;.;.;:;.;.:;.;:: 

1-230 

Insert module from memory 

OS_Module 10 
(SWI &1 E) 

On entry 

RO"' 10 (reason code) 
R I ,. pointer to start of module 

On exit 

Use 

RO, R I preserved 

This takes a pointer to a block of memory and links it into the module chain, 
without movms it Header fields are checked for validity. All duplicate modules are 
killed If It Is successful, then the module is called at its initialisation entry 

Possible errors are 'Duplicate module refuses to die' and 'Module refuses to 
Initialise'. 

The word Immediately before the module start (ie at address Rl-4) must contain 
tile lens til of the module in bytes. 

Related reiSon codH 
II 

Modul96 
;;:·:·:·::::::::;.::::~:::~:::::::::::::::::::::·:·:·:·:·.:-:-:-:·:·:·:·:=::::: :::::;.:::::·:· :-::;.·: .·.·.·.·:·:.:.:.:·:·:·: .;::::.:=:-:·:.:::-:x.:~~:x::-:;::;.;:::::::m&':·:«v:·:·:·:·:::.:-: ·:·:·:·:·:·:·: ·:·:·:·:·:·:·:·:· ;.;::::::::=:·:·:=:·:·:·:<·:·:·:·:·:·:·:=:=:=:-::::: 

Insert module from memory and move Into RMA 

OS_Module 11 
(SWI &1 E) 

On entry 

RO =(reason code) 
Rl =pointer to start of module 
R2 = length of module In bytes 

Onexh 

Use 

RO • R2 preserved 

This takes a pointer to a block or memory, and cheds Its header fields for validity. 
It then kills any d uplicate module, copies the block. Into the RMA, initialises it and 
links it into the module chain. 

Possible errors are 'Duplicate module refuses to die', 'No room in RMA: and 
'Module refuses to Initialise'. 

Related reason cod• 
10 

1·231 



OS_Modui912 (SWI&1E) 

· ·.·.··:·:·:::::::;;:::«n.::::::::::::;::::::::::x;:::::::::::::::::::::~~:::=~::::::::::::::::-.. v..:W»hW"a:;o;:;:;:::;:;:;:;:::;:;:. ~=:;:-.;.;::-:~·=·:.;·:·:·:·:·:· :·:·:·:·:·:·:·:·:·:J.>:·:·: ·=·=·=·=·:·:·:·:·:·:-;.;::.:·:·:-:·:· :=:·:·:·:-:::::.:=:-::::::;.::::::::::::::·:.··· · 

1-232 

Extract module information 

OS Module 12 
(SWI &1 E) 

On entry 

RO = 12 (reason code) 
R I =pointer to module. or 0 for first call 
R2 = instantiation number. or 0 for all 

On exit 

Use 

RO preserved 
Rl =updated module number 
R2 = updated instantiation number 
R3 =module base 
R4 = private word (usually workspace pointer) 
R5 = pointer to instantiation postfix 

This returns pointers to modules and the contents of their private word. It searches 
the list of modules to see if the module pointer given in Rl is valid. If it is valid. the 
next descriptor in the module chain is referenced. otherwise the first module 
descriptor is referenced. lnfonnation from the referenced descriptor is then 
returned. The information returned is exactly that printed by the • Modules 
command. 

Specifying the instantiation number and index in the module list allows all module 
instantiations to be enumerated. Enumeration can be started with 0 in Rl and R2. 
This call will: 

• count down the module list to find the R I th entry; error if list runs out 

• count down the instantiation list to R2th entry; error if list runs out 

• set up return information 

If the module has more instantiatio ns. R2 += I else Rl += I. R2 = 0 

Possible errors are 'No more modules' or 'No more instantiations'. 

Related reason codes 

13 

Modul9s 

·:::::::::-;y;;:::::::::::::::::::::::::::::::-~::~:;:;.:;;.:::::.::~n-: .... :·:·:·:·:·:·:·: ••·•·•·.·.·.·.·.·.·.·.· ·:·:·:·:·:·:·:·:·:-:.:·:·:·:·:-:::::::::·:·:·:·:·:·:· •.. :;::::::::: .·.·.··:·:· :::::::::::::: ::::::::::::::::.-::::x:rn.::::::::::::::::::::::::::::::::::::::::;:::::::::o:.:-:;;.:-:~-:-:.:.:·:·:-::: 

Extend block 

On entry 

RO = 13 (reason code) 
R2 = pointer to worltspace block 
R3 =change in size In bytes 

On exit 

u .. 

RO preserved 
R2 = pointer to new allocated block 
R3 preserved 

OS_Module 13 
(SWI &1E) 

This allows modules to extend worltspace blocks claimed in the RMA It calls 
OS_Heap with the appropriate descriptor and attempts to enlarge the RMA if this 
fails. 

The possible error Is 'No room In RMA:. 

Related reason codes 

12 

1-233 



OS_Modu/814 (SWI&tE) 

1-234 

••• :;:;:;:;::·:·:··: •••• ;.;:;:;:;:;:;;;:;.;.;:;.;:;.;:;.:-:·:·:·: ••••••••••••••••••••••••••••••••••• ;:;:;::·:·:·:·:·:·:·: :;:;.;.;.;.;:;.;.; .;.;:;.;:; ·!·!·!·:·::;: :-::::::::>:?.~:;:.:?:;:0:;};:;-:.;-:~:;;:;:;.;::~::::::::::~:;:;;:::::::::::;.;:;.;.; 

Create new Instantiation 

On entry 

RO = 14 (reason code) 

OS_Module 14 
(SWI &1 E) 

R I =pointer to full name of new instantiation and any parameters for initialisation 

On exit 

Use 

RO. Rl preserved 

This creates new instantiations of existinll modules. usinll the syntax: 

module_t1tle\1nstant1at1on 

For example: 

FileCore\RAM 

Related reaeon codes 

15. 16 

Moduf86 
:.:::::~~::::::::::: ::::::::::::::>:::::::::::::::=!: ::::::::::::::::::::::::: :;::::::::::::~::::=::t::~::::::::::::::::::::~:;:};::::::::::.::...~~:::::::::-: .;.;::::::::: ::::::::::::::::::: .;::::::=:·:·:-:.:·:·:·:=:-::: ·:·:·:.:·:·:·:.:·:·:·:-:;;.;. ::::::::::: :::: :;::::::::::.x-:::::::::~ 

Rename instantiation 

On entry 

RO = 15 (reason code) 
Rl =pointer to current module%1nstantlatlon name 
R2 = pointer to new postfix stri n11 

On exit 

RO - R2 preserved 

Use 

OS_Module 15 
(SWI &1E) 

This renames an existing instantiation of a module. For example: 

FileCore\RAM 

to 

FileCore\ADFS 

Related reason codes 

14. 16 

1-235 



OS_Modu/6 16 (SWI &1E) 

•. ·.·:·:;:;:;:;>:•:•::::;;;:;:;::.:•:=:•::::m-;-.::•:::;;~:;:::;:;:;:;:;:;--::;.;::<>::.::.:•::::{:;~:= ;:;:;:;:;:;.;.;:;:;.;.;.;:;.;:;:;.;:;:;.;;;:;. :·:·:·:·:·:·:·:·:=:·:·: ·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:-:·:·:·:·:·:·:·:·:·:·:·:.;.;.;.;:;.;.;.;.;.·.·. 

1-236 

Make preferred instantiation 

On entry 

RO = 16 (reason code) 
Rl =pointer to full module%instantiation name 

On exit 

RO. R I preserved 

u .. 

OS Module 16 
(SWI &1 E) 

This enables you to select the preferred instantiation of a particular module. 

Related reason codes 

14. 15 

ModukJs 
:::::=:·:9-X·:·:-:·:·: .;.::::::~«<»-;:.::~:::::::o::::::::;.;:;.;.:v:;:;:;>:'{>;:~:.:::·:·:=:·:l..::.:-:>::;.;::::::::::::~~::::::.;n;;:<:~:::::;::::!o:::::o:::::::::::::::::~nx:::::•::::~:.::::~=::-;:::::::::::::::::::::::::::::::::-::· 

Add expansion card module 

On entry 

RO = 11 (reason code) 
Rl =pointer to environment string 
R2 =chunk number 
R3 =ROM section 

On exit 

RO • R3 preserved 

Use 

OS _Module 17 
(SWI &1 E) 

This aiiO'Ns expansion card and extension ROM modules to be added to the 
module list . Note that extension ROMs are not supported in RISC OS 2.0. 

Valid ROM sections are: 

ROM .ectloa Me .. tal 
- I System ROM 

0 
I 
2 
3 
-2 
-3 
-4 

Related reason codes 

10 

Expansion card 0 
Expansion card I 
Expansion card 2 
Expansion card 3 

System ROM I 
SystemROM 2 
System ROM 3 (etc) 

(not in RISC OS 2.0) 
(not in RISC OS 2.0) 
(not in RISC OS 2.0) 

1-237 



OS_Modu!B 18(SWI &1E) 

.;.;:;.;:;.;:;.;:;:;.;.;:::::;.;.;:;.;:;:;:;.;.;;;:;:;.;.;:;.;:;.;.;:;:;.;.;.;:;.;:;.;:;:;.;:;:;.;.;:;.;.;.;.;.;.;.;.;:; .;.;.;:;:;:;:;:;;;;;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.;:;.;.;.;:;.;.;:;.;:;.;.;.;.;:;:;:;:;.;:;:;:;:;:;:;:;:;:;:;:;.;.;:;:;:;:;:;:;:;:;:;.;: :;:;:;:;.;:;:;:;:;.;:;:; 

1·238 

Look·up module name 

On entry 

RO = 18 (reason code) 
R I = pointer to full "'O<iull_titlfl.irtstuti<llion name 

On exit 

Use 

RO preserved 
Rl =module number 
R2 =instantiation number 
R3 = pointer to module code 
R4 = private word contents 
R5 = pointer to postfix string 

OS_Module 18 
(SWI &1 E) 

This returns pointers to modules and the contents of their private word. It searches 
the list of modules to see ifthemodulepointer given in Rl is valid. If It is valid. the 
module descriptor is referenced. lnfonnation from the referenced descriptor is 
then returned. 

Related reason codes 
12, 19,20 

Modu/116 
:-: ·:·:·:·:·:-:-:-~-:-:-: .;.;.;:;.;.;.;. ;.;.;:; ·:·:·:·:·:·:·:·:·:·:·: :;:;:;:; :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.;:;:;:; ·.·.·.:.:.:.:.:;.;. ;:;:;:; :;:;:;:;:;:;:;:;:; :;:::::::::::;:;:;:;:::;;::;:;:;:;:;: : .·.·.·.:.:.:.:.:.:; •• :;:;:;:;:;:;:;;.: .·.···:: •••• ;:;:;:;:;:;:;.;:;:;.;.;.;.;: ;.;.;:;:;:;::·:·:·:·:·:·:·-=··· 

Enumerate ROM modu~ 

OS _Module 19 
(SWI &1E) 

On entry 

RO = 19 (reason code) 
Rl =module number (0 to start full enumeration) 
R2 =ROM section (-1 to start full enumeration) 

On exit 

Use 

RO preserved 
Rl =module numberol found module+ I 
R2 = ROM section of found module 
R3 = pointer to module name 
R4 = -I unplugged 

0 Inserted but not In the module chain le donnant 
I active 
2 running 

R5 =chunk number of expansion card module 

This call returns infonnation on one module that is currently in ROM. along with 
its status. The module found is the given number of modules on from the start of 
the given ROM sedlon. If there are insuffident modules In the ROM section then 
the search continues with the next section: so the flfth module in a four module 
section would in fad be the first module of the next section. 

The ROM sect ions are scanned in this order: 

ROM eectloa 
-I 

0 
I 
2 
3 

-2 
-3 
-4 

Me .. I at 
System ROM 

Expansion card 0 
Expansion card I 
Eq>ansion card 2 
Eq>ansion card 3 

System ROM I 
System ROM 2 
System ROM 3 (etc) 

(not in RISC OS 2.0) 
(not in RISC OS 2.0) 
(not in RISC OS 2.0) 

1·239 



OS_Module 19 (SWI & 1 E) 

-:-:-:-:-:-:-:-:-: .;.;.;.:.;.;-:.:-:-;.:<..-. :--~·=·· ·:·:·:·:·:·:-:-:.:·:·:·:···:·:·:·:·:·:·:·:·:·:;;.;-;;:;;;;:;.~;;e:;....:;":•:·.·;.;.;.::,;; .. , .·-:·:·:·:·:·:·:·:·:·:·:•!·!•!•!-!•:•:•:<:>:.:»Wh:·:•;;;;;;;;;o;;:;:«:;..,_)>':::':;:::-; 

1·240 

The values returned in RO • R2 are the oorrect ones to use this call to enumerate 
the next module: hence repeated calls will alve a full enumeration of all ROM 
modules. 

The call returns the error 'No more modules' (error number &107) if there are no 
more modules from the point speofied 1n the orderina. 

Related reaeon codes 

12. 18. 20 

;;;;:;-.,«~~-:-:•;•_ 

Module6 
;:;.:-:-;-:-;..;.;.:-:·!·!·!·!·!·!·!·!•::~:;>~;.;.;:;;;;:;::;;;.;;;;;;w-~~~-:-:v:.:~;.:·:·:.:•:•:;:-:·:·:•:~#~:·;;.:;:;;;.;.::;:;:;;;;»';m:"-;!;!; __ .-:·:·!·!·!·!· 

Enumerate ROM modules 

OS_Module 20 
(SWI &1 E) 

On entry 

RO =20 (reason code) 
Rl =module number (0 to start full enumeration) 
R2 =ROM section (-I to start full enumeration) 

Onexh 

u •• 

RO preserved 
Rl =module number of found module+ I 
R2 =ROM section of found module 
R3 = pointer to module name 
R4 = -I unplucaed 

0 Inserted but not In the module chain le dormant 
I acti¥e 
2 runnin1 

R5 =chunk number of expansion card module 
R6 =BCD version number (derived from module's help strina) 

This call returns information on one module that is currently in ROM. alona with 
Its status. The call is identical toOS_Module 19, e~pt that on exit R6 holds a BCD 
(binary coded dedmal) form of the module's version number. as derived from the 
module's help strina. The top 16 bits ohhis value hold the lnteaer part or the 
version number, and the bottom 16 bits hold the fractional part: ea if the version 
number of the module is '3.14' then the value returned would be &00031400. 

The module found Is t~ &i¥en number of modules on from t~ start ol t~ aiven 
ROM section. if t~re are insuffloent modules in the ROM section then t~ search 
oontinueswith t~ next section. so the fifth module in a four module section would 
in fact be the first module of the next section. 

1·241 



OS_ Module 20 (SW/ & 1E) 

-~::-~:::-::::::;.;;::: :;.:::::::::=:·:·:-:-:.;.:.;.;.;.:.:.:.;.:. 'w$1 ··=·:·:·:·:·:·:·:-:.:·:·:.:·:·:·:·:-:::::::•:•:o:•:•:•::::x;;::•:•:·:·: ·:•:·:·:•:·:·:·:·:·:·:·:·:·:·:·:.:-:-:::::;x;y..z:~:::::::::::::::::: :::::::::::::::::. :::::•:•:=:=:=:·:•:•:-:·:·:·:· :-:·:·:-:·:.:.:•:-:«-:-:-x..:•:•:·:·:·· 

1-242 

The ROM sections are scanned in this order: 

ROM MCtl011 
-I 

0 
I 
2 
l 
-2 
-l ... 

M-Ill•• 
System ROM 

Expansion card 0 
Expansion card I 
Expansion card 2 
Expansion card l 

System ROM I 
System ROM 2 
System ROM l (etc) 

(not In RJSC OS 2 0) 
(not in RJSC OS 2 0) 
(not in RJSC OS 2 O) 

The values returned In RO- R2 are the correct ones to use this call to enumer.~te 
the next module: hence repeated calls will give a full enumer.~tion of all ROM 
modules 

The call returns the error 'No more modules' (error number &107) if there are no 
more modules from the point speciHed in the ordering. 

Related re .. on cod" 

12. 18. 19 

Modul86 
:o:;x:x;;:;:::::::: :::::::: ::::::::::::::::::::::::::::::::::::::::.:-:::::.:=:·:·:·:·:· :=:·:·:•:·:·:·:·:·:·: =:·:·:·».~-:v».-.:·:..:•:·:·:;;·:·:·:·:·:·:·:•:·.:·:=~«.«>: .. ..:-:•:·:·:•:•:•:·:·:·:·:·:-:.:·:·:·»:>:·:-:::-:•:=:::•:~:::::::::::::::::::::::::::;;;:;:::::: ::::::::::::: ·:·:·:-::::. 

Service Calls 

Issue a service call to a module 

OS_ ServiceCall 
(SWI &30) 

On entry 

Rl =service number 
other registers are par.~meters and depend upon the service number 

Onexh 

R I = 0 if service was claimed. preseNed otherwise 
other registers up to R8 may be modified if the service was claimed 

Interrupts 

Interrupt status Is not altered 
Fast interrupts are enabled 

Processor Mode 

Processor is in S~ mode 

Re-entrency 

Use 

SWl is re-entrant 

OS_ServiceCallls used to issue a service call It can be used by any program 
(including a module) which wishes to pass a service around the current module 
list. For example. someone wishing to use FIOs might issue the daimlrelease 
service calls. 

Here is a list of the available service calls. the details of which can be found on the 
appropriate pages. 

1-243 



OS_ServicBCal (SWI &30) Modules 
·:·:.-;o:·:···:-:-;-:.;.o»:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·: :.:•'-'0:·:·····=·:««-:.·Q=""'~-=~;~rr:= -~· ~-~m: .. -.;;;.~:::::;:;:::o:.;:;.::::m::<-;-;m.:::::o$:Z.:~-= ~ .. -~~=»:=~::;;.;s:::;;x.w::;:;~~-;x.~:::=:~::;:;:;:;:;:;:;:;:%c:::;:;:;:::;;;.:!:-:-::-..~ •• · .. ·.·.·.·'Z':..t!'$ ~ 

No Na1ae Metutl•l oapap &56 Service_EoonetOymg Econet about to leave pace6-31 
&00 Service_Serviced Service call dalmed paee 1·247 &'.i7 Service_W1mpReportEnor Wimp is openinctclosing a pace4·149 
&04 Service_ UKCommand Unknown command paee 1·248 ReportError window 
&06 Service _Error Error has oocuned paee 1·249 &'.i9 Service_ResourceFSStarted Comes after Resourcd'SStartlna pace ).-392 
&o1 Service_UKByte Unknown OS_Byte paee 1·250 (for clients) 
&o8 Service_UKWord Unknown OS_ Word paee 1·251 &'.iA Servfa:_ResourceFSDylng ResourceFS is killedlretoeded pace ).-393 
&o9 Service_Help •Help has been called paee 1·252 &58 Service_CahbrationChanged Saeen calibration Is changed paee 4·390 
&oB Service_ReleaseFIO Release FlO page 1·126 &5C Service_ WimpSaveOesktop Save desktop to a file request paee 4·150 
&oc Service_CiaimFIO Claim FlO page 1-127 &50 Service_WimpPalette Palette change pace 4·151 
&II Service_ Memory Memory controller about page 1·350 &5E Service_MessageFileCiosed From message file module page 5-237 

to be remapped &5F Servlce_NetFSOying NetFS Is dyina paee 3· 328 
&12 Service_StartUpFS Start·UpFI II na System &<>0 Service_ResourceFSStarting Starting Resou reeFS paee 3·394 
&18 Service_Post_Hel p End or •Help code paee 1·253 &64 Service_ TerritoryMan.rLoaded Territory manaaer started page 5·282 
&27 Service_Reset Post-Reset page 4·137 &65 Service_PDriverStarting ?Driver sharer module startlna up page 5·176 
&28 Service_UKConfig Unknown ·configure page 1-254 &66 Service_PDumperStarting ?Dumper module startlna up page 5·171 
&29 Service_UKStatus Unknown •Status page 1·255 &61 Service_PDumperDying ?Dumper module dylna pace 5·178 
&2A Service_NewApplicatlon Application about to start page 1·256 &68 Servlce_CioseFile Close a file 
&40 Service_FSRededare Filins system re-Initialise 569 Servlce_ldentifyDisc Identify disc format 
&41 Service_Print For Internal use only page 5-175 &6A Servlce_EnumerateFormats Format sub-menu entries 
&42 Service_LookupFileType Lookup file type page 1·257 &68 Service_ldentifyFormat Identify format 
&43 Service_lntemational International service paee 5·257 &6C Service_OisplayFormatHelp Display list of available formats 
&44 Service_Keyhandler Keyboard handler page 2·356 &60 Service_ ValidateAddress Invalid address range called paee 1-352 
&45 Service_ Pre Reset Pre-reset paee6-J04 &6E Service_FontsChansed New FontSPath detected paee5-13 
&46 Service_ModeChange Mode change page 2-128 &6F Service_BufferStartins Allows modules to realster buffers page 5-409 
&47 Service_CiaimFlOinBackl!round Claim FlO in backl!round page 1-128 with the buffer manager 
&48 Service_ReAllocatePorts Econet restartlns paee6-30 &10 Service_DeviceFSStarti ns OeviceFS is startina page ).-404 
&49 Service_StartWimp Start the Wimp page4-138 &71 Service.J)eviceFSDyi ng Devfa:FS is dying page 3-405 
&4A Service_StartedWimp Started the Wimp page4·140 &72 Service_SwitchingOutputTo 
&48 Service_StartFiler Start the Filer paee ).-466 Sprite Output switched to sprite, mask or page 2·261 
&4C Service_StartedFiler Started the Filer page 3-468 screen 
&40 Service_PteModeChange Mode change page 2·129 &73 Servfa:Yostlnlt all modules have been Initialised pace 1·258 
&4E Service_MemoryMoved OS_ChangeDynamicArea has paee 1·351 &75 Service_ TerritoryStarted New territory starting page 5-283 

Just finished &16 Service_Monitorlead 
&4F Service_FilerDying Filer Is dyfna paee 3·469 Tr.anslauon Tr.anslate monitor lead 10 page 2·134 
&50 Service_ModeExtension Allow soft modes page 2-m &11 

&51 Service_ModeTr.anslatlon Tr.anslate modes for unknown paee2·133 &78 Service_PDriverGetMessase Get common messases file paee 5-179 
monitor types &79 Servfa:.J)eviceDead Device has been killed by DeviceFS paee ).-406 

&52 Service_MouseTrap For non-dkk mouse wamlnss page4·146 &7A Servfa:_ScreenBlanked ~n blanked by screen blanker pace5-430 
&53 Service_ WimpCioseDown Trap WimpCioseDown calls page 4·147 &78 Serv~ce_ScreenRestored ~n restored by ~n blanker paee 5-431 
&54 Service_Sound Parts of the Sound system page 5·349 & 7C Servlce_OesktopWelcome Desktop starting page 4· 152 

startfngldylns &70 Servlce_Ofsd)ismounted Disc dismounted page 3-412 
&55 Service_NetFS Either a •Logon or a •Bye pase 3-327 &7E Service_ShutDown Switcher shutting down paee 4· 153 

has occurred &7F ServiceYDriverChansed ?Driver has chan sed page 5·180 

1-244 1-245 



OS_ServicfiCtt/1 (SWI &30) 

:W.~«v :·:·X·:~:->:·;.:-:.;.;:;:;:;.;.;:;:;:;:;:;:: :;:;:;:;:;:;:;:;:;:;.;:;:;:;~;:;.;.;:;:;:;:;.;:;:;:;;:.;:;:;:;:;.;:;.;::~·!·!·!·:·:·:·:·:·: .;:;.;:;.;.;.;.;.;.;.;.;:;.;:;:;(.i:~::.;:.~;:;:;:;::«>::;;.;:;;.::;:;:;:;:;:;:;:;;;:;:;:;.;:;:;.;.;.~:::-»:«:::;.;:;.;.;.:-:·:·:::.:·:·7.·:·: 

S80 Servlce_ShutdownComplete Shutdown completed 
&81 Servlce_DevlceFSCloseRequest 
&82 
&FE Service_1\Jbe Internal use only 

&10800 Servioe.....ADFSPodule 
&10801 Servlce.....ADFSPoduleiDE 
& 10802 Service.....ADFSPoduleiDEDylng 

ReletedSWis 

OS_Byte 143 (SWI &06) 

Releted vectors 

None 

1-246 

paae 4· 154 
paae 3-407 

paae 1·259 

paae6-105 
page6-106 
paae 6-107 

ModulfiiS 
:o:-::;:;:;.;:;.;:;::.:-.»»:-~ ;:;:;:;:;:;:;:;:;. ;:;:;:;.;:;:; :;:;:;:;:;:;:;:;:;:;:;:;.;.;;:::::=::;:;:, •• ;::«-::w,.;;;::;.;.;:;~-::;:;:;:;:;:;:;:;:::;:;~;::~~n;:::;::~-»:;::;:;:;:;::~-:·:.:·:-:·:·:· •.·:··:·.;:;:;:;.;:;.;.; .;:;.;:;:;:;:;.;.;:; .;.;:;:;.;:;:;.;. 

Service call has been daimed 

On entry 

Rl =0 

On exit 

R I preserved 

Use 

Service_Serviced 
(Service Call &00) 

This call is passed around following a successful clalmlnc d a service call by a 
module. 

1-247 



SIKVic8_ UKCommand (Service Call &04) 

1-248 

.... ·:·:·:·:·:·:::·:···:·:·:·:·:·:·:·:·:·:·:·:·:·:·:-:·:-:::.;.:~: .. "?:·:«-:=:::::•:·:•:::•:::<x?.~~;:;;::::.;::•::~::o::w.<:·:<:~..:::;:--::-:::::::::::::::::::;:::::::::::::::::::::::::::::::::::::::::::::-.;:•:~-::o:::::::.:•:•:::;:-x 

Unknown command 

Service_ UK Command 
(Service Call &04) 

On entry 

RO = pointer to command 
Rl = &o4 (reason code) 

On exit 

Use 

RO = 0 for no error. else error pointer 
Rl = 0 to claim the command, or preserved to pass on 

If you claim the call and execute the command successfully you should set R I to 0. 
If an error occurs during execution then you should return with the pointer to the 
error buffer in RO. This call is issued after OSCL! has searched modules but before 
the filing system is called to try to "Run. It is also used to implement NetFS file 
server commands. 

Note that this is the 'historical' way of dealing with unknown commands. You 
should, in preference. use the command string entry point . 

Modul9s 

::::::::::::~::::::::::::::::~w. .. -:::::M;.<."?-:>:::::o:::::::.:~::::::::x?:=:::::::::::" .. ~::::::::::::::::::::::::::::::::::.:::::::::::::::o.:::::::::~ .. ~x;:::.::r..s:::m~;:::::::::::.:::.:::.:~o;:~x-:'-:::::•:::::::::::.:--:::•:·:=:::~;:::-':-:::.:•:~·:·:-

Error has occurred 

Service_Error 
(Service Call &06) 

On entry 

RO =pointer to error block 
Rl = &o6 (reason code) 

On exit 

U•e 

RO preserved 
Rl preserved to pass on (must never be claimed) 

This call is issued after an error has occurred but before the error handler Is called. 
It is induded ' for your Information·. and must not be claimed. 

1-249 



S8tVIce_ UKByte (SlNVIc» Call &07) 

·:·:·:·:·:·:·:·:·:·:·:·:·:•:•:•:::<:-:·:·:-»-:.:-:-;:;.;.;:;;.;:;:;:;:;:;:; :;:;:;:;:;:;:;.;.;. :·:·:·:·:·:·:·:·:·:·!-:·X·;·:.:.w,;:·:•:•:•:•:•:•:•:•:·:~·:.:.;:::;.;.:-:·:~-:·:·:·:·:· ;.;.;:;:;:;.; :;:;.;:;.;.;:;. ;.;.;.;.;.;.;.;;;.;.;;;.;.;.;.;.;;;.;.;.;.;.;.;.;.;:;$;.;.;.;.;.;:;;;:;.;.;.; :;.;:·.;.;.;.;.;.;.;:;:;.: 

1-250 

Unknown OS_Byte 

Service_UKByte 
(Service Call &07) 

On entry 

R I = &07 (reason code) 
R2 = OS_Byte number 
RJ = first parameter 
R4 = second parameter 

On exit 

UM 

R I = 0 to daim. else preserved to pass on 
RJ =value to return In R I to caller 
R4 = value to return In R2 to caller 
Errors cannot be returned 

If the OS_Byte number Is one used by the module it is passing through. you should 
execute it and claim the call by setting R I to zero. 

If you don' t recot~nlse the OS_Byte number. pass the call on by returning with the 
registers preserved. 

Modul68 

~ .. :v:·:·:·:·:-:-::::;.;:::::;.;.;:;.;:;:;: ;.:::::::::::.:-:-:-:::·:·:·:·:-::;.;:;.;:;:;;:.;:;:; •• • ~N~:~-;.;., .. ':-;o:~:~:....;.:.:.;.~;;;;;.:;:~:::-:;:::::;;::::::::~»:·:·:::;;:;;-~.:·»:·:·:·:·:·:·:·::.x«.:·:·:·:·:·:-:::-:-:.:...;.:;:._""=::·~ 

Unknown OS_ Word 

Service_ UKWord 
(Service Call &08) 

On entry 

Rl = &08 (reason code) 
R2 =OS_ Word number 
R3 =pointer to OS_Word parameter block 

On exit 

Use 

Rl = 0 to claim. else preserved to pass on 
Errors can not be retu med 

If the OS_ Word number Is one used by the module It Is passing through. you 
should execute It and dalm the call by settinc R I to zero 

If you don' t recognise the OS_ Word number. pass the call on by returning with the 
registers preserved. 

1-251 



591'Vic6_H91p (591'Vice CaN &09) 

"'::::::z:::::::::::::::w;:.;:·:·:·:·:·:·~·:::•:::::•:::;:~:;:~«.x>:::::::::•::x~;m,~;. .. :::•:•:·:•:::•:•:·:·:·:·:•:•:·:•:·:·:·:·:·:·:•:•:·:-:«.:.-;:~ ~::o;<:(:'W.::•:::•:::•:::•:•::xr.<:•:;;:;:::::::::::::::::: ::::::::::::::::::: ::::::::::::::: :::::::::::::::::~:::::::::::::: .••• ;::: •.• 

1·252 

•Help has been called 

Service_Help 
(Service Call &09) 

On entry 

RO = pointer to command 
Rl = &09 (reason code) 

On exit 

u .. 

RO preserved 
Rl = 0 to claim. else preserved to pass on 

This is issued at the start of •Help. You should claim this call only if you wish to 
replace •Help completely. The usual way for a module to provide help is through 
its help text table. 

Modul88 

==~:::::::::::::::::: ::::::: :::::::: ::::::::~::;;.:::;:::::: :::::::::=:~:=:=:=:~:=: .. ;:::;.»:<-:::::•:::::::-:::::=:::.':~=?k"'».:%:•:::::::::::::::::::::::::<-.:::::::::::::::x::::'::::::::::::x:::::::::::::::::::~::::::::•:=:=:::::::::::::::~.c;=-x::::::::::::;:•:::::::.:::::: 

Passed round at the end of •Help rode 

On entry 

On exit 

Use 

Service _Post_ Help 
(Service Call & 18) 

1·253 



SllfVk»_UKConflg (StKvlc• Call &28) 

~«·;;:««;::;;:o:;:~:;:;.;::::.:·:·:·:=:: :·:·: ·:·:·:·: .;:;.;::·:·:·~:.v::;.;:;:;:;.;::•:•:-~·.·:·:·:·:-~:::·:·:·:·:·:·:·:.:-:.:·:-:·:·:·:·:·:•:o:>~:;.:;..,:;:~o;;:;:;:::::::: ::::::: :::::::::: ::::::: -:=:=:~X<«-:-x-::;:;:x-.~:•:·:·:·:::•:•:~~;:;:::. :·:·:-::::: 

1-254 

Unknown 'Conflaure 

Service_ UKConfig 
(Service Call &28) 

On entry 

RO "' pointer to command tall, or 0 if none aiven 
Rl "&28 (reason code) 

On exit 

u .. 

RO • < 0 ror no error. 
small Integer for errors described below. 
or error pointer for other errors 

R I • 0 If conflaure option 1'eC09nlsed and no error: else preserved to pass on 

If RO • 0 on entry, you should print your 'Conflaure syntax llne(s). If any. and exit 
with resisters preserved. 

lfRO .. o. then RO is a pointer tot he command tail.lfyoudecodethecommand tall . 
and recocnlse It, you should daim the call by settinll R I to 0. If an error Is detected. 
should also return with V set and return the error In RO as follows : 

Valle Mea11.l11.8 

0 
I 
2 
3 
>3 

Bad ' Conflaure option 
Numeric parameter needed 
Parameter too large 
Too many parameters 
RO Is an error pointer returned by 'Conflaure 

If you don't re<:'OIInise the command tail. you should exit with reaisters preserved 

Note that it Is also possible to trap unknown 'Confiaure commands throueh the 
module's command table (see the section entitled Htfp .~ co~~t~~tui i~ tdlcon 
page 1-207)- whkh is the preferred method. Only one of these mechanisms 
should be used 

Modules 
:·:·:·:·:•:·:·:•::;:;:;:;;::;:;:;:;:;;::;:;:; :;:;:;:;:: :;:;:;:;:;:;:;.;:;.;.;. ;:;.;:;.;,;:.;.;-:-:-:·:·:·:·:·:·:•::;.;·:·:·:<:·>':-~X·:.:~::;.;.;~;::.:·:·:·:·X:<.;:.»:·X~ .. :.;:;.;.;o;:;;;:;.;:;.;~X*:.;.o;::;:;:;:;:;:;.;.;:;:;:;:;:;.;.;.;.;.;.; .;:;.;.;:;:;:;:::::::;:;:;:;:;:;:;:;:;:: 

Unknown ' Status 

Service_UKStatus 
(Service Call &29) 

On entry 

RO = pointer to command tall . or 0 if none aiven 
Rl = &29 (reason~) 

Onexh 

u .. 

RO preserved 

R I = 0 is status option ~nlsed and no error. el.se preserved to pass on 

If RO = 0. you should list your status(es) and pass on the service call. 

If RO .. 0, then RO Is a pointer to the command tall. If you decode the command tail, 
and recocnise it. you should print the associated lnfonnatlon and claim the call . 
Otherwise you should not dalm the call. 

Note that it Is also possible to trap unkn0111n ' Status commands throuah the 
module's command table (see the section entitled Help .~ co~~t~~tu41 i iiJ"''f'i t• bll on 
page 1-207)- which Is the preferred method. Only one of these mechanisms 
should be used. 

1-255 



S9fVicB_N_Application (Stullics Cs/1 &2A) 

.·.··:·:·:·:·:·:·:·: ·:·:·:·::;.:-:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:::·:·:·:·:·:-::.:·:·::;; ;.;.;.;.;.:-:·:·:·:·:·:·:·:·:·:·:·:· :·:·:·:·:·:·:·: ·.·.·.·.·.·.·.·.·.·:·:·.·.·.·.·.·.·.·.·,·.·,·.·.·····:·:·:<·:·:·:·:·:·:·::;:;:;:;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:<•'•'' 

1-256 

Application about to start 

Service _New Application 
(Service Call &2A) 

On entry 

Rl = &2A (reason code) 

On exit 

Use 

Rl = 0 to prevent application rrom starting. else preserved to pass on 

This service Is called when an application is about to start due to a ·eo. •RMRun 
or •Run-type operation. 1r you don't want the application to start. you should claim 
the call. otherwise pass it on. 

Modulas 
:::::::::::::::::::;.;:::: :::::::::::::::::::::::::::»:"'~:;.::::: :::::::::::::-:::::::::;::: ... ~.;.:.::;~;: .. ;:::•:•:::•:•:•:=:·:=:::;o .. ~_%;;;:-::::::·:•:.:::·:·:·:·=~·=·:::.-z-::::.:~:-::~:::=::::;;:::;.-;-;::$:·:;$:=:=:::·:·:=:=:·:=:·:=:·:·:;:.:·:·:=· ·:·:•:=:·:.:·:·:-:·:- :·:·:·:·:·:·:·:·:-::::;.·.· .· 

Lookup file type 

Service_LookupFile Type 
(Service Call &42) 

On entry 
Rl = &42 (reason code) 
R2 =file type (in lower three nibbles) 

On exit 

Use 

R 1 = o ir the module knows the file type. else preserved to pass on 
R2 = first rour characters. 1r known. else preserved 
R3 = last rour characters. ir known. else preserved 

This call is passed round when FileSwitch would like to convert a twelve-bit file 
type into a textual name. lr the file type passed in R2 is known to you. you should 
return with Rl =0. and R2. R3 containing the eight characters in the name. lf no-one 
daims the call. FileSwitch will convert the number into a three-digit hex value 
padded with spaces. This might be loaded as rollows: 

1-257 



S9fVIce_Postlnlt t5¥vic• ca11 &73J 
®:::.;:;::;:;;;:;:;:;.;.;:;:;:;:;.;:;:;~:;:;.::;:;;;:;:;:;:;:;.;~~;;:;:;:;:;:; :;:; :;:;:;:;:;:;:;:;;o_.;.~;;;:;;;;;;;;;.:;;.;.;:;:;:;:;.:;:.~..::;:;:;:;:;:;:;:;::::.~~::::::::::::: :;:;:;:;:;; :·:·:·:·:::.:·:·>~~:>»!>!·:·:·:·:::::::~::;:;:;:;:~:::;:;:;:;:;:;:: 

1-258 

All modules have ~n Initialised 

On entry 

On exit 

This service call should not be claimed. 

u .. 

Service_Postlnit 
(Service Call & 73) 

This is issued on a reset. after all the ROM resident modules (lndudlna those on 
5th column ROM and Podules) have ~n Initialised. 

Moduffls 
;.;.;::•:·:~.-:..%.._~:~~;;.m:-:·;;:.:·:·:·:·:·:·:·:v:·:.:.:·:·:·:·:·:·:·:·:<:·:.:~:·:·: ·:-");:.::·::::::::::::::::::::::::::::::::::::::::::.:::::::::::.::::::::::::::::::::.x::x-:::.:·:·:·:-;:~-:;.;:::::;.;.;:;;:;;:z::::::::::::::::::::::5"h:>::::::::::::::::: 

Internal use only 

Service_ Tube 
(Service Call &FE) 

1-259 



'Commands 

·:·:·:·:·:·:·:·: ·:·:·:·:·:·:;:::;:·:·:~;.: ...... ;;,;~::x;:;;;;.:-:·:·:·:·:·:.:-:.:F,..:.:-::::;;m:;:.:-.;.::::::: :::::.:::::::::::::::::;.:::::·:·:·:-:=:~~::::::o;;:;::;;:::::::::.::z:-:<!·X:::::.:·:::.:····. ·:·:·:-:-:-:::·:·:·:·:·:·:..:·~....:;w,;:;~::::;.: 

*Commands 

1-260 

Displays infonnation about all Installed relocatable modules 

Syntax 

•Modules 

Parameters 

None 

u .. 

*Modules 

• Modules displays information about all relocatable modules which are currently 
Installed in the machine. 

The command displays the number allocated to each module. its position In 
memory, the address of its workspace. and Its name. 

• The number may chanse as other modules are installed and removed 

• The names listed by this command are the module titles. which are used as 
parameters for other commands such as 'RMKill . 

Example 

*Nodule• 
No. Position Workspace Name 

1 0380BED8 00000000 Util!tyModule 
2 038251A8 01800014 Podule 

81 039EAF10 00000000 !Edit 
82 039F17E4 0181£984 DOSFS 

Related commands 

•ROM Modules 

Related SWis 

OS_Module (SWJ &IE) 

ModuleB 

;.;.;.:;;,;.;;;;;:;:;.;.;:;.;..;..;.;@"~;.::x:.:::.::z::: ·:·: .;:;:;.;.;.;.;.;:;.;.;:;:;:;:;:;:;.;.;:;:;:;:;:;: ....... ·:·:-:.::~.:-::!-"h!«->:>;..;.;:;.;:::::;.;:;.;::::::::.o::~'!" .. ~::::::::::m:~;:;e.;¥§'.W.:::;:::::;:;:;:;:;:;:;::::~-;... •!•'•!•:•:·:·:-:·:·:·:·:·:·:.· 

Related vectors 

None 

1-261 



·RMa6Br 

;::-::::::::::;:: :;.;::·:·:· ·-~~:::=. ;:;:;:;:;:;:;.;-~~::-::;.c:;.;:::;.;:;. ;:;:;:;:;:;.;:[:.;.;:~~~=·:·:·:·:-:-"'!'.):;::;:;:;:;:;;;;;.:::~;:;.;.;:;:;:;.;-::;:;:;:;:;:;:;:;.;:$;~~·=·:=:=::::::::::::::::::;.;.::::::x~·~;;.:;.:>;;.;;::;.;.;.;.;:; .;.;.;.;:;:; 

1·262 

*RMCiear 

Deletes all relocatable modules rrom the module area 

Syntax 

*!Uo!Clear 

Parameters 

None 

Use 

"RMCiear deactivates all relocatable modules in the module area. deletes them. 
and rrees their workspace. Use this command only with extreme caution, as it is so 
drastic In its effects. 

ROM resident modules are not affected by "RMCiear: ir you wish to disable such a 
module. you should use "RMKill or •unplug. 

Related commands 

" RMKIII. "RMRelnit. 'RM'Tldy, " Unplug 

RelatedSWis 

OS_Module (SWI &IE) 

Related vectors 

None 

ModrMIB 
:::::=:=:=:-:-:·:·:·. ;;,.~-:-:::::::::::::·:·:-::::::::::-- .;::-:::.:::::::::::::·:·:·:~m::::-;:;.::::-: :::::::::::::::·:·:·:·.-........... ~-.-.·.·= -:-:-::::::: -:-:-:-:.:~X.:-:=:·:·=-~=-:=:=:=:=:=:~~=:·:-:•:-:·:{·:-:·:·:·:•:«-:·» 

*AM Ensure 

Checks the presence and version or a module 

Syntax 

*RMEnsure module_ t1tle vers1on_nuaber (command) 

Parameters 

Use 

module_ title 
version_ number 

command 

the title or any currently Installed module 

a number Bialnst which the ~rs:ion number will be 
checked 

a Command Une axnmand 

"RMEnsure checks that a module is present and Is the tl¥en ~rslon (or a more 
recent one) A command. optionally 1tven as a third perameter. is executed if this 
is not the case. " RMEnsure is usually used in command scripts or programs to 
ensure that modules they need are loaded and or a recent enough version. 

Example 

•RM£nsure WindowManaqer 2.01 *!Uo!Load System:Wimp 

Related commands 

None 

Related SWis 

OS_Module (SWI &IE) 

Related vectors 

None 

1-263 



•RMFastiN 
;;.:>»W:.;~--::::;:;:;:;:::::;:::-;;:::;.:;:;.:;:;:;; ;:;:;:;:;:;:;:;:;:;:::::;.;:;:;.:;:;:;:;:;:;:;:;:;:;; ;:;:;:;:;:;:;:;:;:;:;:;::::::: ;:;:;:;:;:;:;:;:;:;:;;;:;:;:;;;:;.;: ;;;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.;.;:;:;:;::· ·:·:·:·:·:·:·:·:·:.:·:·:·:·:·:·:·:; ;.;;;;;,;.;~-=~·:·:·:·:····. 

1-264 

*AM Faster 

Makes a module faster by copying it from ROM to RAM 

Syntax 
*RMFaster module title 

Parameters 

module title the title of any ROM resident module 

Uae 

· RMFaster makes a copy of a ROM resident relocatable module and places it in 
RAM. The module will run faster because RAM can be accessed faster than ROM. 

Example 

*RMFaster BASIC 

Related commands 

None 

Related SWls 

OS_Module (SWI &IE) 

Related vectors 

None 

Modu/66 

·::-: ::·:·:=:·:·:"": ·=·=···:···:···:·:·:·:~·:·:·:·:-:-::·:·:·:·:·:·:·:·:·:·:·: .;.;.:-:. :·:·:·:·:·:-:.: ·:·:·:·:·:=:=:•:=:=:·:-::;;:::-:::::.:::.: .;.;:::: -:·:-:·:·:·X::·:=:·:·:·:;:-::~~;;;mm~-:=:::::::::::·:·:·:-:::-:·:·: ·:·:·:·:-:.:·:·:·:·:·:·:.···· <<;:;:;:;:;;;:;:;:; 

Reverses the action of a previous •unplug command 

Syntax 
*RMinsert module_t1tle [R~_sect1on ] 

Parameters 
module_ t1tle 
ROM section 

Use 

the title of any ROM resident module 

ROM section to restrict command to 

*AM Insert 

•RMinsen reverses the action of a previous •unplug command. but without 
reinitialising any modules. 

If no ROM section number Is specified, then this command clears the unplug bit 
for all versions of the specified module present in the machine. 

If a ROM section number is specified. then this command dears the unplug bit for 
all versions of the specified module present in the given section. ROM section 
numbers are: 

ROMM:Ctioa 
-I 
0 
I 
2 
3 
-2 
-3 
-4 

M-ai•l 
System ROM 

Expansion card 0 
Expansion card I 
Expansion card 2 
Expansion card 3 (etc) 

System ROM I 
SystemROM2 
System ROM 3 (etc) 

This command is not available in RISC OS 2.0. 

Example 

*RMi nsert MI DI 

Related commands 

•RMRelnit. •unplug 

1-265 



•RM/ns9f1 

~~.x;:;.::::;::;:."S)..~~~:::::.;.;.-:;::;.;;;~;;;:.;;:;:-:·:::.:•:::::::::<:•:-~-:w::;;::::::::;::;::x:~:.::;:;;.;:;:;:x:;:::::::x:::::::::::::::::::::::::::::: :;:;:;:;:;:;:;:;:;.;:: :;:;:;:;:;:;:;:;:;:;.;.;';.;:;:;::··: ... ·.·.·.·.·.·.·.·.·.·.·.·.·:=:=:·:·:·:·:·::;;;.; ........ • 

Related SWia 

OS_Module (SWJ &IE) 

Related vectors 

None 

1-266 

Modu/86 

:=:•:=: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::: ::::::::::::.:=::::: .. ...-:::::::::::::::::::::::::::::::~:=:-::::.:::::::~::::!o':..~·:·:=:·:;:::::=::Y.·:·:=:::::~:;m»:::;:•:•:•:=:=:•:•:=:=:•:;:•:=:::=::::::::::::::::::::::::::::::::x;::::::· 

*AM Kill 

Deactivates and deletes a relocatable module 

Syntax 

*RMKil l module_title[\instantiat1on) 

Parameters 

the title of any currently installed module module_ t1tle 
instantiation the Instantiation of any currently Installed module 

Use 

"RMKill deactivates the preferred instantiation o( a relocatable module (or the 
specified instantiation If the second afiument is used) and releases its workspace . 
If the module is in RAM. It is also deleted. If it is ROM resident. it is made Inactive 
until reinitialised by the "RMRelnit command. or until the next hard reset. Use this 
command only with extreme caution. as It may be drastic In Its effects. 

Example 

*RMK ill Debugger 

Related commands 

"RMCiear. "RMRelnit. "RMTidy. •unplug 

Related SWia 

OS_Module (SWJ &IE) 

Related vectors 

None 

1-267 



•RMLoad 

:::::::::;::::-.;:•:•:•:·:-:·:·:·:·:·:·:·:·:·:·:· :-:·:·:·:·:·:·:·:·:·:·:·:·:·:·:· :·:·:·:·:·:-:;:-:·:·:·>:~:-:·:·:·:·: ···:·:·:·:·:·:·:·:·:•:~:•:-:--.::o:::o:::::;:;s;-;-;:;:::•:::::<::-mm::::=~:::::::::::::•::::~::::::::::::;::::::::::::::::::::r.«::=:=:=~=: :::::: ::::::;::~:::•x::::::::::::;;:::: .. ;~ 

1-268 

*RMLoad 

Loads and initialises a relocatable module 

Syntax 

*RMLoad filename [module_ 1n1 t_str 1ngl 

Parameters 

Use 

filename 
module_1n1t_str1ng 

a valid pathname spedfying a module file 

optional parameters to the module 

•RMLoad loads and initialises a relocatable module.lt can then be accessed by 
the help system. and can provide SWJs and • Commands if available. 

The file must have file type F'FA. otherwise the module handler will refuse to load it. 

The optional initialisation string can be used to pass parameters to certain 
modules so they initialise themselves in a particular way. For example. you might 
use it to specify the amount of workspace that the module should claim. or a file 
that the module should load. 

Example 

*RMLoad WaveSynth S.Waves.Brassl4 

Related commands 

•RMRun 

Related SWls 

06_Module (SWI &IE) 

Related vectors 

None 

Modu/8s 

:::::::::::::.::~:::>:-: :;:::::: .·:·::::::::::::::: ::::::;:;:;:~:::::::::::::::::::::•9NX"i:::::~:::x;:-~n:--:::;::x-:·:·:::.:·:·:·:·:·:.:>x::;.;:;.;:;o;.;.:o:;.:;;:-;;;:;.:;s-z:.:=0:>::~·:·:·::;.;.;. :.;:;.;::.:·:·:·:·:=:-:.:·:·:·:-:-:-:v:·:·:·:·:·:·;;:.zo;;;;;;;;-.:;:•:::•:-:~~·: .... :.:·:·:·:·. 

*RMRelnit 

Reinitialises a relocatable module 

Syntax 

*RMRelnit module_title (module_1n1t_str1ng) 

Parameters 

Use 

module title 

module_ 1n1t_str1ng 

the title of any currently installed module. active 
or otherwise 

optional parameters to the module 

•RMRelnit reinitialises a relocatable module, reversina the action of any previous 
•RMKill or •unplua oommand. The module is returned to the state it was in when 
it was loaded. Use this oommand only with extreme caution, as it may be drastic in 
its effects. 

• If the specified module is active, then it Is killed and then re-initialised. 

• If the specified module is not active. but is in the ROM. then the unplug bit in 
CM06 RAM is cleared for all versions of the specified module. and then the 
newest version ol the module Is Initialised. (Under RISC 06 2.0 it is the first 
found version that is initialised.] 

The optional initialisation string can be used to pass parameters to certain 
modules so they reinitialise themselves in a partkularway. For example. you might 
use it to specify the amount of workspace that the module should claim. or a file 
that the module should load. 

This command can produce unexpected results. for a variety of reasons. For 
example: 

• The order of module initialisation Is important In RISC 06. If a module relies 
on a second module being later initialised. you cannot successfully reinitialise 
the first module without then reinitialising the second. 

• Under the desktop. a reinitialised module does not get restarted as a task 
unless you r~nter the desktop. 

Example 

*RMRel nit Debugger 

1-269 



•RMR91nit 

.;::::·:· :·:·::;.;.;;:«~:-:-x-:-:-:-:.:·:·:·:·:· :-:-:·:·:·:-:::::·:·:·:-:·:·:·:-;;:.:-:::.::: ·:·:·:·:=:· .·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·=· :·:·:·:·:·:·:·:·:·:~:.::..~~~:::::::::::::::::::::::::::::::::::::::::::::::::::~:::::::::::::::::::w::: :::::::::: ;:;:;:;:; :;:;:;:;:;:;:;:;;.;.·.· 

Related comm•nds 

•RMCiear. •RMKIII. •RM11dy. • unplug 

Related SW11 

OS_Module (SWI &IE) 

Ret•ted vectors 

None 

1-270 

Modul9s 
;!;!;.;.;.;.;!;!;:;:;.;:;:;:;:;:;:;.;:;:;:;:;:; :;:;:;:;:;:;:;:;:;:·:··· :·:·:.:·:-:!;!;!;!;!;! !·! .;!;.;!;!;!;!;!;!;!;!;.;:;.:':-::;:; :;:;:: :;:;:;:;:;:: !;!;.;:;:;;;:;.;!;!;.;:;:;: ;.:-:·:·:::::-: .;:;.•.;.;.•.;;;.;;;;;.::::::::::::::::~::;:::::::;:;::::::::~ 

*RMRun 

Runs a relocatable module 

Synt•x 
•RMRun fl l ename 

P•rsmeters 

fllename a valid pathname specifying a module file 

u •• 
"RMRun loads and Initialises a relocatable module. It can then be accessed by the 
help system. and can provide SWis and • Commands If available. The module is 
then run. if it can be. 

This call is equivalent to a call to •RMLoad followed by an enter operation in 
OS_Module. If the module Is already resident. then It will simply be entered. 

If a module cannot be run. then this command Is equivalent to a •RMLoad 
command. 

The file must have file type FFA. otherwise the module handler will refuse to load it. 

Example 

*RMRun My_Module 

Rel•ted comm•nds 
•RMLoad 

Rel•ted SWis 

OS_Module (SWI &IE) 

Related vector~ 

None 

1-271 



'RMT/dy 
·;·;·;::·h<-~0:·~·=·:·~·:-:>;·:·:::::::::-:{;;.;;;:;:x:;-:::::-:':;;.;.;. :-:·:·:·:·:·:·:·:·:·~~; ;:;.;.:-»:·~·:-::.7..:-:{Q:::;~;.;;:=:::;.;.;. :=:·:·:·:·:·:·:·:·:·:·: .. ~~:;;;;:~;;._;;;:;~:-:;:;;;;:;.;-::X::X.W.®·:·:;;.:·:·:·:·:~-;:;:::;:;:;;;:;.;;;;;:;:;:;:;:;:;:;:: :;:;:;:;:;:;.; 

1-272 

*RMlidy 

Compacts the module an:a and reinitialises all the modules It contains 

Syntax 

*RMTidy 

Parameters 

Use 

None 

"RMlldy collects t<>gether free space in the module area by movlna and 
reinitialising all the modules it contains. The free space Is gathered Into a 
consecutive chunk of memory. 

Use this command only with extreme caution. as it Is so drastic In its effects. 

Related commands 

"RMCiear 

Related SWia 

OS_Module (SWI &IE) 

Related vectors 

None 

Module.s 
:::::::;.;::::::·:·:·:-:::·:·:=:-::::::: ·=·:·:·:·:·:·: ·=·=·:·:-:-S~->:·:·:«-».-v:.:·:·:·:~ .... :-:-:::.:-::::::::::;:::::::;.;-::::::;.;-::::;::.:·:·:·:·:·:·:-:.-:-:.:.:·:·:·:·:·:·:·:·:·:·x;:-:-;.:::.:·:·:@~'«·:::.:-:::.:·:·:·::::::::::::::::::::~:::::::::::::;:~.;x:;;;::._x::::::x: 

*ROM Modules 

Displays Information about all rdocatable modules amently installed in ROM 

Syntax 

*ROMModules 

Parameters 

None 

Use 

'ROM Modules displays Information about all relocatable modules which are 
currently Installed In ROM. 

The command displays the number allocated to e.ch module. whether it Is part of 
the system or In erpansion cards or In an enenslon ROM, Its name. and Its status: 
actrve. runnlna. dormant or unpllJi8ed. (Note that RJSC OS 2.0 does not support 
extension ROMs. nor does it &i¥e a ¥ersion number or report modules as run nina.) 

• The names listed by this command are the module titles. which are used as 
parameters for other commands such as 'RMJ<III. 

System modules are stored in ROM. but may still be 'RMKIIIed. •unpluaged. or 
replaced by RAM-based modules. 

Example 

*RG~Modul•• 
No. Position Module name Version Status 

1 System R~ UtllityHodule 2.20 Active 
2 System R~ Podule 1.23 Active 
3 Syste111 R~ FlleSwitch 1.98 Active 
4 Syatera R~ ResourceFS 0.09 Active 
5 Syatera R~ Messaqes 0.16 Active 

-
Podule 1 Support16a 1.00 Active 

Extn ROM 1 Tube6502Ernulator 1.17 Dormant 
Extn ROM 2 Turbo6502Ernulator 1.17 Dormant 
Extn ROM 3 Tube6502Ernulator 1.17 Active 

2 Extn ROM 3 Turbo6502Ernulator 1.17 Active 
Extn ROM 4 FontManaqer 2.85 Active 

-
1·273 



"ROMModules 

::::::x:::::}::::::::::::::::x::~:~:::--::.:;:::::::::~::=::::::::::::::::: ::::::::::::::::=:-:: :-:=::: -:-:::::: :::::::-: -:·:-:-:=:=:·:-:::::::::::::.:-::::: .;:::::::::;.:::;::::::::::: ;;;:::·:·:-~:::::::::.;~::!:::.~.w:::::::::~:::::~::::::::::::::::::::::::::::::::::::::::: 

1-274 

or under RISC OS 2: 

*ROIModu1•• 
No. Pos i t i on Modul e Name 

1 System ROM UtilityModule 
2 System ROM FlleSwitch 
3 System ROM Desktop 

-
Podule 0 

2 Podule 0 

Related commands 

•Modules 

Related SWis 

MallBleep 
ROMBoard 

OS_Module (SWI & I E) 

Related vectors 

None 

St atus 
Active 
Active 
Active 

Dormant 
Dormant 

Modulets 
;:;:;:;::·.:.:.:.:.:.:.:;:;:;:;:; :;:; :;:;.;:;:;:;.;;;:;:;:;:;:;:;:;:;: ;.;:;:;:;:;:::::::;:::::::;.;:;:;:;:;:; .• :;:;:;:;:;: ;:;:;:;:;:;:;:;:;:; :;:; :;:;:;:::::::::::;:::t::;:;:;:;:::z:::::;:;:;:;:;:;:;:;: ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;::::::::::-:-::~:;:~:;:::::;::::::~:-»":-::;:;:;:;:;:;:;:;:;:;:;.;:;.;:;:::::::::: 

*Unplug 

Kills and disables all copies of a ROM resident module 

Syntax 

*Unplug [module_tltle [R~_sect1on)) 

*Unplug [module_tltlel (RISC OS 2.0) 

Parameters 

Use 

module_ titl e 
R~ section 

the title of any ROM resident module 

ROM section to restrict command to- this parameter Is 
not re<:of!nlsed by RISC OS 2.0 

•unplug kills all copies of the named ROM module. releasing any workspace used. 
(In RISC OS 2.0 only the first copy found is deleted.) It also disables all versions of 
that module- whether in the system ROM. expansion cards or extension ROMs
by preventing them from being Initialised (and hence available for use). This 
setting is stored In the CMOS RAM. and so Is permanent even across a reset. 1b 
enable the module again you must use the •RMRelnit or •RMinsert command. 
(The latter command is not available In RISC OS 2.0.) 

If you supply a ROM section parameter, •unplug restricts its effects to modules 
that are in that ROM section. ROM section numbers are: 

ROMHCtloa 
-I 

0 

2 
3 
-2 
-3 
-4 

Melt at•• 
System ROM 

Expansion card 0 
Expansion card I 
Expansion card 2 
Expansion card 3 

System ROM I 
System ROM 2 
System ROM 3 (etc) 

You should use this command with caution. otherwise y6u may find programs stop 
working because you have unplugged a module that is essential to them. 

If no parameters are given. the unplugged ROM modules are listed. 

1-275 



·unplug 

·:·:·:·:·:·::;:;.;:: :;:;:;:: :.;;:;:;:;;.;:;:~;:;:.;:;>:;:;:::::;:.:.;;;:;:;;;.;.: ·:·:·:-: ::.:=:·:-:::::;:·: -:::::::::;:::;:;:::.:::::::::::.:;x::::::::::::=-:=x~::.:::::::::::~x::::::::::::::;:::;:::::;:::;:;:;:::;:;:.:--:·:·:·:·:·:;;.:::::::::::::::::::::::::-::;.;:::::::: 

Example 

*Unplug RAMFSFiler llisahlls "' RAMFSFiw 111CMIW. 

Related command• 

•RMinsert. •RMKill . •RMRelnit 

Related SWia 

OS_Module (SWI &IE) 

Related vectora 

None 

1-276 



::::::::: :::: ::::::::::::::::::::::::::::::::;::::::::::: ::::::::::::::::::::::::::::.:::::x::--:::::::::-:~::::::::::::::~:::::::::~-::::::~~»m~:=:•:::~~m.:t:;;:::::::::::::;:.;:::::::::::-;~:::·:::.:·:·:·: ·:·::;.;:;;;.;:::::::: .;::.:::::::::~:=:::::=!-~ 

15 Program Environment 
::::::::::::::.::~~~a:-.w~::::::::::::::::::::::::xx:::~~~:::..::::::::::::~:~:::-:::::::::::::::~=:::::::~:=:=:::=:=:=:=:=:= ::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::x::::::::::::::::::::::::::::: 

Introduction 
The pr011ram environment refers to the conditions under which a pr011ram or 
module executes. There are three aspects to this environment. 

• The memory used by the code and allocated for transient workspace. 

• The handlers used by a prOf!ram or module. A handler Is a piece of code called 
when certain conditions occur. RISC OS provides a set of default handlers. so 
that something valid will occur. Here is a brief list of the ltinds of conditions 
that we are tallting about: 

• an error 

• an escape condition 

• an event 

• certain hardware exceptions. such as an undefined instruction 

• a break point 

• an unused SWI Is called 

• when a pf01!ram or module terminates. 

• The system variables are a textual way of finding Information about various 
aspects of the system. There are severalldnds of variables: 

• string variables which contain characters only 

• Integer variables which contain an Integer 

• macro variables which are like string variables, except that they can 
contain references to special characters and other system variables. 

1-277 



OV9fllf9W and T«hnica/ 09/ails 

~:-::::::::: :::::::::::::::::;;.-.;>:::;:::::::::::::~:::::::::::-:::~~~;:;:.:,.-:;,:::;;;o;:~mz:.:;:;:;:.:::=:.:·:->~»:;:;::::~~~:;:::.;::·: ·:·:·:·:::.:.:·:·:·:· :·:·:·:-:::-:.:.Y..:{·:·»>::.>:.;.:;;;:;:-:.:·:·:.:. :-:-:·:·:·:=:·:·:·:·:-:::::;:::;:::::::::::;:::;: 

Overview and Technical Details 

Starting a task 

1-278 

There are several ways of executing a piece of code. You can: 

• •RMRun the program 

• OS_Module 'Enter' a module 

• •Run the program 

• ·eo. to execute the program in memory 

Modules 

The first two are described in the chapter entitled Mo4wlts. They are really the same 
thing. When a file is •RMRun. it is loaded into the relocatable module area. Its 
initialisation code is called. so that it can claim workspace etc. then its start code 
is called. 

A module can also cause its own start entry point to be called if it wants to become 
the current application. using OS_Module. BASIC is an example of this. The 
·BASte command is recognised by the OS using the BASIC module's • Command 
table. The OS calls the routine which handles the •BASte command. and this 
routine calls OS_Module with the reason code 'enter'. For details on calling 
modules see the chapter entitled Mo4wlts on page 1·191. 

Programs on file 
The third case applies to Illes which have no file type. or have type FF8. In the first 
case. the file is loaded at its load address. then it is started as an application 
through its execution address. If the file type is FF8. the file is loaded at &8000 and 
started as an application there. 

Programs In memory 

Finally. if you call a machine code program using the ·eo command. it becomes 
the current application. (This implies that you shouldn' t use ·eo to call 
RAM-based routines from a language. as the routine can' t return- R 14 contains no 
return address at this point.) 

In all of these cases. the program is called In user mode. with interrupts enabled. 
Where a module is called. Rl2 points to the module's private word. 

Program Envlronmool 

:-:=:=: :::::::::::::::::::.::::::::::x;:~w~::::::~-..:;.~:::::;:::~;:::;::?~-:;.-.:::.:·:·.-:-:·:·:·: ·=-:·:=:·:·:·:·:·:·:·:·:·:=:=·.·.·:·:·:·:·: :;:;:;:;:;::::<:;;:;:;:;>;:.;:::;:::;:;:;:;:;:;:;:;:;::::;m;::;;:;:::;::~:>:::::;;::::::::~·~::=»:~::;;::; 

Transient progrems 

Ending a task 

A file with type fFC (utility) must oontain position Independent code. When such a 
file is •RUN. it is loaded into the RMA and executed. This Is used when you want to 
run a utility and then return to the program environment that you were in before 
running it. On entry to a transient pJ'Oiram. registers are as follows: 

RO = poi nterto command I ine 
R I =pointer to command tail 
R 12 =pointer to workspace 
R 13 =pointer to workspace end (stack) 
Rl4 =return address 
User mode. interrupts enabled 

The workspace is 1024 bytes lona. In the location given by R 12 and R 13 on entry. If 
more is required. it may be allocated from the RMA. The utility should return using 
MOV PC.RI4 (freeing any extra workspace first). It does not become the current 
application and must not call OS_Exit. 

Note that RO points to the first character of the command name. and R I points to 
the first character oft he command tall (with spaces skipped). This will be a control 
character if there were no parameters. 

When a utility returns. the space it occupies is freed . Utilities are nestable- you 
can execute one utility from within another. 

Note that utilities are viewed as system extensions. This means that they must 
only use the X fonn SWis. so that the error handler is not called by their actions. A 
utility can return with an error by setting V and pointing RO at an error block as 
usual. 

Before describing the calls which control the application pi'O£ram·s environment. it 
is worth explaining how to leave an application. In general. a simple 'return from 
subroutine' usinf( MOV PC.Rl4 won't suffice. Instead. you should use a routine 
called OS_Exit (SWI &II). This passes control back to a well-defined place. which 
defaults to the supervisor • prompt. but could equally be a location in the previous 
application. 

•Quit Is equivalent to a call to OS_Exit. 

OS_ExitAndDie (SWI &50) is like OS_Exit. but will kill a named module as well . 
This is used when a module is spedfic to a particular application. 

1-279 



SystBm varlab/86 

:::::::: :::::::::::::::::::::: :;.;::::::·:=:•:·:·:·:•:-:.x.;;::;;.;.;.;.:;:~:.;;,:~:-: .. ..;.>»»:·:·:·:•:·:-:·:-:.:.»>:.·:.;;.;.:.;.:·x·»:.:·:=:•:::::•:®:>:::::::~-::::~::::::::: :;:;:;:;:;:;:;:§.~:->::;;.;:;:;.;.;:;.;~-:-:•:-:::..;·:·;..:·:;;:;;,:.;.;.;;;;:,;:.;."( 

System verleble• 

1-280 

The system variables, maintained by the operating system In the system heap, 
provide a convenient way by which programs can communicate. Variables are 
accessed by their textual name. The name may contain any non-space. non·control 
character When a variable is created. the case or the letters Is preserved. However. 
when names are looked up the case is ignored. and you can use the characters 'II' 
and ·· · -lust like lool:lng up filenames. 

Nemlng 

TYP" 

You should avoid the use or wholly numeric names lor system variables. such as 
123. as this causes difficulties when the GS string operations are used to look up a 
variable's contents. In particular. they will always take< 123> to mean the ASCII 
code 123, and will not attempt to look up the name as a variable ~the chapter 
entitled Coii\WJio"s on page 1--429 ror details or the CS calls. specifically 
OS_CSRead and OS_CS'Ilclns. 

There are several types of system variable: 

• Strina variables can contain any characters you like: these are returned when 
the string is read They can be set with •Set. 

• lnteaer variables are rour·byte signed Integers. They can be set with 'SetEval 
or 'SelMacro. 

• Macros are strings that are passed through OS_CS'll-ans when the string is 
read. This means that tr the macro contains rererences to variables or other 
OS_CSReadabie items. the appropriate t ranslation takes place whenever the 
variable Is accessed. They can be set with 'Set Macro. 

A dasslc example of using a macro is to set the command line prompt 
CLISPrompt to the current time using: 

• setMacro CLISprompt <SysSTime><, 20> 
Every time the prompt is displayed, it shows the current time, lolloo.ved by a 
space. 

• The final type or variable is machine code routines. A routine Is called 
whenever the variable is to be read, and another when it is set This allows 
great Oexibility In the way in \.hich such variables behave. For aample, you 
could make a variable directly control a CMOS RAM location using this 
technique SysSnme is a good example or a code variable. 

All the aboYe types can be set with OS_SetVarVal (SWI &24) and read with 
OS_ReadVarVal (SWI &23) 

Program Environment 

·:-:-:::>:::::::::::::::::::::::::::::::::: :;:;:;:;:;:;:;;x:::::::::::::;:;:;:;:;:;:;:;:;:;:::::.-=»::::::;:;:::;.:~·:·:~::::::·:·:«·M*«~·:·:·:·:•:•:·:·:·:·:·:·:·:·::;.;.;.;.;.;:;.:·:·:·:~;:;.:•:•:•::::;:;:~;:;;;:;:;:;:;:;:;:;:;:;:;:;::::<=::..o:::::=:;.::::::::m:::;:;:;:;:;:· 

Any non-code variable can be removed uslna'Unset. 'Show will list the settina of 
one or more variables. 

Ml.cellaneous environment feetur" 
OS_GetEnv (SWI & 10) l.s a multi· purpose SWI that provides three usdul pieces or 
inrormation· 

The address or the ' Command strina 

This can be processed with OS_ReadAras. which Is described on page 1--453 or 
the chapter entitled CoiMnioiiS 

2 The real time that the program was started 

J The maximum amount or memory allocated for the program. 

This can be altered with reason code 0 or OS_ChangeEnvironment. 

OS_ WriteEnv (SWI &43) allows you to set the proaram start time and the command 
string. 

1·281 



fkuldl¥8 

.:-;.:.:.;-:-:·: ·:·:·:·:·:-;.:.x.x.:.ox::·:·:·:·:·:~~'>'::X;~._~ .. ::.:·:·:·:-:•:~::;;:qx.:;:;;;:•:• .. :-:•:•:•:•:•:•:•:•:•:•:«;;.:•::::::::::::::::::::~x•:;::::::::: :::::::::::::: ::::::::::::::.:::::::·:·:·:·:·:·:·:·:·:·:·:·:·:·:· ··:·:·:·:·:·:·:.:.:·:·:·:·:·:·:·:·:·:«< 

Handlers 

SWla 

Handlers are short routines used to cope with special conditions that can ocrur 
under RJSC OS. Here is a complete list of the handlers: 

HMdler 
Undefined instruction 
Prefetch abort 
Data abort 
Address eJtception 
Enor 
CallBack 
BreakPoint 
Escape 
Event 
EJut 
Unused SWI 
UpCall 

All of the calls that install user handlers pass through ChangeEnvironmentV. This 
can be Intercepted to stop a subprof!ram changing parts of the environment that 
Its parent wants to keep: for example. a debuf!f!er. 

Before reading this section. you should be familiar with the chapters entitled 
Saftwrr ' '"ton on page 1·59 and Harlfwrr ..ton on page 1·103. since many of these 
handlers are directly called from these vectors. 

OS_ChangeEnvlronment (SWI &<10) is the central SWI for handlers. There are 
several other routines that perfonn subsets of its actions. You are stronaly 
recommended to use OS_ChangeEnvironment in any new applications as the 
others are only provided for compatibility. 

The other calls are OS_Control (SWI &OF). OS_SetEnv (SWI &12). OS_ CallBack 
(SWI &15). OS_BreakCtrl (SWI &18) and OS_UnusedSWI (SWI &19). 

OS_ReadDefaultHandler allows you to get the address and details of any of the 
default handlers This would be used if you wished to set up a well-defined stale 
before running a subproaram: for uample. the Desktop does so 

Details of Handlers 

1·282 

When a handler is called. you should not expect to be able to see the forearound 
application's registers. You should oaly rely on those registers uphatly defined In 
each handler as being meaningful on entry. 

Program Envltotlment 
·=·:·=·=·=·=·=·=·=·=·=·=·=·=·=·=· =·=·=·:·=·=·===·=· :-:::=:-:::::=:·:·:=:=:=:=:=:=:-:::•:::·:·:·:~:=;->;-:·:•:•:~·~~~:=:~·:·:.:-:·:·:.:.:·:;:;v;.:·:·=·=·=·=·=·=·=·=·=· =·=·=·=·:•:•:•:=:•:=:•:•:=:=:=:•:::o:::~:=~:=:=:=:·:~~::::::::;:.;ok.~.:::-=.:.w~:·:·:·:·:·:·:=·· 

You should take care not to corrupt R 14_SVC durin& handler code. This implies 
savlnalt on the stack If you use SWis: see the chapter entitled htllmlp!s alllf ulllfliNg 
~U .. on paae 1·109 for details. The details of each of the handlers follows: 

Undefined lnalrucdon, PNfetch abort, Det. abort and Address exception 

These handlers a~e all called from hardware vectors. Fot a description of them see 
the chapter entitled H.,.,.,. ICIM on paae 1-103. These handlers are all entered 
with the processor In SVC mode 

Enor 

All of the default handlers simply aenerate errors. which are passed to the ament 
error handler 

The error handler Is called after any error has been 8eflefMed. lt is called by the 
default 0\llller of the error vedot. thus any routines us inc this vector should always 
'pass It on· . Contlnulnc alter an error Is not aenerally recommended. You should 
always use the X form SWis If you wish to stay In control nen when an error occurs. 

The error handler Is ent~ In User mode with Interrupts enabled. Note that if the 
error handler Is set up uslnt OS_ChanaeEnvlronment, the workspace pointer is 
passed In RO. not R 12 as Is usual for other handlers. 

The error buffer (the address of whk:h should be set along with the handler 
address) contains the followln&: 

Oft let 

0·3 
4 · 7 
8 ... 

Coatetlta 

PC when error occurred 
Error number provided with the error. 
Error strina. terminated with a 0 

The default error nandler reports the error messaae and number- although 
applications frequently set up their own error handlers. BASIC is one such 
example. 

BreakPoint 

This handler is called when the SWI OS_BreakPt (SWI &17) Is called. All the user 
mode registers are dumped Into a buffer (the address of whk:h should be set along 
with the handler address) and then the handler is entered in SVC mode. You can 
specify a pointer 10 wortspace to pass In Rl2 when this handler Is called. 

1-283 



Details of Hendlllf'S 

:*:::.;:;..:;..:~:;.o;:;;;:o:;:;:;w,;;;:•:•:.:•:«««· ~~~*«·:«·::;.;::.;::•:·:·:·:·:·:·:·:::-:-:::-:·:.."':;::x-»:-:·>:<:·:·:•:•:•:•:•:::~~;w:::::::::::::::::::::~:::::::::>:::::~:::::::::::~:-:::;::x;:x::::::~:>:•:::::•:•:•:•:•:•:•:•:•:•;;::;;~:•:·:~::.:.:-$:·:•: 

1-284 

The rollowfna code Is suitable to resto~ the user registers and return : 

AOR 
LOMIA 

LOR 
MOVS 

Rl4, saveblock 
Rl4, {RO-Rl4} A 

Rl4, (Rl4, fl5*4]; 
PC, Rl4 

g« a~ms of sallffl ,.Ptm 
locul _,. registm fro,. jf«i; 

IIOC.Wt us" R I ) .R 14 arr ailmll 
loa~_, PC i111D SVC Rl4 
rmu11 ID correct a~ms 1~ .. ~, 

The default handler displays the messaae 'Break. point at &toaa' and calls OS_Exlt 

E~ 

Event 

Exit 

This handler Is called when an escape condition is detected. See the chapter 
entitled C'aradlr 111,...1 on paae 2-))7 lor details or this. You can specify a pointer to 
WOfkspace to pa.ss In R 12 when this handler is called. 

When the handler Is ente~. ~isters have the roiiO'IIIng values· 

R II bit 6 set, Imply! ng escape condition 
Rl2 pointertoworltspace,lrset up-nevercontains I 
Rl3 a rull. descendina stack. pointer 

To continue after an escape, the handler should reload the PC with the contents or 
Rl4. 1rR12contalns I on ~tum then the CallBack. handler will be used. 't'iplcally 
(ell rOf BASIC). the handler will set an internal flaa which Is checked by the 
rorearound proaram. 

This handler Is called by the derault owner or EventV when an event occurs. You 
can specify a pointer to workspace to pass in Rl2 when this handler Is called. 

When the handler Is ente~d the processor is In either SVC or IRQ mode. with the 
rollowlna ~alster values: 

RO event ~ason code 
Rl. .. parameters accord in& to event code 
Rl2 pointer toworltspace. ihet up- never contains I 
RB a rull . descendlna stack pointer 

To continue after an event. the handler should ~load the PC with the contents or 
Rl4 1r Rl2 contains I on ~tum then the CallBack. handler will be used 

This handler Is called when the SWis OS_Exit (SWI &II) or OS_ExitAndDie 
(SWI &50) a~ called It is entered with the processor in user mode. You can specify 
a pointer to WOfkspace to pass in Rl2 when this handler is called. 

Program EnvironmMt 
;:;;;;;:;;~;:;:;:;:;:; :;:;:;:;:;:;:;.;:; :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.;.;.:.:.· ·:·:·:·:·:·:·:·:·:·:-~:-:.:•:·:·:•:.::-:-:-»:«-:-:·:·:·:•:·:·:.:·:•:·:•:·:·:•:.:•:·:•:•:=:·:•:::.;:~:>:>::::m:::.:·:;;;:.;;:•:=:•:=:•:=:=: ~ :::::: ::::::::·:·:·:·:·:·· .·.·.·.·.·.·=· 

Unu•ed SWI 

UpCall 

This handler is called l7f the default owner or the UKSWIV. (lr RISC OS can't decode 
the number or a SWIInto one which It supports directly, It offers It as a service call 
to modules. 1r none or them dalm the servk:e, It then calls the vector UKSWN. This 
allows a user routine on that vee! Of to try to deal with the SWI. 1r there is no such 
routine. or the one(s) that Is present passes the call on. then the derault owner or 
the vector calls the Un~ SWI handler) 

You can specify a pointer to workspace to pass In Rl2 when this handler is called . 

When the handler Is ent~ the processor Is In SVC mode. with interrupts in the 
same state as the cal let The ~aisters have the followtnc values: 

Rll SWI number (Bit 17 dear) 
R n SVC stack pointer 
Rl4 userPCwtthVdea~ 

RIO. Rll and Rl2 a~ Sladed and are rree fOf your own use. 

This handler Is called 1, the derault O'llner or UpCaiiV when OS_UpCall (SWI &33) 
is called. OS_UpCall (SWI &ll) Is used to warn your proeram of errors and 
situations that you mav be able to ~r from. See the chapters entitled Soft..,.rr 
"''IDrs on page 1-59 and Co,.,. .. ,.;c.rioou wilii11 RISC OS on page 1-167. You can 
specify a pointer to worltspace to pass in R 12 when this handler is called. 

CallBack 

This handler is cal led whenever RISC OS's Internal CallBack. naals set. and the 
system next exits to User mode with lntenupts enabled. It uses a burrer (the 
address or which should be set along with the handler add~s) in which all the 
reaisters are dumped when the handler Is called. You can specify a pointer to 
workspace to pass In R 12 when this handler Is called . /\ more detailed description 
rollows. 

Callbacks In more detail 
The~ a~ two types or Call Bad u~ under RISC OS 

• Transient callbacks a~ placed In a list l7f call ing OS.fti<ICallilack. (SWI &54). 
They a~ used to deal w ith a specific case. and a~ called once bef~ being 
retnOYed. 

• The callback. handler Is permanent and takes all callbads that a~ not 
Intercepted by transients These CallBacks a~ explicitly requested by callina 
OS_SetCaiiBack. (SWI &IB] They can also be Implicitly requested by set tina 

1-285 



C8/lbacks in more dslaU 
;:: .;:;:;:;:;:;:;:;:;:;:;:-;::::x::.:¥~:::;:·:·:·:·: .;:;.;.:-:·:·:-:.:·:·:·:·:·::;:;:;:·: .·.···::;:;:;:;:;: ... :;:;:;:;.;:;:;:;.;:;:;:;:;;.;:;~;:;:;:;:;:;:;:;::;;;.<.;»;;:;;.:.:-:-:-:·:·:·:-:-;.::;.;.;:;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:; :;:;:;:;:;:;:;:;:~:<?:::;.;.;:;.; 

1·286 

Rl2 to I on exit from either an escape or event handler. There is a system 
default CallBack handler, but you can of course replace it using 
OS_ChangeEnvlronrnent. 

Transient CaiiBIICb 
Transient callbacks may be called on the system being threaded out of- that is. 
when it enters User mode with interrupts enabled. They can also be called when 
RJSC OS is idling: for example. while it is waiting in OS_ReadC. 

Transient callbacks are usually set up by an interrupt routine that needs to do 
complex processing that would take too long in an interrupt. or that needs to call a 
non-re-entrant SWI. OS_AddCaiiBack tells RISC OS that the interrupt routine 
wishes to be 'called back· when the machine is in a state that no longer imposes 
the restrictions associated with an interrupt routine. OS_RemoveCaiiBack removes 
a transient callback; this is most useful if the module is being killed before the 
transient callback has been serviced. 

Transient CallBacks can safely be used by many clients. 

Other CallBacks 
The callBack handler is only ever called on the system being threaded out of -that 
is. when it enters User mode with interrupts enabled. Unlike transient CallBacks, it 
is not called when RISC OS is idle. This means that you cannot rely on being called 
back within aay given time. You ma.t take this into consideration before using a 
CallBack handler. 

Also, you ma.t aot allow a second CallBack before your first one has completed; 
see the section entitled Appli.:ation Nous on page I· 324 for an example of how to 
implement a semaphore to prevent this. 

The CallBack code is called in IRQ or supervisor mode with interrupts disabled. The 
PC stored in the save block will be a user mode PC with interrupts enabled. Note 
that if the currently active program has interrupts disabled or is running in 
supervisor mode, CallBack is not used. 

In the simple case the CallBack routine should be exited by: 

ADR R14, saveblock 
LDM IA R14, {RO - Rl4 }~ 

LOR R14, (Rl 4,tl5*4 ) ; 
MOVS PC, Rl4 

glt a.Urrss of sallfii r~gistm 
W.~ wtr rtgistm fro,. 61od -
11/IU liatwtr R 13 .R 14 art al!trM 
to«~ 1t1tr PC i1t!o SVC Rl4 
'""'" to ,on-,a aUrrss rllll ,.()(/, 

PrognJm EnvfronmiKit 

~~=·:·:· :=:·:·:·:·:=: =:·:=:-:::::::::::;;:;:;:~~:.o:.:·:·:·:~::.:-:::::::::::::::::::::::::::::::::::::::::::.::::::::::.::::::::::.::&:::::::::~ .... ~=:::.x-::;:;::. ::::·::::::::::::::::::=$;:::-::w.:::::::-9";::::;::;:;:;:;:;:;:.:;:.:-:.o:·:·:·:·:-:::-:=~=·= .;:::::::::: =:·:=:=>: 

CUrrently •ctlve object pointer 
This is a pointer to the address of: the last application started. or the last error 
handler called. or the last exit handler called. It is used by OS_Module to 
determine whether a module can be killed. 

Setting up •nd restoring the environment 
In order to deal correctly with the various ways in which applications can be run, 
and killed off. the following approach has been developed lor setting up the 
program environment when an application starts, and restoring It when it is killed. 

The basic problem is that if a new application Is started 'on top' of the currently 
active one. it should completely replace the first, and should therefore have the 
same 'parent' environment as the first application. In order for this to happen, 
run~time language libraries and BASIC must be written so that they get themselves 
out of the way as a new applla~tlon is started up in the same task space. 

This also applies to machine-oode proerams which run as applications. for 
example modules which run as Wimp tasks. 

There are two possible approaches: 

• Do not set upuyhandlers at.JI, and....,.call the'X' formofSWis. to avoid 
calling the error handler. If the error handler is called. the application will be 
terminated, as the parent error handler will be inYOked. 

• Set up Error, Exit and UpCall handlers as des<:ribed below. so that the program 
environment can be restored correctly when the program terminates. You m .. t 
provide all three of these handlers if you use any handlers at all. 

Starting an application 
When you start an application, you must: 

1 Check thatthete Is sufficient memory to start up- if not, call 
OS_GenerateError ('Not enough application memory' ) 

2 Set up your handlers usine the SWI XOS_ChangeEnvironrnent; store the 
values returned in RI ·R3 so you can later restore the old handlers. 

Note that you must store the previous values not only for Exit. Error and UpCall 
handlers. but also for any other handlers that are set up. 

If your Error handler .. called 
If your error handler is called and you want to call the 'external' error handler (eg 
BASIC if '-quit' was on the command line). you should: 

1 restore all handlers to their original values (R I • R3 for each) 

1·287 



Senlng up 8/ld rt16torlng fie enwonm8flt 

:=:::;:·:=::-::: ·:-::::::::::::::::;;;.:.:v:v:-»»~:o;.:-:·:;:·:·:·:·:·:~·:·:·:·»:-:«-;·:·:.:·:·:·: ·:·:·:·:·:·:·:·:·:·:-:.:·:·:·:· :·:·:·:·:~::-:o:.::;: .. ~h~::::::::::;;;:;:::::::::::::::~:~:::-:::::::=::::::::: :;::::::::::-:.:-:.:-:·:=:·:=:·:;:·:·:·:·~ 

1-288 

2 call OS_CenerateEttot 

If your Exit handler Is c:~~lled 

lryourexlt handler Is called you should: 

I restore all handlers to their original values (Rl- R3 roreach) 

2 call OS_Exit 

If your UpCall handler Ia Clllled 

lr your UpCall handler is called and RO = UpCaii_NewApplicatlon (256). you 
should 

I restore all handlers to their original values (R I - R3 for each) 

2 return to the caller. preserving all resisters (ie carry on and start the new 
application) 

The approach described ensures that it Is not possible ror the application to be 
terminated without It first restoring the handlers to their original values. 

Program Environment 
:·:·:-:::;:;~:=:-:::::::::::::=:::;:::::::: ... :.·.:.:::::: •• :.· :::: ::::::::::::::::::::.:: :::::::;;.:::::::=:·:=:-:::::::::::::i:·:·:<=:.:::-...;;,,..;.:.: .. ~:~-.:·:-.~:.:.:·:·:·:;o::;:;:.:;:;:;:~::::::~=:=::: .. »;:o:; ::::::::::::::: ::;:::;;.::::::::::::::::::::::::::::::: .;:::::::-

SWI Calls 

Read/write handler addresses 

OS_Control 
(SWI &OF) 

On entry 

RO = address of enor handler, or 0 to read 
Rl =pointer to buffer for the enor handler. or 0 to read 
R2 =address of escape state chance handler. otO to read 
R3 =address of eYetlt handler. or 0 to reed 

On exit 

RO = previous error handler address 
R I = previous buffer address 
R2 = previous escape routine address 
R3 =previous event handler address 

Interrupts 

Interrupts are not enabled 
Fast interrupts are enabled 

Processor Mode 

Processor Is In IRQ or SVC mode 

Re-entrancy 

Uae 

SWI cannot be re-entered as Interrupts are disabled 

OS_Conttol sets some or the exception handlers. The addresses or the error 
handler. error handler buffer. escape state change handler and event handler are 
passed in RO- R3 Zero ror any of these means no change- hence you can read the 
OJrrent value. 

Note that the call OS_OlangeEnvfronment provides all of the radii ties that this 
call provides, and should be u~ In prererenoe In ract. this call uses 
OS_ChangeEnvironment 

1-289 



OS_Controf (SW/ &OF} 

:«"v:-;.;v:-»x«-!-:·:·:·:·:·:···:···:·:·:.:·:·;·• .,., .... :·:·. ::::: ••. :;:.:.-;·.·:·:-:::·:·~·: ·>>:-:.;-·. -:-::: -:-:-:-:···:·:·:·:·:·:·:·:·:·:·:·:~·x.:-:-.-.. x.;v:-:v:::.x-:·:·:·:·:·:·:-:.:-::~::;:::~;:;:;.· 

ReletedSWie 

OS_Chan11eEnvlronment (SWI &40) 

Related vector• 

ChanseEnvironmentV 

1-290 

Program EnvitonmiKII 
:::;::;::ov~;;;;;::::;-;::w.om;.;:;:;:::::::;;:;.;:;.;;;::·:·:·:·»:-:·:·:·:·:·:·:·:·:·:·:·:·:·:-:.:v:·:.:-:-;;:.:.:·:-»x..:.:.:.;;;;;.;.»:.:.;.:::·:·:-:::·:·:·:·:;;.;:;.:-:.:.»»x-:.:·:·:·:·:·:·:·:·x·»»:·:·: -:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:·:·:·:·:·:· .·.·.-::::: 

OS_GetEnv 
(SWI &10) 

Read environment parameters 

On entry 

On exit 

RO = address of the • Commend strinc 
Rl = pennilled RAM limit (ie hlthest addre5511Vallable + I) 
R2 =address of the real time the PfOiram was started (5 bytes) 

Interrupt• 

Interrupt status Is unalt~ 
Fast interrupt status Is unaltered 

Proce .. or Mode 

Processor isln 5'.<: mode 

R ... ntrancy 

SWI is re-entrant 

u •• 
This SWI reads some Information about the pf'OIIram environment. The value 
returned In RO Is theaddressofacopyofthecommand line. Rl retumstheaddress 
of the byte aboYe the last one available to the application. The five bytes pointed 
to by R211ive the real time: ie centiseconds since 00:00:00 OHan-1900. 

The memory limit described In Rl aan be altered by reason codeOof 
OS_Chan11eEnvlronment 

OS_ WriteEnv allows you to set these values 

RelatedSWia 

OS_ WriteE.nv (SWI &-48). OS_ChanseEnvironment (SWI &40) 

1-291 



OS_ GetEnv (SWI & 10) 

·:::::::::;~:~~N:=:::-.:;:;::r, ..... -:;::::::::r.::::::::::::::;.;::::::;:::::::::::::::.;·:•:·:~~;;.~;:;. ·:· :::;.;:;:;.::;:..:..~z.~:;::::::::::. ..... ~;:::::::::::::::::::::::::::::<:;:~:.::..:-:::::-:-:·:·:·:>:·:·:·:-:·:-:-::;:;:;:;.;.;:;:;;;v;: 

Related vectors 

None 

1-292 

Program Environment 
:::."!=~:r.:::::::::=:·:o::..;:::.r-:-::::::::;.:;:;;:;:;.;.;:;:;:;;;:;.;:;:;:;.;:;:;.;.;:;.;:;:;:;:;:;:::::::;:;:;:;:;.;:;:;:;:;.~-::;: ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::::::::::::~:;:;:;:;:;:;:;:::::::::::::::;:;:;:;:;:;:;:;::-::=-::~::::;:;:;:;:;:;:;:;:::::::;:;:::::::::::;:;:;:;:;::::::::::::::::::::::-.::::: 

Pass control to the most recent exit handler 

OS Exit 
(SWI &11) 

On entry 

RO = pointer to error block 
Rl = 'ABEX' (&58454241) if return code is to be set 
R2 = return code 

Onexh 

Never returns 

Interrupts 

Interrupt status Is unaltered 
Fast interrupt status is unaltered 

Proces~M»r Mode 

Processor is in USR mode 

Re-entrancy 

Uae 

SWI is not re-entrant 

When OS_Exit Is called, control returns to the most recent exit handler address. 
The BASIC statement QUIT performs an OS_Exlt. Before executing OS_Exit, 
however. you should restore any of the handlers changed in starting the 
application. 

If the exiting program wishes to return with a result code. lt must set R I to the hex 
value shown aboYe, and R2 to the desired value. Non-error results must be in the 
range 0 to the value of the variable SysSRCLimit. The return value is assigned to 
the variable SysSRetumCode. which can be interrQ£ated by any pr0£ram using 
OS_ReadVarVal. 

To return with an error, exit with a value less than zero 04' greater than SysSRCLimlt 
(having restored the previous error handler. as indicated above). This gives the 
error 'Return code limit exceeded' (&IE2). but still sets the variable to the required 
value. 

1-293 



OS_ Exit (SWI& 11) 

-:.-:v~:-:->:·:·:·:·:·:·:•:·:•:·:·:·:·:-:·:•:·:·:·:·~·•·;-;:;.;:;.;:::;:;:~.;.::.;-:::•:·:•:;;•:•:•:•:•:•:•:·:•:•:<:•::;:;::;:o;.;-:-:•:•»x.:«v:« .. »:·X<-:-:~·:.:-:-:-:-:-:.:-: ·>:·:·:·:·:·:···:·:·:•:·:·:·:·:·:·:·:·:-:.:·:-:>:·:·:-:·:-:·:·:-:-w..:·:-:·:·:-»:-:.:=m.:.::::::;.;:;.;:;.;.x-:.ioc 

1-294 

Related SWia 

OS_ExitAndDie (SWI &50) 

Related vec:tora 

None 

Program Envitonmllfll 

··:·:·:·:-::::::::: :::::::::::::::::::::::::::::::x:::.·m«~·%:·:•:•:•:·:.:«<»:·:·:·:·:·:-."»:;;.;.;.;.~:·:•:·:·:•:·~:-:-:;;;-~::-:·x~·:·:•:·:·:·:·:·:·:·:-:«·:<:·:.:-:.:·~·:·:-:-:-:·:.: ·:·:·:·:·:·:·:·:·:·:•:•::::::::: ·:=:::::~:::::::...-;c::;;.::::::-:;:.:.; ·:=:=:=:•:•:·: 

Set environment parameters 

OS_SetEnv 
(SWI &12) 

On entry 

RO = address of the handler ror OS_Elllt, or 0 to read 
Rl =address of the end ofmemcxy limit rorOS_CetEnv to read, orO to read 
R4 = add~s of handler ror undefined Instructions. oro to read 
R5 = address of handler ror prefetch abort. or 0 to ~ad 
R6 = address o( handler ror data abon, or 0 to ~ad 
R7 = address o( handler ror address aception, CK 0 to read 

Onexh 

RO =address of previous handler for OS pit 
R I = add~s o( previous end ol memory limit ror OS_CetEnv to read 
R4 =address or previous handler ror undefined instructions 
R5 = add~s or previous handler ror preretch abort 
R6 = add~s or previous handler ror data abort 
R7 = add~s or previous handler ror add~s exception 

Interrupt a 
Interrupts are disabled 
Fast interrupts aN: enabled 

Proceaaor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not ~-entrant 

u •• 
OS_SetEnv sets several ol the handlers ror a program. 

Note that the call OS_ChanaeEnvlronment provides all of the racilities that this 
call provides, and should be used In preference. In fact. this call uses 
OS_ChanaeEnvlronment. 

1-295 



OS_S.tEnv (SWI& 12) 

:~~x<:~::~::::::~::;:::::::·:·:·:·:·::;:;:;.;:;.;.;:;.::::;.;:;::;:::~~-:«-:o:::::::::::::::::::::::::::;:.x::.:-:>:::::::-::::::::: 

1-296 

Rel•tedSWI• 

OS_ChangeEnvironment (SWJ &<40) 

Rel•ted vector• 

None 

:;:;:;:;.;:;:;:;:;:;::;:;:;:;:;:;:;:::;:;:;:;:;:;:;:;<::;:;:;.;.;:;:;:;:;:; :;:;:;:;:;:;:;:;:;:;:;.;:;.;:;:;:;.;:;~::;:;:;:;:;:::::~~~ 

Program Environment 

:·:·: ·:·:···:·:·; ·:·:·:·:·:·:·:·:·:·:·:·:·:=: :::::::::::::::;.;::::::.:-:::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::~·=>:>::::::::x::~::.;.;:::: .. ~x;:.:::::::::::::::::-x«;:::;;:;:;:;::;:-"!':>::;.;:::::::::::::::::::;.:-: :;.:-:::::::::::::::::::::::::::::::::::::::::::::::::=:-:-::: 

Set up the CallBack handler 

On entry 

RO =address of the ~ister save bloc*. orO to read 
Rl =address of the Cal Back handler. or 0 to read 

Onexh 

RO = address of previous regl.ster sa~ block 
Rl =address of previous Call Bad handler 

Interrupt• 
Interrupt status Is unaltered 
Fast interrupts are enabled 

Procaaor Mode 

Processor is in SVC mode 

Re-entr•ncy 

SWI Is re-entrant 

u •• 

OS_ CallBack 
(SWI &15) 

OS_CaiiBack sets up the address or the CallBack handler and the register save 
block. rero for either value meaning no chanae- hence you can read the current 
value. 

Note that the call OS_ChanaeEnvfronment provides all of the facilities that this 
call provides. and should be used In ~lerence. In fact, this call uses 
OS_ChangeEnvironment. 

Rel8tedSWI• 

OS_ChangeEnvlronment (SWJ &<40) 

Rel8ted vector• 

ChangeEnvironmentV 

1-297 



OS_BrsaJcPt (SWI &17} 

·:~·~·:·:·:•:·:·:·:·:·:·:·:·:·>:.•»:·:·:··.·:·:·:·:·:-!· ::wow:·:·:·~~<-:l:'!·:·:·~·=--'=!·:·:·:·:·:·: ·:·:·:·:·:·:·:.:·:·:·:···:·:·:·:·:·:-:.;.:-:·:·:-:·:·:•:<:·:::.."-:·:·:·:::·:-»:.:·:·:·:·:·:·:·:· :·:·:·:·:·:·:·:·:·:·:-:.:.x-:-x-:1-:;;.;.;:;.;.;.;.;.;:;.;.;::-m-~~-;:;:;.; 

1-298 

OS_BreakPt 
(SWI &17) 

Cause a break point trap to occur and the BreakPoint handler to be entered 

On entry 

On exit 

Interrupt• 

Interrupt status is unaltered 
Fast interrupts are enabled 

Proceaaor Mode 
Processor Is In SVC mode 

R-ntrency 

Uae 

Not defined 

When OS_BreakPt is executed. all the user mode reilsters are saved In a block and 
the BleakPoint handler is called . The saved registers are only guaranteed to be 
correct ror user mode. 

The derault handler displays the message 'Break point at ~and calls OS_Exit 

This SWI would be placed in code by the debugger at required breakpoints. 

ReletedSWia 

OS_Breakarl (SWI &18) 

Related vector• 

None 

Program EnvtronmMI 

::::::::::;:::::::: ::::::::r.::::::::-:::::.:::::::*«:::x:::::::::::::::~:-:--,;~:·:·:-:·:·:-»:-:-:.:•:::.;x;;«.o.;-:.;;.;:;.;::-;·:·:·:-:;:-:@.:;;:..~.-x:;::::::::::::::::,:.;:::::::>:~.;:;;;:::::•:•:·:=~m:~::o:o:w.•:.:·=·:·:·:=:-:.:.:-:.:·:·:·:.. 

Set up the BleakPoint handler 

On entry 

RO =address of the reclster save block. or 0 to read 
Rl =address or the control routine. or 0 to read 

Onexh 

RO =address of p~lous realster sa~~e blodt 
Rl =address of p~lous control routine 
V is always dear 

Interrupt• 

Interrupt status 15 unaltered 
Fast interrupts are enabled 

Proceaaor Mode 
Processor is in SVC mode 

Re4ntrancy 

SWI is re-entrant 

Uae 

OS_BreakCtrl 
(SWI &18) 

OS_BleakCtrl sets up the address of the BleakPolnt handler and the register save 
block, zero for either value me~~nlnc no chance- hence you can read the current 
value. 

Note that the call OS_Chanae£nvironment provides all of the raalities that this 
call provides. and should be used In prererence. In ract. this call uses 
OS_ChangeEnvironment. 

ReletedSWia 

OS_BleakPt (SWI &-17) 

Related vector• 

ChaneeEnvironmentV 

1·299 



OS_ Unus9dSWI (SWI &19) 

::::~:;:::::::.;:.;~::~x::•::::::::::::::::::::::::::::;:;:;::::.:·:·:-::x;·.«·.V:·:·:·::;.:•:•:·:·:~:..-.:-:-:-:;:.;::::·x·:·>=·:::.:-: .... :-:·:·:·:-:·:·:•:·:·:·:·:·:·~:-::;.;-::;:;:;::~~:x;;<-X«'f.:'::::::-: ..• :.:.::::·:·:-:::·:·:·· .;:;:;.;:;.;.;:;:-:;::; ·:·:-:•:«·::~;,.:-:-:·:·:·:·:·»: 

1-300 

Set up the handlerfor unused SWJs 

On entry 

OS_UnusedSWI 
(SWI &19) 

RO • address ol the unused SWI handler; or 0 to read 

On exit 

RO • address ol previous unused SWJ handler 

Interrupts 

Interrupt status is unaltered 
Fast lnterTupts are enabled 

Proc:eaeor Mode 
Processor Is In SVC mode 

R ... ntrancy 

u .. 

SWJ Is not enabled 

OS_UnusedSWI sets up the address of the UnusedSWJ handler. zero meaning no 
change - hence you can read the current value. 

Note that the call OS_ChangeEnvironment provides all ol the facilities that this 
call provides. and should be used in preference. In fact. this call uses 
OS_ChangeEnvlronment. 

Related SWia 

OS_ChangeEnvlronment (SWJ &40) 

Related vectors 

ChangeEnvironmentV 

Program EnvlronmtKit 
;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.;:;:;:;:;: ...... ;.;.;.;.;.;::·:·:·:·:·:·:·:· ·>:·:•:·:·:·:.:·:·:·:o: .. ~:•:•:¢OCO:-:•:•:.:««-:-:::.:·:·:·:·:·:·:·:·:·:·::;:;.»»>:.:-:·:·:O:::·:·:::.:·:·:..::;;::;::..;.:-x..:·:«·:-:Y::«>...;:~::::;;.:·':-:·:·:-:·:-:-:-:::-:-:·:C.::.:-:·:-·· 

Cause a call to the CallBack handler 

On entry 

On exit 

Interrupt a 

Interrupts are dl.sabled 
Fast interrupts are enabled 

Proc:eaeor Mode 
Processor is in SVC mode 

R....,trancy 

OS_ SetCaiiBack 
(SWI &18) 

SWJ cannot be re-entered because Interrupts are d isabled 

Use 
OS_SetCaiiBack sets the CallBack Oq and so causes entry to the CallBack handler 
when the system next exits to user mode code with Interrupts enabled (apart. of 
course. from the exit from this SWI). This SWI may be used if the code linked into 
the system (via a vectOf or as a SWJ handler. etc) Is required to do things on exit 
from the system. 

Related SWia 

OS_CaiiBac:k (SWI &15) 

Related vectors 

None 

1-301 



OS_ RNdVarVal (SWI &23) 

:=::::::;:::;:;:;:;:;:;:::::::;;;:;:;::~::;::;;~««;:' ..... Q..:;:;;;:;;;./,.:;:;:.;9W,O::~::~;:;:;:;:;:;:;::::::--:~::::::.::-:::::=!:::;:;:;:;:;::::~:::::;;::;;:;: ;:;:;:;;;: ;:;:;:;:;:;:;:;:;.;. ;:;:;:;.;.;:;.;:;:;.;;;::·:·:·:·:·:=:·:·:·:·: ;.;.;.;,;.;.;.;.;.;.;,:.;.;.;:;:;.·.·. 

1-302 

Read a variable value 

OS_ReadVarVal 
(SWI &23) 

On entry 

RO =pointer to name. may be wildcarded (" and#) 
Rl =pointer to buffer 
R2 =maximum length of buffer 
R'J =name pointer (or 0 for first call). 
R4 = 3 if an expanded string Is to be returned 

On exit 

RO. Rl preserved 
R2 = number of bytes read 
R'J = new name pointer. string is null-terminated 
R4 =type of variable (string. number or macro) 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Proc:essor is in SVC mode 

Re-entrancy 

u .. 

SWI is re-entrant 

OS_ReadVarVal reads a variable and returns its value and its type. On entry. R'J 
should be 0 the first time the call is made for a wildcarded name. and thereafter 
preserved from the previous call . This enables all matches of a wildcarded name to 
be found. On exit. R3 points to the name of the variable found . The 
XOS_ReadVarVal form ol the call should be used if you don't want an error to occur 
after the last name has been found. 

Program EnvitonmMt 
·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:· ;.;.;.;:;:;.;:;:;:;:;.;.;:;:;:;:;.;:;:;:;:;:;:;:;:;:;:;:;.;:;.;:;:;:;:; :·:·:·:;:;:;:;:::;:;:;:;:;:;:;:;:;::;:;:;:;:;:;:;:;_;:;;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;~:•:::::•:•:·::::::::::r.::;;;:;o;:;::o:::~·:•:·:·:;:<-"{('5:·:·:·:=:·:·:·:·:· ;.;:;:;:;:;;;;;:· 

You can call XOS_ReadVarVal to check for the existence oC a variable by setting R2 
to a value less than zero (bit 'Jl set) on entry. If It Is still negative on exit the 
variable exists: if it is zero. the variable does not exist. When using the call in this 
manner. you may get an error on exit. which you should ignore. 

The type of the variable read is returned in R4 as follows: 

Vlll•e 
Va(J'ype_String 
Va(J'ype_Number 
Va(J'ype_Maao 

(0) 
(I) 
(2) 

,.,. 
String 
4 byte (signed) integer 
Macro 

R4, if set to 3 on entry, indicates that a suitable conversion to a string should be 
performed. String variables are unaltered, numbers are converted to (signed) 
decimal strings. and maaos are os_csnans'd. 

If R4 isn't 3 on entry, the un..QS_CSTrans'd version of a macro is returned. and the 
four-byte binary of a number is returned. 

See the section entitled ...,UWiolt NoCis on paae 1·324 for an example of reading a 
variable. 

Related SWis 

OS_SetVarVal (SWI &24) 

Related vectors 

None 

1-303 



os_setVarV81 (SWI &2<4) 

·:::::;:;:;:;:;:;:;:;:;:;:;;;:;;.;.;::::::.-.:;:; ·:·:·:·:· ;.;.;.;.;.;.;.:-:·:·:·: •:·:·:-:::·:·:·:·:·:·:·::;.;::.:·:·:·:·::;:;::;;:;: :·: :;:;:;:;.;:;.;.;.;.;. ;.;.; :;:;.;::·:·:·:·:· ;.:-:-:···:·:·:·:·:::-~:::::::::::::::::::;;;:;x;x:;;~:;:;:;:::;::;:.;:::;.:«;:<;;::;;::;:;:;:;:;:;:;:;:;:;:;:;:;::o::.-<->:::« 

1-304 

Write a variable value 

OS_ SetVarVal 
(SWI &24) 

On entry 

RO • pointer to name This can be wildcarded for update/delete 
R I • pointer to value 
R2 • lenath ol value. Neaative means destroy the variable 
RJ • name pointer or 0 for first call 
R4,. type 

On exit 

RO • R2p~rved 
RJ • new context pointer 
R4 =type created If e•presslon is evaluated 

Interrupt• 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor Is In SVC mode 

Re-entrancy 

u .. 

Swtls not re-entrant 

OS_SetVarVal either creates. updates or destroys a variable. The name may be 
terminated by any character whose ASCII value is 32 or less and may be wildatrded 
ir ltls to be updated or deleted (ie if it already exists). 

The pointer to the value to be assianed in the case or create/Update Is &i~n by Rl 
If It Is a strina then It must be terminated by a linefeed (ASCU 10) or carriaae return 
(ASCII 13) or null (ASCII 01 The fnte~pretatlon of the value depends on the type 
al~n in R4 as follows; 

Program Environment 
:;~:::::::::::::;:::;:;;;:;::::: ::::::::::::::::::::::::::::::::::::::::: :::::::::::::::.~:::::::::;:;;x;:;:;;::x«::•~:=:•:•:•:•:•~>:·»:>:-:::::::::::::::~::::::.;:;:;:;;;;;;.:•:•:•:•:::;;.;:.o..::::;;;.;.;;;;.;.:.:-»:::·:•:·:::.:•::::::~:::::~::::.:;;::m:::: :::::::::::::::::.::::: ::·:·:·:·:-::·:· 

Val we 

VarType_Strtna 
VarType_Number 
VarType_Macro 
Var1\tpe_Expanded 

VarType_Code 

Type 

(0) 
(I) 
(2) 
(3) 

(16) 

os_c.snans the alven value 
Value Is • 4 byte (sianed) inteaer 
Copy Ylllue (may be OS_CSThlns'd on use) 
The value Is a strina which should be 
evaluated as an ex~ion using 
OS_EvaluateExpresslon. and assigned to a 
number or strina variable, dependinll on the 
expression type 
Special case (see below) 

If the call is sucoessful, R3 Is updated to point to the new oonte•t so allowing the 
next match ol a wildattded name to be obtained on • sut-quent call. R4 returns 
the type created if an eapresslon was evaluated (le If R4 was Jon entry). 

R2 must be neaatl~ on entry to ~e • variable. Also. to delete a type-16 variable. 
R4 should contain 16 on entry. 

VarType_Code 

When R4 is set to 16 on entry (and R2 ~ 01 a code variable may be created. In this 
case R I is the pointer to the code fraament associated with the variable. and R2 is 
the length or the code rraament. This code must be word-aligned and talr.es the 
following format: 

Offeet 
0 
4 
8 ... 

Co•te•te 
Branch Instruction to entry point for write operation 
Entry point for read operation 
Body of code .. . 

Values are always written to (and read from) code variables as strings. The entry for 
the write operation Is called whenever the variable Is to be set. as follows: 

0• e•try 
Rl =pointer to the value to be used 
R2 =length or value 

o. eldt 

Rl. R2. R4. RIO· Rl 2 may be corrupted 

The entry for the read operation is called whenever the variable is to be read by a 
call to OS_ReadVarVal. as follows · 

0. eatry 

1-305 



OS_S&tVarVa/ (SW/ &24) 

·:·:·:·:·:·:•:·:·:·:·:·~.:.-·.o.;.;.:·:·:·:·:-:.w:-:·:·:·:·:.:·:·:-:·:·:·:·:·:·:·:·:·:·:·:.:·:·:·:·:·:·:·:·:O:-:-:«;).:.:-:.;-:--;;•:.:·:·:·:.:·:«-!«•x•:;:-:•:•:•:::•:•WM•>:<.»»>:·:.:;;.:·:•:•:•:·:·:•:•:·:·:•:·:•:·:·:•:•:·:•:;;.:o:<:•:•:•:·:·:·:•:•:·:i:·:~;:;.;.;.;::~:-:•~ 

1-306 

Errora 

Oa edt 

RO • pointer to value 
R I • corrupted 
R2 alen11th or value 

Both entries are called in SVC mode, therefore iranySWis are used. Rl4 must be 
sa~ on the stack so that it does not become corrupted. The SVC stack is used. 
and no workspace ts reserved You can return errors by sett1n11 the V 0811 as usual 

See the section entitled ~pliatitM Not4s on paae 1·324 for an example or a code 
vanable 

Note that when a runctJon key is input. the appropriate variable KeyS.o Is read usln11 
OS_ReadVarVal Therefore bv creating your own code variables with these names. 
you can cause the reading or a function key to cause a routine to be called Instead 
or fust a Strtng bcln& read . 

OS_SetVarVal can return the following errors: 

• Bad name 

• Bad string 

• Bad macro value 

• Bad expression 

• Variable not found 

• No room ror variable 

• Variable value too long 

• Bad variable type 

Wildcards/control characters In name when 
creating 

OS_GSTrans unable to translate string 

Control characters In the value string (R I) 

Expression cannot be evaluated 

For deletion or update 

Not enough room to create/update It 
(system heaprull) 

Variables are limited to 256 bytes 

Rel•ted SWia 

OS_ReadVarVal (SWI &23) 

Rel•ted vectora 

None 

Program EnvitonmtKJt 
:•:•:•:•:9'/.0:>!-:0:•:•:•:•;;;:;:;:;;;;:-:-;.;.:-:.:•.'•!0:·:·: ·!•!•!•!·! ·:-:·:·:·:·:·:·:·:·:·:·:·::;:;:;.;.;:;:;;: OC·:~·:-::;.;.;;;.c,;.;-:·:·:·:·:·:·:·:·:·:•:.;v»:.:.»;;;.;.;;:~;;;;;;;;;;:.;:.:;:.:.:.:-x>:·:.:>;.;.;.;.; •!•!•!•!·:-.<.:-:·:O:·:~;.;;:.;.~;::;:,;,:;{';;;;;:;.;.;.;.;. 

Install a handler 

OS_ Change Environment 
(SWI &40) 

On entry 

RO .. handler number 
Rl:newaddress,orOtoracl 
R2 .. R 12 with which to call the routine. or 0 to read 
R3 .. buffer pointer ir appropriate, or 0 to rac1 

Onexh 

ROprese~ 

R1 .. previous addrns 
R2 ,. previous R 12 
R3 .. previous bulrer pointer 

Interrupt• 

Interrupt status Is unaltered 
Fast interrupts are enabled 

Proc:eaaor Mode 

Processor is in SVC mode 

Re-entr•ncy 

u •• 
swr is re-entrant 

OS_ChangeEnvlronment Is a sln&le routine which performs the actions or 
OS_ Control , OS_setEnv. OS_ CallBack. OS_BreakCtrl. and OS_Unu.sedSWI. In fact. 
all of those routines use this call In new prot~rams. you should always use this call 
in preference to the earlier ones. 

For rull details or the handlers. see the section earlier tn this chaptet: 

On entry, RO contains • code which determines which particular handlefs address 
is to be set up. The new addrns Is passed In Rl RO also determines whether R2 
and R3 are relevant or not This Is summarised in the table below: 

1-307 



OS_ChangeEnvfronmMt (SWI &40) 

:;e;sx·:~.;.o.;:.;:.::•:>:·:·:·:·:·:-:-:>:~-c-:«-x-:·:·:·:·xv:;:.~ ... ·:o:·:::-:·:-:·:·:•:·:•:•:•:·»};':::•:•:•:•:•:o:::•:•:•;;:•:::•:::•:•:•:•:•:•:•:<:•:•:<:«~:;:>:;.--:::::::::::::::::::::::::::::;:::::::::::::::::::::::::::::::::«=::::t>:=x•:-:=:•:=:~-:.-:·>:•:::::•:·:~«-:·:~:=:i: 

1-308 

RO Ha•cller Rl R3 

0 MemoryLimlt Ignored Ignored 
I Undefined Ins. Ignored Ignored 
2 Preretch abort Ignored Ignored 
3 Data abort Ignored Ignored 
4 Address exception Ignored Ignored 
5 Other exceptions Ignored Ignored 
6 Enor RO when called Error buffer address 
7 CallBack R 12 when called Register buffer address 
8 BreakPoint R 12 when called Regi.ster buffer address 
9 Escape Rl2 when called Ignored 
10 E~~ent Rl2 when called Ignored 
II Exit Rl2 when called Ignored 
12 Unused SWI Rl2 when called Ignored 
ll Exception registers Ignored Ignored 
14 Application space Ignored Ignored 
15 Currently active object Ignored Ignored 
16 UpCall Rl2 when called Ignored 

The 'Memory limir (handler 0) is the permitted RAM limit, as used by OS_CetEnv 
The 'Application space' (handler 14) is the amount of read/write memory In 
application space. Consequently it should always be the case that Application 
space:!: Memory limit. 

'Other exceptions' (handler 5) Is ror ruture expansion. 

Handler I 3 sets the address or the area in memory where the registers are dumped 
when one or the exceptions (I • 5) occurs. ir the default handlers are used. 

Note that in order to perrorm Its runction. OS_ChangeEnvlronment vectors 
through ChangeEnvironmentV. A routine linked onto this vector can stop the 
change rrom happening by setting R I (and ir appropriate R2. Rl) to zero and 
passing the call on: see the chapter entitled Scftw" ~«lon on page 1·59. 

Related SWis 

OS_Control (SWl &oF). OS_SetEnv (SWl &12). OS_CaiiBaclt (SWI &15) 
OS_BrealtCtrl (SWl &18). OS_UnusedSWl (SWl &19) 

Retated vectors 

ChangeEnvlronmentV 

Progfam EnvfronmMt 

·:·:·:·:·:·:·:·:·:·:·:.:. :·:·:·:::::-:-::.:-~:::·:·: .·.·.·.··:·:·:·:·:·: ::.:=:·:=:=:·:·:·:·:·:·:·:·:·:· ::::·.:::::::::.:=:-:::;:;;.;.;..:.;.;v:..w:-:•:·:•:·:·:·:·:•~::::~-.:.:·m-:««.:•:·:·:·:·:·:•:o:;:;x.:•:=:•:~'@:·:=:•:•:•:~·~:::::::•:.':-:·:-:v:-:-::::;.;:::::;.;:·:· 

OS_WriteEnv 
(SWI &48) 

Set the program environment command string and start time 

On entry 

RO =pointer to environment string 
R I = pointer to start time 

On exit 

RO. Rl preserved 

Interrupts 

Interrupt status Is unaltered 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWl Is r~ntrant 

Use 

This call sets the string that an applie~~tion would read as Its command string, 
containing parameters for the application. This SWI also sets the start time, which 
is the real-time, stored as a 5 byte value. 

This SWI is mainly used ror debuggers. 

Related SWia 

OS_CetEnv (SWl &10) 

Related vectors 

None 

1-309 



OS_Exi!AndDie (SWI &50) 

·:>:·:·:·:·:·:·:·} ;.;.;.;.;.;.;;:<»:«·:•:·:·:•:·;;;;;;;;;;:;,;:;;;:;;«•:.:-:*=·:·:·~:;:;.;;;;;.;~:;;:~::;:;:»:~~.<·:·X~:-:·:·:·:·: .;:;.;.;.;.;.;.;.;:;.;.;.;.;;;:;:;.»;;;.;.~z:;:::•;.;.;.;.;.;.:-:~-;:;:;:;:;o;;;;:;:o;;::;o;;;,;;:;.;.: 

1-310 

OS ExitAndDie 
(SWI &50) 

Pass control to the most recent exit handler and kill a module 

On entry 

RO = pointer to error blodt 
R I = "ABEX (&5845424l) lf ~turn code is to be set 
R2 = ~tum code 
R3 = pointer to module name 

On exit 

never returns 

Interrupts 
Interrupt status is unaltered 
Fast interrupts are enabled 

Processor Mode 

Processor Is 1n SVC ~ 

Re-entrancy 

u .. 

SWI is not re-entrant 

This SWIIs like OS_Exit. except that it will kill a module before exilin& R3 points to 
a strin& contain in& the modufe"s name. 

Rel•tedSWis 
OS_Exit(SWI &II) 

Related vectors 

None 

Program Envfronm«~t 
=~~:-:-:=:·:·:·:•::;:;:;:;: ;:;::::::.-.«-:-:-:-:-:-:~:;:;.;.;.;.;.;;;:;:;:;:;:;:;:;;::;;::;.;\.:~;:;:;:;:;;;~">:::::::;:;:;:;~'}:.»:·~·~:·:•.:-:·»:•:-:-;:;:::::::::;:;:;.;:;:;.;;;;:.,:.,:.:.o.;~·:·:·:':;;:;.;::;.::::x:::o::::-:·:::.."?~»:-:•;·:·:• 

Add a transient allback to the list 

OS _Add CallBack 
(SWI &54) 

On entry 

RO • address to all 
Rl•valueofR12tobealledwith 

On exit 

RO • preserved 
R I • preserved 

ln...-rupta 
Interrupts are disabled 
Fast Interrupts a~ enabled 

Processor Mode 

Processor is inS~~ 

Re-entr•ncy 

Uae 

SWJ Is ~-entrant 

A transient callbeclt 1$ placed on a list of tasks who want to be called as soon as 
RISC OS is not busy Usually. this will be Just before ~turnfna from a SWI or while 
waitfn& lor a key and so on. 

This SWI will place a transient routine on that list. It is usually called from an 
Interrupt routine that needs to do complex processin& that would take too lone In 
an Interrupt. or that needs to call a non-r~trant SWI. Note that it is not 
necessary to all OS_SetCaiiBad. Usin& this SWI means you want to be called 
OS_SetCaiiBad Is only needed when ustna the allback handler 

A routine called bv this mechanism must~ all n:clsters and return by 

MOV PC, Rl4 

1-311 



OS_AddCaHBscl! (SWI &54} 

~:~:~::::::::::::::::::::::::::::::::::::::::::::::::::::=~m-::x:;:::::::::x::::::::::::::::::::::: ::::::::::::::::::::::::::::;::::::::::::::::: ::::::::::::::::.::::::::: :::::::::::::::::::: ::::=:·:=: =:-:·:·:·:·:=:.:·:·:;:::.:-::: :::::::::::::::::;;::::::::::::::::::::: ::::::::::=:=:: :::::.::::: 

Related SWia 

None 

Related vectora 

None 

1-312 

Program Envlronmllfll 
::::::::x::::::·:'-:::::::::::;:;:;:;:::::::;;:;.;::::::-:-:-:::::;::::::::::::::::::::::::-::::::::;;.:::::::::::<:.:::::::::::::: :::::::::::::::.:-:= •• ::::::::::::::.:=:·:-::::::::::;:;;;:::::::::::::::::::: :;:::::::::::::::::::: :;:::::::::::::x•:=::}:::;:~~~$:~::'.:;::::::::;.-;::::::~~~::::::: 

OS _ReadDefaultHandler 
(SWI &55) 

Get the address of the default handler 

On entry 

RO = reason code (0 • 16) 

On exit 

RO preserved 
R1 =address of default handler 
R2 = workspace address 
RJ = buffer address 

Interrupt• 

Interrupt status is unaltered 
Fast interrupts are enabled 

Procesaor Mode 

Processor is In SIJC mode 

R ... ntrancy 

SWJ is re-entrant 

Uae 

UsinQ the same handler number in RO as those in OS_ChanseEnvironment (see 
pase 1·308). this SWJ returns details about the default handler. 

Zero In R1. R2 or RJ on exit means that it is not relevant. 

Related SWia 

OS_ChangeEnvironment (SWJ &40) 

Related vectora 

None 

1·313 



OS_Rflnlov9Ca/18adc (SWI &SF) 

·:·:-:-:·: ·:-:o;« ·:·:-:v:·:·:-:-:·:·:·:· ;;;;;:;:;:;:;.;:::::::::;.;:;~:;:::::;.;:;:~;:;:;:;:;:~;;;.;;;.;.;.;;:<·;ox#..;.:-..;::~.;.;.;::·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·;.;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::::::;.;.;.;::·:·:·:·:·:-:·:·:-:-:·:~-»:·:.:<:·:·:-;::·:·: 

1-314 

OS _RemoveCaiiBack 
(SWI &SF) 

ReTTlO\IeS a transient callbadr. rrom the list 

On entry 

RO =address that was to be called 
Rl =value of Rl2 that the routine was to be called with 

On exit 

RO. Rl preserved 

lnterrupta 

Interrupts are disabled 
Fast interrupts are enabled 

Proceaaor Mode 

Processor is in SVC mode 

Re-entrency 

Uae 

SWI is re-entrant 

This call removes a transient callback £rom the list. You should do so i£ your 
module has an outstanding call bad request, but will not be able to service the 
request when it is granted - ror example i£ the module Is beina lUlled. 

This call is not available in RISC OS 2.0, which can cause problems For example, i£ 
a module is being lu lled and it has outstandina callback requests, it must reruse to 
d1e. otherwise the c:a II bad may be granted arter that rne!TlOfY has been reused £or 
something else 

ReletedSWis 

None 

Releted vectors 

None 

Program EnvironmMJI 
;:;.;.;.;:;:;;;:;;;~:~«:;;;;.:::;.;::;:;:::::;:;:;:;:;:;:;:;:;:;:;:;:;:;.;~:;:;:;.;.:.;.:;:;:-:;:~-.;;;;:::::.:;:.:·:-:»;.:.;-;.;.;.;.;.;.,:.:.:.:·:·:·:·:·:·::::;:;:;.;:;:;.;.;.;.;.;:;.;.;:;:;:;.;:;:;:;.;.;;x;x;;.;.;:;.;.:-:.:·:·:·:·::;.;.::;:;:;:;.;.;:;:;:;:;:;:;:;:;.;:;.;:;:;:;::::«-:::-;:;:;:;.;:;.;;:.x-:·:·:·:··· 

*Commands 
*Go 

Calls machine oode at the pen address 

Syntu 

*Go (hexadeclaal_address ) environment I 

Peremeters 

u •• 

hexadecimal_ address 
environment 

address of machine code to call 

environment strlnato pass to machine code 

·eo calls machine code at the given address. passlna it an optional environment 
strina 1£ the address Is omitted, it de£aults to &8000. which IS where application 
Pf08rams (such as the C compiler) are loaded. 

•eo enters an application. and you cannot use it to run mach ine code subroutines. 

Exemple 

•Go 9000 ; SrcList 

Releted commends 

None 

RelatedSWis 

None 

Related vector• 

None 

Call machine code at &9000, passing it the string 
'SrcList' 

1-315 



·o.nr 
:::::.:-x.::::::;:;: :.:·:·:-:-: .;.;.;.;.;.;.;:;.;.;:;.;.;:;:;:; :;:;.;.;:;:;.;:; :;.:-:·:·: .;.;.;:;:;.;.;:;.~.; .;.;-;;._o.:,:;;;:::.~:;:-:-:::-::;:;. ;.;.;.: .;.;.;.·.;.;:;.:-:·:·: .;.;: ;.;.;.;:;:;:;::-::-:-':'.:;:::.:.~;:.~:::o:::w.::;;.;~;x::-:·:·:·:·:·:· :-:=:·:·: :;.;:;.;.;.;.;:;.;:;.;;:..»?, 

1-316 

Exits from the current application 

Syntax 
*Quit 

Parameters 

None 

Use 

*Quit 

•ouit exits from the current application- that is, it returns to the previous context. 

Related commanda 

·cos 

Related SWis 

None 

Related vectors 

None 

Program Envlronm~~t~t 

:::::::::.:::::::.:•:•::::: ·:·:·:·:=:::::=::=~~:::;..::::::~~:::::;;;:;:;,~~·=:::::::!~~·~:.::~:::::::::::·:·:=:·: ·:·:·:·: ··=:=:·.· :=:·: :-:::·:·:·:=:::::::::::::::~:=::::::=-:::=>.w;;;:.:::::::;.:.::~ ::::::::::::::: :::::::::::· 

*Set 

Assigns a string value to a system variable 

Syntax 
*Set varname value 

Parameters 

Use 

varname 

value 

a variable name, or a wildcard specification for a single 
variable name 

this parameter depends on the system variable referred 
to In the varname spedficatlon. and is CSTraru'd before 
use 

•Set assigns a string value to a system variable. like an assignment statement in a 
programming language. For example: 

*Set varname text 

assigns the string 'text' to the variable vamame. 

AHua 

Another use for the •Set command Is to change the name of a command to one 
which is more convenient for the user: 

*Set AllasSname cname 

establishes name as an alternative name for the command cname; for example 
after: 

*Set Allas SAld Help 

the command • Aid is now a synonym for •Help; both commands access the help 
system. Another example Is: 

•set AliasSMode Echo 1<22>1<\0> 
*Mode 12 

The command implements a new command •Mode, which sets the screen to 
mode I 2 (in the above case) . The Echo command reOects the string which follows 
it; 1<22> generates the ASCII character 22. Ctrl V, which is equivalent to the VDU 
command to change mode. l<%0> reads the first parameter from the command 
line. and generates the corresponding ASCII code. 

1-317 



•591 

.;:;:;.;.;.;:;.;.:-:-:..:-::;~~;:;:;:;~::~~:;;;.,,:;:;.;·:•:~:;~;:-;.:.;;;;;;;:;;;:;:::;:;:;:;;;:;.;:;:;o;.;: ;.;:;.;:;:;:;:;:;:;.;:;:;:;:;.;.;:;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:-;-;x:;.;:;.;:;:;::.:;:;;; .;.;.;.;.;.:-:-:-~;.;.;:;.;:;.~;;;.;-::;.;.:-:·:-:-:< 

The oommand • Show Alias$* lists all aliases. 

Example 

• sat SysSYear 1988 

Retated commands 

•SetEval. "SeLMacto, •unset 

RelatedSWia 

OS_CSTrans (SWI &27) 

Related vectors 

None 

1-318 

Program Environmflflt 

:•:::::::::::::::::•:•:•:::.;;:..x;..::;::;:;:•:•;.;z.:;:;.:.:::;:•:::.;;:-:·:•:·:·:·:•:·:·:·:·:.:·::::::x::.:·:•:·:·:·:::.:-::..:::.;.;.:-:-:-:·:·:·:~«;;@."<.:«•;.;:..:.;,;~;:•::;;:;m;o.:>:~::•:•:~~·:o:.:•::.:::.:::::::•:::.:·:<:<:'»»::.;;.:.:;:.:-: ::::::::::::: :-:=:::::::::: 

*SetEval 

Evaluates an expression and assJans Its value to a system variable 

Syntax 

•setEval varname express1on 

Parameters 

u .. 

varname 

express1on 
a valid variable name 
a valid Command Une expression 

•Set£ val evaluates an expression and 8551p its value to a system variable. 

See the S«tion entitled E ... r,..lio" .,.,.rm on paae t -432 for a description of the 
operators that you can use 

Example 

*Set r a t e 12 
*Set tval rata rate + 1 
*Show rat ,• 
rate (Number) : 13 

*SetEval ~red "j~"+"ehe11a" 

Related commands 

•Set. •SetMacro. •unset. •Eval 

RetatedSWia 

None 

Retated vectors 

None 

1·319 



'S./Macro 

::::::::::::::::::::::;:.-:.::;;.:::::::::::::x.;x;;;x;;;.x;w:::::::~:~:::•.::::o:o:-:-;..-<·>=·:·:·:=:·:•:•:•:•:•:::::::.:•:::::~9.=::::::mx:::::::::::: ::::::: :::::::::::::::::.: ·:-:::.: .·:·.·:·.·.·.·.··.··:·:·:·:-:·:·:-:·:-c::.:.:;:-;.:•:·:•:·:·:•:~:•:·:•:·:•:·:•:·:·:•:•: 

1·320 

*SetMacro 

Asslans an expression to a system variable 

Syntax 

• SetMac r o varname expression 

Parameters 

u .. 

varnaJJte 

expressJ.on 
a valid variable name 

a valid Command Line expression 

'SetMacro asslans an expression to a system variable. The parameters makina up 
the expression are not Interpreted when the command is aiven. but each time the 
variable Is used. 

See the S~eetfon entitled Ev•dw1tioN oprr11«l on paae 1-432 ror a description of the 
operators that you can use. 

Example 

* .. tMacro CLI$Pro.pt 
13:43:17 
.ot.turn 
13:43:19 

"<Sya$1'~> " 
SlfSIIIII tiiOlf r~us Msli"f pr0111pt 
Rll'"" i•IJ priSSM 111'0 s.rorllls llur 
IIIII' SlfSIIIII li1111 ilispi.IJM IS pro111pt 

This resets the Command Line prompt. which appears as the first Item on each 
line. to be the current time whenever the prompt is aiven. Compare this with us ina 
the •set command: 

*let fred <lya$1'~> 
*IJhow fred 
FRED : 13:43: 59 

the • Show command Issued flve minutes later will produce· 

*Show f r ed 
FRED : 13 :43 : 59 

Notice that the time is fixed at the time the •set command Is last used, In 
contrast to the • s etMac r o command. 

Program Environm9f'll 

::.:::•:·:·:-::::::::::::::·: ········: .• :.· ::::::::::::::::: ::::::::::::::::::::::::;;;:;.;:: :::::; ::::::-:.:;.;;;.;:::: :·:;.·:::::::;.;:::::::::::::::::-:•:.:-~>xo;.··i:~-:.;•:-:•:·:•:·:•:•:•::;;::x:x::::-:·:•:=:•:=:·:•:•:::®::::;:;.;~:;;;:;:;:;:;:;:;:::::::::::-:::>:>-~::.:>~::; 

Related commands 

'Set. 'SetEval , 'Unset 

Related SWis 

None 

Related vectors 

None 

1-321 



•Show 

;:;.;;;.;: :;:;:;:;:;:;:;;;:;:;:;:;:;:;:;:·:;:;:;:;:;:;.;:;:;:;:;;;:;;;;;:;.;.;.;.;.;.;:;.;;;.;.;.;.;.· ·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:=:=:•;.::o:;:;:-::::~:-:;:::;::::::;::::::::::<"..;;;~x«::::::::::::::::::::.:-:-::::::: ::::::::::::;:;:::::;;;;:::::::::::::::::::::::::::::;:: 

1-322 

*Show 

Displays the I 1st of system variables 

Syntax 

*Show ( variable_spec] 

Parameters 

variable_ spec a variable name or a wildcard spedfication for a set of 
variable names 

u .. 
·show displays the name. type and current value or any system variables matching 
the name given as a parameter. These include the 'special' system variables, which 
may be altered. but which cannot be deleted. 

Uno name is given, all system variables are displayed. 

Example 

*Show 
*Show CLISPrompt 
*Show Alias$• 

Related commands 

•Set. ·setEval. •SetMacro 

Related Swts 

None 

Related vectors 

None 

tists aU sysltM variahlts 

fists aU a lie siS 

Program Environment 
:::~:•:::::::::;xm:::::::::;:::~%::::::::::::::: ::::::::::::::::::::::::::::::::::::::::o:o:-m~:;:.::::::;.;;;.;.:«v.o;.;:;.:::.:v:-:::::·:·:·:·:·:=:·:·:·:·:o:::::-:.:.:.;::.:-:·:·: ·:·:·:·:·:· :·:·:-:::;:·:·:·:·:·:·:·:·:·:·:·: -:-:-:-:·:·:·:-:-:·:·:::-:·:· ;.;:::::::;.;:;:;.:;.:-: :;::::~ 

*Unset 

Deletes a system variable 

Syntax 

*Unset variable_spec 

Parameters 

variable_spec a variable name or a wildcard specification for a variable 
name 

u •• 
•unset deletes a system variable. which may be spedfied using wildcards. 

Example 

•unset My_var 

Related commands 

•Set. • SetEval. •SetMacro 

RelatedSWia 

None 

Related vectors 

None 

1-323 



Appllc•tion Notes 

·:·:· .«·:.:·:;;.;.;.;:;.;.;:;~;:;;:;.;:;::"·:·:· ;:;:;.;.;:;:;:;:;.;.;.;.;:;:;.;:;.;.;.;:;.;.•.;.;.;.;.;.;.;.;.:·:·:-:-~:·:·~·:·:·:-:.;·:·X~·:·:·:·: .;.;.~.; :;:;:;:;:;:;:;:;:;:;:;.;.;.;.;. ··:.:·:·:v:.;.x.;-:-:=:=:.:-:.:·:-.'-.:«~·=·:·:·:·: ·:·:·:-:::::::-:-:-::;.;.;.;.;:·.· · 

Application Notes 

Reading • varlabte 
Here is a short example of reading a variable using OS_ReadVarVal 

;Prlnt all aytS varhbJe n••• 
ADO 1\l, valautt•r 
HOV IU, f O 

.loop 
AD~ ao. ttt'tiame 
HOV lt2, t buffert.en 
Sill ·xos J'.eadVa rVal'" 
MOVVSS PC, O.lt 
HOY ~o. O.J 
Sill ·os_wrtteo· 
Sill ·os_NewLtne'" 
8 loop 

.•trNuw IQUS ·syss•· • cHJtso 

;Buffer to pl•e-e v•lue 
: Inltl•l eont•.xt 

Wllde.arded name to flr.d 
Lenqth of value buffer 
Non-•rror reportlnq on• 

; Return a nd clear v 
:Get addresa of name 
:Print it 
:and new llne 
: aqatn 

Checking the value of • variable 

Code varlabte 

1-324 

The short code fra&rnent below checks if a variable has a particular value. without 
giving an error If it does not exist or contains quotes. 

•SetKicro AppSre,., <varJ•OJ•> 
It AppSf'e~ • •d••l r.d_ v a lu•"' 11\on comund•·-

Don't forget to Unset the AppSTemp macro when you have finished using it. 

Below is a complete example of a PI'Oiram to create a variable called Mode The 
read action Is to ~turn the current display mode. and the write action to set the 
mode. 

.start ADR ao. varHa .. 
ADO. Ill, c ode 
140'1 ll2. • •ndCocle-cod• 
IICN u. 10 
IICN M, IU O 
Sill .. OS_SetVa tYa t· 

MOV PC, ~14 

.code 
a wr lt.Code 

. r.actcodo 
nMFD ~lJ I, (~14) 

MOV ~o. , .,, 

;Pointer to the na• 
; Start of code body 
; t.enq<h of code body 
;Context pointer 
: ' specia l• type 
;Crena tt 
;RAt urn 

:Bunch to write code 

; Save return add rete 
;OS_Byte road mode nuii'Cer 

Progr/Jm Environment 

;.;.;.;:;:;.;.;:;.:-:-:-:.:·:·:·:·::;.;-;:;:;.;::.;:<:o:;:::::::•:•:·:·:·:.:·:•:·:·:·:·:·:•:·:·:•;..:-:·:;:"·:·:·:·:·:·:·:·:·:.:o»»:·:.:·::~.;;:.:·:·:·:·:·:•:·:·:·:·:·:·:···:·:·:=:·:·:·:·:·:·:·:·:•:·:·:·:-:~~<-»»:•:·:·::;.;:;:;.;.;.:-:·:•:-:·:·:·:-:-:·:·:·:·:·:·: ··:·:·:·:·:=:·:·:·:····· 

S ill ·xos_•rt•" 
IICN ~o. u ;Mode in JlO for con..,.nton 
ADI< kl, buffer ;1\lffer for ASCll converaton 
IICN Ill, •• ;Naa len of bu.ffer 
Sill "lO._IllloryT-ci .. l" 
IICN u. u ;Pointer in lO 

;Jenqtb a lready ln U 
LlletFO aU! , IPCJ ;Mturn 

.vrtt.Code 
St'MF"O ~U!, tU t J ;Seve r•turn eddreaa 
StU ·xos_RNdUn•19n4d."' ;,_1 .. , correct.ly •lr••dy 
SlllYC UOIOOt22 ; YOU ftiiOCie cl\t nqe 
I'IOofYC ao, R2 ; Get tnteqer read in ,_0 
SWIVC "XOI_IIr1teC" : 00 acde cha nqe; 
LDMFD ~1)1, !PC) ;~turn 

.buffer 
tOUD 0 ;1\lffe r for atrtno conv•r• ton 

.endCode 

.varName 
tOUS --· ;N•- of v a riable 

The rout.ne at 'start' creates the variable. Obviously as the code body is copied into 
the system heap. It must be position Independent The two routines readCode and 
writeCodc are called whenever an access to the variable is made For example. a 
"Set Mode command w1ll call the write code entry, and "Show SysSMode or "Echo 
<Mode> will call the read entry. 

Notice that In the body of the code variable. only XOS_ SWis are used. This is 
because it is important that errors are not generated when the read or write code 
executes. A more rigorous version of the code above would check V after each SWI 
and retum if it was set. 

OS _AddC.IIBack 

The next example shows the use of OS_AddCaiiBack. It prints 'Run away!' after 2 
seconds 

1-325 



A C.I/Blldc handklr 

"" ··:·:·:·:·:·:·:-;..:-:·»»:-::;.;..;;;;;:;:;:;:;:;:;:;:;:;:;:;:;:·:·.·.·.·.·.·.··:···:·:·:·:·:·::;;:;:-%,~;;.;.; .. -::w.<>:::.;.;.· .;;:::::::::;:::·:·:;:·:·:·:·:·:·:·:·:·:·:-~-:-;.:::.;.~-:o;;:-:·:·:· :·:•:· .~·::K-:-Wv;-:·:·:·:.;.:·:·:-:·:·:·:·:·:·:·:·:·:·:.:•:·:·:•:-o:::•x 

OIK code 100 
P\.=-eode 

I 
.~la m~ ST'KFO rll !* (r14) 

SWI "'XOS_Wctt e t• 
EQU.S ·aun avay t • 
£QUa lO : EOUI ll:EOUI 0 
At.IGit 
LOKFD rll!, I rlS ) 

.t11Mr 51'Mf'D rl)!, I rO, c14) 
fiiOV rO, r12 

stu • xos_Adctealllack .. 
LDMFD <HI, (<0, r15) 

SYS "'OS_CallAfte c·, 200, t lmec, a larm 

set up tor Ul by &ASIC bit 

rl2 11 not ueed ln a hn•, 
so rl he .te 1e don't -ce r e 

A Call Beck handler 

1-326 

The final example shows a callback handle r. with a semaphore to prevent recursive 
callback; it pnnts 'Run away!' when mouse butlons are pressed 

DIM COd• 200 
P\ •eode 

... ,... £QUI 1 

ALIGN 
.saveblock :) :P \ •P \ +1,• 4: ( 
.callback 

.event• 

T&QP rlS, f ) 

SMI ·xos_wrtteS" 
t:.QUI '"ltun eway ! • 
£QUI lO:EQUI ll:EOUB 0 
ALIGN 
ADA rl 4, e aveb loct 
LDIUA c1 4, (c0-rl 4)"' 
1'£.Qf rlS, t l ;•C1<<2l) 
I'ICWNV cO, tO 
lfOY rl4, t1 
S1'JI.I rl4 , . ... 
LOI. cl4, eavebl oct •15 • 4 

MOYS clS, cl4 

CHP rO, fl O 
!IOYNU <lS, rl4 
SfKFD rlJ!, (rl4) 

LOU rl2, 1en11 
IIOY <14, t O 
sru rl 4, eema 
LDMFD rl)!, I rlS l 

• nterecs he r• ln • privlleq~ fti!Ode , 
with interrupt i dtaabled 
ttra t thin9 to do le e nable I RO. 
tor:c• SVC IIIIOde, l itO• on. 

.o•t reqiste re reloeded 
dteable IAOe toe .... upd.lte 
and return 

mu•t not ll l ov • nother c,a llbact 
requeat untll the et a•~ PC ls • • f• 
return, en• bleln9 lAO• etc 

mouse button et at • chan9e? 
no - run avay 

poeslbly cequeat callba c k 

a nd dil able e ny tuther r eque•t• 
untll tha t one eecvtced. 

Program EnvironmMI 
:-x·:·:·:v:->~»:•:•:•:•:•::;o:;:::;:•:::::•:•:•:;: -:·:·:-:.:::·:·:-: ·:-:•:·:·:·:•:•:·:·:·:-:.;-:;:-s».'m:-:-.:-»»:>:•:·:•:·:•x~x:::::::::;:;::•:·:~:•:•:•x·:·:·:·:·:•:-:·:·:·;;.":::.&:·:·:•:·:::.;.:.;;~;,-.:-."'».--»;.:·:·:·:·:;:;:.:;:.:·:;:;:.~:::;:;:;::;:;:;:;:::;:.:···· 

srs·os Callleek", ••v.bloek,eallbl ck,O TO o• ave, oee ll 
J.&M Mot'e tba t ve an.n't u•lrua- cU 1D tbe c a llbac k ba ndle c; 
Ull 1 t t.ht• VII ln a .adule , for exa~~ple, e-.a voulct M 1n tbe vort._s p.ace, 
U ll a nd ve voul4 bave to a.eceae tt .r12-rel a ttve ; .rl2 would ttlenfore be 
u " • •t to M tha wod:l!pac. pointe r o.a e..at.ry. 
SYS •ot_CMfHJI'E.nvlro~t·,tO,ev..nte,O TO , oldev 
• rx 14,10 
ki!PEAT UNTILllCKI:Y -1: aEII loop W>tU olllft 
• rx ll,lO 
SYS "OS_CMnqeEnvtron .. nt '" ,lO,oldev , 0 
srs ·os_Calllact•, o.ave , ocall, O 
k£" Note thtt in bot h t he above ca ll e , t he JUZ v a lue • a re e.a~plicitly l e ft 
U N e lone, becauee we di dn' t u•• the• ea rlie r. 

1-327 





:·:·:·:·:·:·:: :=:·:-:·:·:<:·:.:«>x::o:::::;:::::;:::;:::::::::::::~::;:;;:::x:x;:::ox~:;.;;:;:::;::::):·:•:;:::::;;;;;::;;:-:;;;x-;:x.:::;:.~:;;.:;:.:-: .. -.:::;.:-:.:·:::.:·:;;;;.;.:;:«««<·:<<:;:;:..:«·>»:·x::;:;:.:;:;~;;:::::::::::: :::::::::::::::::::::::.:.-:::-:::.::::::;;.;:;:;: 

16 Memory Management 
::;::;::::::::::::::::;::;::;:::;::;;::::"t;:~W.iX$.~~':t:~:::.-.;:~::::::::~-::;:~-:.::::_~~::.;;~~~::.::.:::::::::::::::::;~::::::::::::::::;:::::::::::::::::::::::::~ 

Introduction 
Thi.s chapter describes the memory manacement in RJSC OS. This ~rs memory 
allocation by a proeram or module as -'1 as usil'll the MEMC chip to handle how 
memory is mapped. 

In many environments. such as BASIC and C. you can use the lanauace's intrinsic 
memory allocation routines. which use the calls described in this chapter 
transparently. For eumple, refer to Wimp_.SiotSiz.e on pace 4-270 or the chapter 
entitled TM Wi..UW .,.....,.,, 

Similarly. small, transiently loeded utilities may not require any memory over the 
1024 bytes they are automatically allocated. Some proerams and modules, 
howeYer, will requl re arbitrary amounts of memory. which can be freed after use. 
For example, filil'l85Y5terns, specialised VDU drivers such as the font manaaer and 
so on. The memory manaaer provides simple allocation and deallocation fad titles. 
Relocatable modules can use this manacer either directly. to manipulate their own 
private heap. or Indirectly us ina the module support calls. 

A block of memory can be set up as a heap. This Is a structure that allows arbitrary 
parts of the block to be allocated and freed . A proaram simply requests a block or a 
given sire and is given a pointer to It by the heap manaaer. This block can be 
expanded or contracted or freed by uslna this pointer as a reference. 

The part of the screen RAM that Is not visible on the screen Is also available as a 
temporary buffer This memory Is temporarily available because of the way that 
vertical scroll ina ts done. 

One of the other memory resources available Is the battery-baclced CMOS RAM. 
This is used to hold default 5)'stem parameters while the power Is off. Modules, 
applications and users may use spare locations In CMOS RAM for their own 
purposes 

The MEMC chip controls how loaical addresses (those used by proarams or 
modules) are mapped Into the physical memory location to use. Numerous calls 
are used to control how it does this, thouah aenerally this is somethil'll that most 
proerams would not want to do 

1-329 



Ovwvfew 

~::.':::::::=:-:::;.m:::::::~:?:::::::::::::::;:::::::::~~=:::::::--:::::::::::::::::;:::::=:::=:·:·:·:·:·::::.::::::: ..... :.:.:.:.::::::::::.:=:·:=:=:-::::::::: ::::::.:·:=:·:·:t;:.;.:-:-:::::·:·:=:·:·::·:·:·:·:=:=:·:=:-::::::::::::·:.:·:·:·:·:·:·::::::::::::::·:··· · 

Overview 

Heap manager 
RISC OS contains a heap man~ent system. This is used by the operatifl8 
system to allocate space within the relocatable module area and also to maintain 
the system heap. A heap is just an area of memory from which bytes may be 
allocated, then deallocated for later use. An area can also be reallocated. meaning 
that its size changes. 

The heap manager is also available to the user. You provide an area of memory 
which is to be used for the heap. which can be any size you require . lfyou are a 
module. then the heap would be a block within the RMA. and if you are a program, 
then it would be within the application space. 

Thus. it would be a heap within a heap; for example a block In the RMA would be 
allocated by a module. and then declared as a heap. In theory. this process could 
continue indefinitely. but in practice this is as far as you n~d to go. 

At the start of a heap, the heap manager sets up the heap descriptor. which Is a 
block containing information on the limits of the heap. etc. This descriptor is 
updated by the heap manager when necessary. 

When a bloclt within this heap is required. a request is made to the heap manager. 
which returns a pointer to a suitable block of memory. The heap manager keeps a 
record of the total amount of memory which is free in the heap and the largest 
individual block which Is available. 

Heap fragmentation 

1-330 

The heap management system does not provide garbage collection. This is the 
technique of moving blocks of allocated memory around so as to maximise the 
contiguous free space and avoiding excessive fragmentation of the heap. 

Also. the heap man~ent system will nf!Ver attempt to move a block within the 
heap. since it has no knowledge or whether the block contains pointers that need 
to be relocated. or whether there are any pointers to the block which need 
updating. Hence, unless an area of contiguous free space of the size requested Is 
available. a request for a block will fail. 

MllmOf)' ManBI(Jflrr!IKII 

;:;.;:;., .. ·.·.·.·.·:·:·:·:·::;.;.;:;:;:;.·: ..... :.:.:.:.:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;::::::~:;:;:;:;~;.:~:;:;:;:;:;:;:;:;:;:~:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::::;:;:;:;:;:;.}~o&-'::;i;:;:::;:;~~:::::::~::::~:::::::::::.:· 

MEMC control 
MEMC maps logical onto physical addresses. To do this. It maintains a table of 128 
entries that map a given memory block to a particular address. Generally, the 
system will take care of tne operation of this mappf ng for you. Calls are provided to 
allow you to read this mapping and alter it. but you should have a very good reason 
to do so, and be certain of what you are doifl8. 

Screen memory 
The vertical scrolling technique used under RISC OS is to change the memory 
location that the screen starts at. This means that part of the screen memory may 
be unused. depending on the screen mode and the amount of memory reserved. 
You can use this memory temporarily, as long as you don't cause any output that 
may scroll the screen. Also remember that this memory is limited to one program 
using it at a time, so it may not be available f!Very time you request it. 
Consequently, you cannot count on It being there when writing a module or 
application. 

Battery-backed CMOS RAM 
A block of 240 bytes of battery-backed CMOS RAM is available under RISC OS. 
Each location has a specific meaning and should not be directly modified unless 
you are sure or the meaning of the value. Many of these locations are changed 
indirectly using the •configure commands. These can be found throughout this 
manual, In the chapter appropriate to their function . 

Some bytes are not allocated. and are reserved for users and applications to use. If 
you want to use one or more of the application bytes, you should request a 
location In writing from Acorn Computers. This Is so that different applications 
don' t acddentally use the same location. 

1-331 



Technical Details 
·•:•:•:•;;.x;.;;:~;«<o;.:·:·:·:·:·:·:·:·:·:-:-:-~;:.:-:·:·:·:·: .. .;:.»."-»:.:-:-:·:·:·:~·:·:·:·:·:·:=:-:·:·:·:·:·:;;.:::::::::.:::.;::::::::;:::::;:;:::::::::::::::::::::::;:::::::::~:.;:.:•;;:;x.o:::::•:::;:•:::::•:;:•:•:•:~=:•:~;;;»;•:•:;xo:•:·:·:·:·:·:.: .. -:::r~:&:;mx 

Technical Details 

Guidelines on using memory efficiently 
This section provides basic infonnation on memory man~ent by RISC OS 
applications It Is Intended to provide some specialist knowledse to help you write 
efficient procrams for RISC OS. and to provide some practical hints and lips 

All the lnfonnation in this chapter relating to pr011rams written inC refers to 
Acorn's Desktop C product 

You should follow the guidelines In this section to make the best use or available 
mernOIY The guidelines are explained in more detail on the followH\8 pages 

• U.. ,_,., proc.d•res - Your procram should keep the machine 
operational. Don't allow your proQiam to lock up when mernoiY runs out. your 
program should indicate that it has run out or memory (wllh an error or 
warning messase) and only stop subsequent actions that use more memory 
Ideally, ensure that actions which free up memory have enough reserved 
memory to run ln. 

• Ret•ra •••••ted -mory - You should return any memory you have no 
further use for. Claim ins memory then not returning it can tie up memory 
unnecessarily until the machine is re-booted. RISC OS has no garbage 
collection, so once you have asked for memory RISC OS assumes that you 
want It until you explidtly return it, even if your program tenninates execution. 
Languaselibraries often provide you with protection from this. as long as 
memory is claimed from them. 

• Doll't wute __ ,., -You should avoid wasting memory. It Is a finite 

resource, often wasted in two ways: 

• by permanently daiming memory for infrequent operations 

• by fragmenting It, so that although there is enough unused memory, It is 
either In the wrons place, or it is not in large enough blocks to use. 

Recovery from lack of memory 

1-332 

An Important consideration when designing pr011rams for RISC OS is the recovery 
process. not lust from user errors. but also from lack or system resources 

An example or a technique that can be desisned into an application is to make an 
al110nthm more disc-based and less RAM-based on detection or laclt or memory 
Th1s could allow you to continue usins an application on a small machine 
(especially one with a hard disc) at the expense of some speed. 

M(I(JJO()' MsnBgllffliKII 

;;;.;:::::::: :;::::::::::w.:::;:;:::::::::::;.;.~:;:::o:o:::::•:<:.;•:;:.:-:·:·:v:-:-:·:.:-:-:-:=:=:·:·:·:·:•:;;;;~~:•:~·:•:~•:·;;:.:~-:-:.;;:.;;;:.x~:=:•:·:.:·:·:.:·:·:·:=:::::.:·:·:·:·:·:·:::::::::;;:;:;:;:;:;:;:;>::::;.;.;.; ·:·:·:·:·:·:·:-:..;..;-:-: 

When implementing your code, expect the unexpected and pqram defensively. 
Be sure that when the system resources you need (memory. windows, files etc) are 
not available, your procrarn can cope. Make ~re that, when a document managed 
by your program opands and mernOIY runs out. the document is still valid and can 
be saved. Don't lust check that your main document opansion routines work; 
check that .. roudnes which require mernOIY (or In fact any system resource) fail 
gracefully when there 1$ no more 

Centralising acca& to system resources can help: write your pr011ram as if every 
operatins system rnterface Is likely to return an enor. 

Avoiding permanent loss of memory 
Permanent loss or memory Is mainly a problem for appl ications or modules written 
entirely In assembly Jancuage. When lnterwortlng assembler routines with Cor 
another h1gh level lancuace you should use memory handed to you by the high 
level language libmy (q use • a lloc to eet a memory ara from C and pass a 
pointer to it as an argument to your asembler routine). The lansuage library 
automatically returns such areas to RISC OS on ptotram eldt. Additional types of 
pr011ram requiring care to 8YOid memory loss~ t hose e~pected to run for a long 
time (q a printer spooler) and those making use or RMAdlrectly throus h SWI 
calls . 

When using the RMA for storage d irectly through SWI calls. especially for items in 
linked lists. consider using the first word as a check word containins four 
characters of tell! to Identify it as belonging to your program. When a block of RMA 
is deallocated, the heap manaser puts It beck into a list or free blocks, and in so 
doin8 overwrites the first word of the block. 

This technique therefore serves two pu~: 

1 after your procram has been run and exited. your check word can be searched 
for, showing up any blocks you have failed to deallocate 

2 It avoids problems when acx:ldentaliy referencing deallocated memory. 

A typical problem or referencing deallocated blocks results from using the first 
word as a polnterto your procram's next block. then aocidentally referendnga wild 

pointer when it Is oYerwntten 

1-333 



Avoiding mfHTICXY wastage 

:::;:;x::;::~:::;:·:<:::::::::::::.; ;;::.:-~:-:-:.:·: ·:·:·:-::::::::;.;:;;:::.:·:·:·:-:::::·:·:·: ·:·:·:·:.\.-.:.t-x>.'-:·:~:.=~·:·:·:·:~:::-:-:::-:-: ·:-::::;.;::-:;;.;:;.:-:-:·: -:.;-;.;,;.x;:;:>$:::-:-: .. "-S:':>:·:::::;:::::.x«<:~"}::S:::>:::;;;;.;::::::.~~:::::::-;~;:.;.;::::.:·:·: 

You can use the following BASIC routine to search for any 105t blocks: 

100 REM > LostMemory checks for un-released blocks 
110 RMA\•,01800000: RMAEnd\ • RMA\ + (RMA\!12) 
120 FOR PossibleBlock\ • RMA\+20 TO RMAEnd\-12 STEP 16 
130 REM Now loop looking for "Proq" 
140 IF PossibleBlock\!0 • &676F7250 THEN 
150 PRINT "Block found at &";-PossibleBlock' 
160 ENDIF 
170 NEXT PossibleBlock\ 
180 END 

When writing relocatable module initialisation rode you should ched: that 
memory and other system resources are returned if Initialisation Is unable to 
complete and is going to return with V set. It Is often useful to construct module 
finalisation rode as a mirror image of initialisation code so that it can be jumped 
to when initialisation is going to return an error and cleaned up. A typical 
algorithm is: 

lalthlll•doa 
Claim main workspace: Jr error then keep this error and goto Exil1 
Claim secondary workspace: If error then keep this error and goto Exil2 
Claim tertiary workspace: Jr error then keep this error and goto Exil I 
Return 

FlallliMtloa 
Set kept error to null 
Release tertiary workspace 

Exit I Release secondary workspace 
Exit2 Release main workspace 
Exit1 Get kept error (if there was one) 

Return 

Avoiding memory wastage 

1-334 

The key factor in writing programs that use memory efficiently and don't waste it is 
understanding the following: 

• how SWI XOS_Module and SWI XOS_Heap work if you are constructing a 
relocatable module or are using the RMA from an application 

• how C flex and ma lloc work when writing a C program (parts of which may be 
written in assembler). 

This understanding will lead you to writing programs that will work i n harmony 
with the storage allocator. See the following section for a description of C memory 
allocation. 

M8171ory Manag8171ent 
;:;:;:;:;:;:;:;:;:;:;.;:;:;:;:;:;:;:;:;:;:;:; :;:;:;:: :;:;:;:;:;:;:;:: :;:;:;:;::m..~x::::::-~:;;:.::::::::::::::::::~.;:;::::(.:::::::::::.;~:-:::.;-;.;:;.;:: :;:: :;:;:;:;:;:;:;:;:;:::::::~;:;:; :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;::· ·:·:·:·:·:·::;:;.;:; :;:;:;:;:;:; :;:;:;:: :;:;:;:;.;:;:;.;.;::·:·:·:·: 

The C ator1ge m•mager 
Understanding the C storage manat~er Is obviously useful to writers of C. But it may 
also be useful to writers of assembly languase for two reasons: to assist In 
constructing part C and part assembler programs; to assist In constructing their 
own memory allocation routines, both as an example algorithm and as an allocator 
that may be running for other applications at the same time as their own. 

Nonnal C applications (ie th05e not running as modules) daim memory blocks in 
two main ways: 

• from malloc 

• from flex. 

The malloc heap storaae manager Is the standard Interface from which to claim 
small areas of memory. It is tuned to give aood performance to the widest variety of 
programs. 

In the following sections, the word,_, refers to the section of memory currently 
under the control of the storase manat~er (usually referred to as malloc, or the 
malloc heap). 

The flex facility is available as part of RISC_OSLib. and can be useful for claiming 
large areas of data space. It manages a shifting set of areas, so its operation can be 
slow. and address-dependent data cannot be stored in it. However. it has the 
following advantages: 

• it doesn' t waste memory by fragmenting free space 

• it returns deallocated memory to RISC OS for use by other applications. 

Allocltlon of m•Hoc blocks 

All block sizes allocated are In bytes and are rounded up to a multiple of four bytes. 
All blocks returned to the user are word-aligned. All blocks have an overhead of 
eight bytes (two words). One word is used to hold the block's length and status. the 
other contains a guard constant which Is used to detect heap corruptions. The 
guard word may not be present In future releases of the ANSI C library. When the 
stack needs to be extended. blocks are allocated from the malloc heap. 

When an allocation request is received by the storage manager. it is categorised 
into one of three sires of blocks 

• small 

• medium 

• large 

0-+64 

65-+ 512 

513-+ 16777216. 

1-335 



Avoiding m8nlory was rage 
:.:.:.:.:;: •• ;:;:; ••• ;:;:;;;:;;;:;:;.;:; :;:;:; ;:;:;:;:;;.: .·.· •. :.:;:;:;:;:;:;:;:;:;: •••• ;.;:;: ;:;:;:;:;:;:;:;.; .·>:·:·.·.·:·.·.·.·.·.·:·.·.<•.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·:·.·: ·······:·.·.·.·.·.-::;:;:;.;···:: •••• ;:;.;. :-;.: ·:·:·:·:·:·:·:·:· •·••• .·.·:·:·:·:=:·: .;.;:;:;:;:;:;:;:;:;.;:;>/· 

1-336 

The storage manager keeps track of the free sections of the heap in two ways. The 
medium and larse sized blocks are chained together into a linked list (overflow list) 
and small blocks of the same size are chained together into linked lists (bins). The 
overnow list is ordered by ascending block address, while the bins have the most 
recently freed block at the start of the list. 

When a small block is requested, the bin which contains the blocks of the required 
size Is checlced. and. if the bin is not empty. the first block in the list is returned to 
the user. If there was not a block of the exact size available, the bin containing 
blocks of the next size up Is checked, and so on until a block is found. If a block is 
not found in the bins. the last block (highest address) on the overflow list is taken. 
If the block is large enough to be split into two blocks, and the remainder is a 
usable size(> 12 induding the overhead) then the block Is split, the top section 
returned to the user and the remainder, depending on its size, is either put In the 
relevant bin at the front of the list or left in the overflow list. 

When a medium block is requested. the search ignores the bins and starts with the 
overnow list. This Is searched in reverse order for a block of usable size, in the same 
way as for small blocks. 

When a large block is requested, the overflow list is searched in increasing address 
order. and the first block in the list which is large enough is taken. If the block is 
large enough to be split into two blocks, and the size of the remainder is larger 
than a small block(> 64) then the block is split. the top section is returned to the 
overnow list. and bottom section given to the user. 

Should there not be a block of the right size available, the C storage manager has 
two options: 

Take all the free blocks on the heap and join adjacent free blocks together 
(coalesdng) in the hope that a block of the right size will be created which can 
then be used 

2 Ask the operating system for more heap, put the block returned in the overnow 
list. and try again. 

The heap will only be coalesced if there is at least enough free memory in It to 
make it worthwhile (ie four times the size of the requested block. and at least one 
sixth of the total heap size) or if the request for more heap was denied. Coalescing 
causes the following: 

• the bins and 011erflow list are emptied: 

• the heap is scanned: 

• adjacent free blocks are merged; 

• the free blocks are scattered into the bins and overflow list In increasing 
address order. 

Msmory Mlllnltg8nlllf11 

:;:::::::::::::::::::::::::~:=:=::5::~-:>:::=:>::::::::::;;:::...-:::::::::::::::;:::::-.:::::;.<":;:.;:--;.~:x.:·:·:·:=:.:::;,:::.:::::.:=:=:=:.::: =:=:-:::::::::::.:-::::::·:·:·:·:·:·:·:·:·:·.·:::::::::::::::::::::::::::::::::::::::x:::::::<::::-;::.-.;:;;::;::::~~.::~:::<:::=:wm;~:::::::;:;:; 

O..llocetlon of malloc blodcs 
When a block is freed. If It will fit In a bin then It is put at the start of the relevant 
bin list. otherwise It is Just matted as being free and effectively taken out of the 
heap until the next coalesce phase. when it will be put In the overflow list. This Is 
done because the ovetflow list is in ascending block address order. and it would 
have to be scanned to be able to Insert the freed block at the correct position. 
Fragmentation Is also reduced If the block Is not reusable until after the next 
coalesce phase.lt is worth noting that deal locating a block and then reallocating a 
block o( the same size can not be relied upon to deliver the original block. 

Reallocetlon of malloc blodcs 
You should be cautious when using realloc. Reallocatint a block to a larser size 
will usually require another blodt ol memory to be used and the data to be copied 
into it. This means that you cannot use the whole of the heap as both blocks need 
to be present at the same time. 

If consecutive calls keep lncreAaSina the blodtsize until all memory is used up. then 
only about a third of the heap is likely to be available In one block. A typical course 
of events is: 

The first block is present (block A). 

2 It is extended to a larger sized block (block B). Block A must still be present 
(see above). 

:J It is again extended to a larger siz.ed block (block C). Block B must still be 
present (see alx>Ye ). However, block A also still exists because it is too small to 
use. and cannot be coalesced with another block because block B is in the way. 

Wimp slots and the C tlex system 
A typical C application run nina under the Wimp has a sinale contiauous 
application area (wimp slot) Into which are placed the following: 

• program image 

• stack 

• static data 

• malloc data. 

The initial wimp slot size Is set by the size of the Next slot (in the Thsk display 
window) when the application is started, or by •WimpSiot commands in the !Run 
file associated with the C application. lf the malloc heap Is full and the operating 
system has free memory, the wimp slot grows. raising its highest address. Once 
enlarged by malloc, the wimp slot never reduces again until program 
termination. 

1-337 



Avoiding memory WBSiagB 

<:}~::;::;~;x.o:-:::::::.:::::::-:::::::::::.:--:·~?.:r.:·:•:•:<:::::::=?.w:w. .. "':':=:=:::::::::::-<V~:=:~::o&::::.:•:::::.:·:<:·:=:::;:..~:;.~x::::::::::::~:::::::~:::::>-:~::::::~r*~::;:::::::::::::::~:::~:--::::::::::: 

1·338 

The application area Is used as follows: 

low memory: the application image 
the static data 

high memory: themalloc heap 

The stack Is allocated on the heap, In 4K (or as big as needed) chunks: the ARM 
procedure call standard means that disjoint extension of the stack is possible. The 
only other use that the ANSI library makes of the malloc heap is in allocating file 
buffers, but even this usage can be prevented by making the appropriate calls to 
the ANSI library buffer handling facilities (setvbu f). The operation of the 
malloc heap is desaibed above and is designed to provide good perfonnance 
under heavy use. Its design is such that small blocks can be allocated and freed 
rapidly. 

Any malloc heap tends to fragment over time. This is particularly serious in the 
following circumstances: 

• no virtual memory 

• multitasking- if memory is not in use, it should be handed to other 
applications 

• if a pr<Jiram runs out of memory It must not crash. but must recover and 
continue. 

These are fust the conditions under which a desktop application operates! 

Because of this, the flex facilities are available as part of RISC_OSLib (the 
RISC OS-spedficC library provided with Desktop C). These provide a shifting heap. 
intended for the allocation of large blocks of memory which might otherwise 
destroy the structure of a malloc-style heap. 

Flex works by Increasing the size o( the application area, using space above that 
reserved for use by malloc. When the malloc heap grows. flex areas are shifted. 
The benefits of using flex can be seen in Draw, Paint and Edit. which are all written 
InC using early versions of RJSC_OSLib. Their application areas expand when new 
files are added, contract when files are discarded, and do not suffer from needless 
incremental application area growth over time. 

The Implementation of flex Is quite simple. There Is no free list as memory is 
shifted whenever a block Is destroyed or changed In sire. New blocks are always 
allocated at the top. When blocks are deallocated or resized, those above are 
moved. This means that deallocating or changing the sire of a block can take quite 
a long time (proportional to the sum of the sizes of the blocks above it in memory). 
Flex Is also not recommended for allocation of small blocks. Its other limitation is 
that as flex blocks can be shifted, you should not use them for address-dependent 
data (eg pointers or indirected icon data). 

Memory MBI1agsmsnl 
::::::::::::::~».,"'\.~!'i."';;.t:.~:::::::~;;.~;oh.~:::::.:-:~::::;:::;:.;:;;x~~x::::-:::::•»);:<:·:.s::::::::::::::::::. .. ~:~:*~:::::::::::::*;::M:~.r-::::w.«:x.:;:::::::::•:::·:·:·:·:<:;:w..:'-:-:::-:::::::::::::;:~:;:.-:.:::·:·:····· 

In addition to the facilities described above, RISC_OSUbalso provides an obsolete 
malloc·like allocator of non-shifting blocks called heap. 

1\vo facilities are provided, because no one stol'llfle manager can solve all 
problems In the absence of Virtual Memory. A pr<Jiram which works adequately 
with malloc should feel no compulsion to use anything else. The use of flex. 
however. particularly in desktop applications such as editors (which are likely to be 
resident on the desktop for a long period of time) can go a long way towards 
improving their memory usage. 

Using memory from reloca .. ble modules 

Relocatable modules should use memory from three sources: the supervisor stack; 
the RMA: and application worltspace. Use of pc-relative written data should be 
avoided as It makes a module unsuitable to ROM, unsuitable for multiple 
instantiation, and pennanently rese~s space, possibly only for occasional use. 

The supervisor stack is small and not extendable, so care must be taken to use this 
resource very economically. 

The RMA Is the standard source of workspace for any of the non· user mode 
routines contained In a module, as described In the RISC OS Progr•**lr's Rl{trt"u 
Muwtl. Care must be taken to deallocate unwanted blocks- the marker word hint 
described earlier in this chapter may be useful. C malloc uses RMA when called 
from non-user mode. 

Application workspace only belongs to a module when referenced from module 
user mode code running as the sole current application (with RISC OS desktop 
multitasking halted) or when running as a RJSC OS application having dealt with 
the Service Memory ('11) service call (sent round by the wimp when your 
pr<Jiram issu~ Slf! lflmp_In!tlal!se) to keep application workspace. 

Never access your application's workspace from an interrupt routine. During 
interrupts, the state of the application area Is effectively random. Since your 
interrupt routine could execute at any time, it could happen while some other 
application is switched in. If this did happen. and the interrupt routine updated 
application space, then some other application could be affected. To get around 
this problem. allocate some RMA space for your interrupt routine to use when It 
needs to; this memory will be visible when your application Is running. Remember 
to free up the RMA space when you've finished with lt. 

Uli•l memory ho111 reloaltable 111ochda wrltte• I• C 

There are additional points you should note If you are writing modules InC 
(although most of the points made above apply equally well- particularly the 
preceding paragraph). 

1·339 



Hap Manii(J« 

:;::::•:•:=:•:•:•:·:•:·:·:·:·.·.-.-........... ·.·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:-:::.;;;;:;;::;;:~;~;::;:;:;::.:·:·:·:·:-:·:·:·:V:·:·:::~ ....... -........ ~.;:--::~-:-:.:·:·:~: :;:;: ;:;.;.; ·:<·:·:-:=::::;:;:;;::;:;:;;;.;.;.;.;:;;;.;:;:;:;:;::o:;:•:<:-:·:·:v~..::.,;;-;:;.;.;;::;.;:;:;:x~::;;::;:;:; 

Heap Manager 

1-340 

All memory allocated by ulloc comes from the RMA when your Pr<liram is 
executlnc in non-user mode So remember to free It up when you'w: finished with 
itlf your module allocates any RMA blocks by calllna SW1 xos_Module directly. 
the C run-lime system does not dear them out when your module finalises. so 
make sure you do! 

There are two sets of at exit () routines. the ones which you registered during 
initialisation le before your module was entered via the main () entry point 
(because the module was RMRun for lnstancr). and the ones you realstered after. 
The ones realstered before will be executed when your module is finalised- this is 
how to clear up after yourself. the ones after will be called when your module exits 
from beina run, ie when main() terminates. 

When you are writing a C module, use exit (). not SWJ XOS_Exit. 

When executing as C module SVC mode code (during lnltlalisatlon,finalisation. 
servicr or Interrupt entry) your stad. will be small Also. your stad.. unlike when in 
USR mode (ie running as an appliCation) will not extend dynamically It is therefore 
w:ry Important to be extremely economical with stad. space: avoid me large auto 
arrays. using malloc where larger spaces are required. then freeing at the routine 
end. 

Static variables (and arrays etc.) in a C module are extant for the lifetime of the 
module.le the entire time itls IOilded. lfthey are only needed when ills running as 
an application. then they should be daimed using malloc instead 

The heap Is controlled by a slnale SWI. OS_Heap (SWI &I D). This has a reason 
code and can perform the followinll operations: 

R-a code 

0 
I 
2 
3 
4 
5 
6 

Meaalaa 

Initialise heap 
Descn be heap 
Allocate a block from a heap 
Free a block 
Change the size of a block 
Change the size of a heap 
Read the size of a blodt 

M«noty ,.,.,~.,.,, 

:(:f@;.:-:•:.:·:·:·:·:·:·:·:·:~-:-:-:.;-:.:-:.:-:-:-:·».~~~·:•::;::;:.;;:.."'»»'.«:-:-~««-::-:.~:=:.-::.::~:;:;:;:~-:-:·:·:.:·~~-:·:·:·:•:•:•::;:;:;:;~:;:;::~-..:«««·:· . . •:o;· :·:·:·:·:· :-:-:-::;:;.;:;.;:;.;.;.;.;.;.;.;-;.;.:·:· 

Interne! format of the hMp 

A desaiption d the structure used by the heap manatef Is alw:n beiow. lt should 
be noted that this structure Is not auaranteed to be preserw:d between releases d 
the software and should not be relied upon. lt Is alw:n pu~ly for advanced 
programmers who may want to Interpret the current state of the heap when testing 
and debugging their own code. 

The heap descriplor Is a blodtoffourwords: 

&00 Spedll liMp word 

&04 Fr• llll oiiMt 

&08 Helip .... oiiNt 

&OC He.pendoiMC j 

fifwrl6.1 For• l f(,._,,.,.,. 

The 'special' heap WOld mntalns a pattern wnldl dlstlnculshes CQn'ect heap 
descriptors. The pattern Is made up of the characters 'Heap'-which is &70616548 
In hex. 

All other words are offsets into the heap This means that the heap Is relocatable 
unless you placr non-relocatable information In it. 

The free list olfset Is an oftset to the llrst free blodt in the heap. or zero if there are 
no free blod:s. If the word is non-xro. the first free block is at address: 

heap start + free list olfset + 4 

The other entries a~ olfsets from the start of the heap which refer to boundaries 
within the heap structure. The heap Is delimited as follows: 

.... Ill poinlllnlo "-
'-P IWI IOIMW!lere, Of Ill - 0 

+ + .. _., ! I -- l --- l ,.,~~· 
lntemallnlonnalon liMp t.e hMp end 

rifleR 16.2 How IM fwq is Uli11tiW 

Blodr.s in the free list haw: information in the first two words as follows: 

• Word 0 is the link to the next free block or 0 If at the end 

1·341 



Logical ~Mmory map 

::::::::::::;;;::.:•:•:;.:;mm:o:.:;;:;:•:•:•:•:•:•:•:·:·:-:·:·:•:·:·:-;;;;:.:;.<»:·:·:·:·»»:·::!-»;·:·X«-:·:.:;:~:-:•:·:·:·:·: ·:·:.: ·:·:=:-:::.:-:·:·:•:::::·:·:·:·:·: =:·:=:·:·:-:;:::::.:-:-:::-:·:· ·!·!·!·!·!·!·!·!·!·!·:..:·:·:·*·!!:·!·!-!·:.>:·:-:·:-=«..:·:.:r.·:.:-;.:-:·:·:·: ·!•:0!•! 

• Word I Is the size of this block (lnduding these two words) 

Allocated bloc~ start with a word which holds the siz.e of the allocated block. The 
pointer returned by SWI OS_Heap when a block Is allocated actually points to the 
second word which Is the start of the memory available. 

Allocation forces the block size to be a multiple ol eight. to ensure that no matter 
what you do. the fragments can always be freed. Therefore. the ml nlmum size of 
area that can be Initialised Is 24 bytes ( 16 for the fixed information and 8 for a 
block) 

logical memory map 

1-342 

The organisation of the logical address s~ is nneatt, as follows: 

Font cache 

System heap and supervisor sladl 

Aeloallable Module area (RMA) 

System wor1cspace 

()-.4801( Configured 
.1)ynemk: 

32K 

0.1 M Configured 
.1)ynamk: 

32K-2M Configured 
!Oynemlc 

o-.cM Configured 
.1)ynamk: 

()-.CM Configured 
.1)ynamk: 

o-.cM Configured 

Dynamic 

32K 

Figwn 16.3 T,Ul logUI ~~W~U~ry ,._, 

Yo• ••• aot -•• tllat ••J ol tile abotoe add reues wfll reiiYIIa fixed (•.e 
for t• e bue ol •ppHcatloa worbpace). nere •re deftaed can. to reed ••J 
eddre.a yo• aeed, • ad yo• Malt - tlle m. 

M9m0ty MMllgllmllfll 

::::·:·:·:·:·:·:·:•:·:·:«-:·x•:;~;::::~.m:::?:>:•:=:·:·:=:·:·:·:·:·:•:·:..:;:;:-:.:-:-:-:.: -:·:·:·:-.:-:-:-:.:·:·:·:.:•:·:•:r:~:::«·:-:~«:.:;,-«·:·::.:$:«·:·:·:·:·:=:•:«::«·:=:•:•:·:·:·:•:·:.:~'0>:·:·:·:·: ·:·:·:·:·:·:<=·:-:.:-:-:;:;.<;:&.~: 

Setting up the memory IMP 
The memory map Is set up on hard reel as follows: 

• The permanent :J2K allocations for system 'IIOI'itspace at addresses &0000000 
and &I FOOOOO (31Mbytes) are made. a.s well as some other fixed allocations 
(such as an Initial part of the system heap). 

• Then s~ Is allocated to the various adJustable slz.e regions, such as the 
screen . the system heap. the RMA. etc. Some ol these have an absolute 
configured size. such as the screen. This Is allocated in full For other fe1!ions 
(such as the system heap and RMA). the configured slz.e is the amount of free 
s~ that will be left; these only haYe a minimal allocation made at this stage. 

• The rest of tl"'emo!y Is then allocated to the application wor~~. from 
address &aoOO up. 

• System ROM and ~nsion a~rd modules are then Initialised. 

• Finally. the rqlons that have a confltured free space tet allocated. First they 
are shrunk as far as possible (to ensure as close toO bytes free as possible). 
then a block of the conflaured slz.e Is requested and freed. so that the heaps 
contain as close to the configured free space as possible. 

Example memory allocedon 

Here is an example ol how memory might be allocated given some typical RAM 
size allocations on an AliO (8K paae slz.e): 

Areta ............. Toa.l 
FontSize 20 4K 80K 
RamFsSize 0 8K 0 
RMASite 16 8K 128K 
ScreenSize 20 8K 160K 
SpriteSize 10 8K 80K 
SystemSize • 8K l2K+32K 
System worlis~ l2K 
Cursor etc. works~ l2K 

Total 576K 

Application area 1024K - 576K • 448K 

A configured screen slzeofO means 'default for this machine', wh ich Is 1601< on an 
MIO (see · configure SaeenSiz.e) 

As outlined above. the sae of the system area (at 28M) is shrunk as far as possible 
after all module Initialisation and then 'n' extra pages are added 8K of this is used 
for the system stack. The rest Is for OS variable storage (eg alias variables) and 
module Information The configured amount Is added to the 32K initially al located. 

1-343 



Logical TTI8mory map 

~-::::::::::::::::::;::;.;::::: ::::::::::::: :;:::::::;:.: .·.·.·.·.···:: ••• ·.·.·:·:·:··· :-:-:-:-:-:-:.;;;.:.::.:-:.::.x-:-:.:.:.:-:.:::<:v:f:·:~:o:-;;:-:•:::•:•::;;;;:;;.:::::::•:::•:•:::::::•:::•:::::::::::::::::::~<:::::::::::::::::::::::::::-:: ··:·::::::· .:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:;::: :-:=:-:=:·:·:·:·:·:·: 

1-344 

Altering the memory map 

While no application Is running (ie in the supervisor prompt). the memory map can 
be altered as required . For example, if you load a module from disc and the RMA 
isn't big enough to hold it. the size of the RMA will be Increased by an appropriate 
amount. The OS can only do this when there is no application active. as the extra 
memory has to be taken from the application workspace. Most programs don't 
react too kindly to large areas of their memory allocation disappearing. 

Under an environment such as the Wimp desktop, multiple applications are run 
concurrently. The currently running application is mapped into &8000. When the 
Wimp deddes to swap to another application. it maps the current one out and 
maps the new application into that space. Thus, every application is given the 
illusion that it is the only one in the system. Before each call your application 
makes to Wimp_Poll (which is when it may be swapped out), it must call 
OSJ)ellnkApplication (SWI &40) to remove any vectors that point into the 
application area- if it has any to remove. that is. When its call to Wimp_Poll 
returns (and hence it is swapped back in). it must then call OS_RelinkApplication 
(SWI &4E) to reload these vectors. 

Page alze 

The SWI OS_ReadMemMaplnfo (SWI &51) returns the pagesize used in the system 
and the number of pages present. For more details of page sizes, see the section 
entitled Pag.siuon page H7. 

Controlling memory allocation 
OS_ChangeDynamicArea (SWI &2A) allows control of the space allocated to the 
system heap, RMA. screen. sprite area. font cache and RAM filing system. Any 
space left over is the application space by default. Any of these settings can be 
read with OS_ReadDynamicArea (SWI &5<:). OS_ReadAAMFsLimits (SWI &4A) will 
read the range of bytes used by the RAM filing system. The size of it can be set in 
CMOS RAM using •configure RamFsSize. See also •configure RMASize and 
·configure SystemSize. 

Memory protection 
You have read/write access to much of the logically mapped RAM. There are 
exceptions, suet. as the 32K system workspace at &IFOOOOO (JIM), the RAM disc, 
and the font cache. More areas may become protected in future releases of 
RISC OS. The oaly areas you should directly access are the application workspace 
and the RMA. It is very dangerous to write to ••J other areas. or rely on certain 
locations containing given information, as these are subject to change. You should 
always use OS routines to access operating system workspace. 

:-:-:·:·:·:·:-: 

Memory ManBQ61119111 
·:·:·:·:·:·:·:·:·:·:· :-:-:-:;; ·:·:···:···:-::;.;~;;:.;.:-:-:-:.:·:· ;:;:;:;:;.;.;:; :;.;.;.;:;.;.;.;:;.;.;::;~:;:;.;.;.;;:.:::::-:::·:·:·:-:·:«~::-:-::~.;o:-:::<."-!o'»:-:»:-:.:·::;.;.;-:-: ·:·:·:·:-;;:.;:;.;::v:.::;.;.;.;.;-::}:·X~':O:.~~:~;.;. :-:·:·:·: 

OS_ValldateAddress (SWI &3A) 111111 check a range of logical addresses to see If they 
are mapped into physical memory. 

Changing the logaiiMp 

The mapping that MEMC maintains from logical to physical address space can be 
read with OS_ReadMemMapEntries (SWI &52). This gives a list of physical 
addresses for a matching set of logical page numbers. 

The reverse operation. OS_SetMemMapEntries (SWI &53) will write the mapping 
inside MEMC. Note that this is an extremely dangerous operation if you are not 
sure what you are doing. 

OS_UpdateMEMC (SWI &lA) is a lower ~I operation that alters the bits in the 
MEMC control realstet 

Screen memory 
Hardware scrollinc Is Implemented by !lavina the screen workspace at the end of 
logical memory, adl~t to the correspondlnc physical RAM banks whldl are 
mapped onto those addresses. This means that there are two adjacent copies of 
the screen memory as follows: 

PhysRam + Scre.\Size 

PhysRam (32M) 

VDUW!tlet iO ., ... 
--------~ ---- - - --

PhysRam • Scr84111Sae .__ _____ _, 

\Mod 

Vlnh 

Vslart (MEMC registers) 

Vstr 

Fifwn 16.4 Su•" IUIIlDfY 

The screen can. therefore. be scrolled vertically by altering the VDU driver screen 
start address as shown above. This is usually performed automatically and you 
don' t have to concern yourself with it. 

OS_CiaimScreenMemory (SWI &41) allows you to claim or release this space. 

1-345 



Non·volaflfl m~~mory (CMOS RAM) 

:W»,;;::;r<::-~::~::::::::~:::::::;.;.;.;:::::;::.)..~;;::·::.;:»;;::;.;.;.;.;;:.:v:.::::.:.:·:-;.;.:::-:;;.;.;::::;:-~:::::::::;;.;:;::::::::::::::::::::::: ::::::::::::::;:;:;:::::::::::::::: :;:::::::X:**-::~.;:::;:;~:;:;:;~;::::::::::::::::::::::::::::::::::::m:~:::::;:;.;.;.W;;:: 

The screen-size Is confi11urable in units of one Jlil8e (8K or 32K). Hence for a 20K 
screen on a 400 series machine, 32K will have to be used since it Is the next hlllhest 
multiple of 32K. For an 80K screen. 96K would be used. etc. In addition, If you want 
to use multiple banks of screen memory(~ for animation). eno1111h memory must 
be reserved for each bank. 

Beatuse the total screen memory is often much more than is required at a 111ven 
time, a facility Is available whereby the 'extra' RAM can be daimed for short 
periods It can be used as a buffer. in a data transfer operation. for egmple. 

Non-volettle memory 
(CMOS RAM) 

1·346 

240 bytes of non-1/0iatlle memory are provided. Some or these are reserved si nce 
they hold default values for certai n parameters and are set usin11 various 
·confiaure options. OS_Byte 161 allows you to read the CMOS memory di rectly, 
while OS_Byte 162 can write to It The full list is 11iven below: 

LocMioa 
0 
I 
2 
3 
4 
5 
6 · 9 
10 

II 

12 
11 
14 
15 

F .. ctloa 

Econet station number (not directly confi11urable) 
Econet file server station id (0 = name confl11ured) 
Econet file server net number (or first char of name) 
Econet printer server station id (0 = name confi11ured) 
Econet printer server net number (or first char of name) 
Default filln11 system number 
Reserved for Acom use 
Screen Info: 

BltsO· 3 

Bit4 
Bits 5 • 7 

Shift. Caps mode: 

screen mode number. This is held In 5 bits 
The fifth bit is bit I in byte 133 
1V Interlace (first •lV parameter) 
1V vertical adJust (sl11ned three-bit number) 

Bits 0 • 2 reserved 
Bits J • 5 ShCaps (001). NoCaps (010), Caps (100) 
Bit 6 • 7 reserved 

Keyboard auto-repeat delay 
Keyboard auto-repeat rate 
Printer i11nore character 
Printer i nformation: 

BltO 
Bit I 
Bits 2 • 4 

reserved 
0 = iiiJ'lore. I = Nolinore 
serial baud rate (0=75, .... 7=19200) 

Bits 5 • 7 printer type 
16 Miscellaneous Oaas 

M~~mory AIBnlllgflmflfll 
::::::::::::;.;;:::::.:::::::·:·:·:·:·:·:·:·:=:·:~:;;;;;:::~::m>-m~::::::::~~::::::::::::.::.:::::::::::::::~;;:-::.:·:·:·:.:.:.;.~;;:::.;~::::::::::::::::::::::::::::::: :.: ::·:·:=:=:·:·:=:=:·:·:·:=:·:·:=: -::::::::::;.;:::::::::::::::::::: 

17.29 
30-45 
46· 79 
80·tll 
112. 127 
128. 129 
130 
131 
132 

I)) 

134 
135- 137 
138·139 
140 · 141 
142 
143 
144 
145 
146 
147 
148 

Bit 0 reserved 
Bit I 0 = Oulet. I = Loud 
Bit 2 reserved 
Bit 3 0 =Scroll . I = NoScroll 
Bit 4 0 = NoBoot. I =Boot 
Bits 5 • 7 serial data format (0 ... 7) 

Reserved for Acorn use 
Reserved for the user 
Reserved for applications 
Reserved for RISC IX 
Reserved for expansion card use 
Current year 
Reserved for Acorn use 
Reserved for Acorn use 
OumpfOfmllt 

Bits 0.1 control character print control 
00 print In CSTtans format 
OJ print as a dot 
10 print dedmallnslde an11le bradets 
II print hex inside anale brackets 

Bit 2 treat top-bit-set characters as valid if set 
Bit 3 AND character with &7F in ·oump 
Bit 4 treat TAB as print 8 spaces 
Bit 5 1\Jbe expansion card enable 
Bits 6,7 1\Jbe expansion card slot (0 • 3) 

Sync. monitor type. some mode Information 
Bit 0 SyncBit 
Bit I top bit of mode confi11uration number In 

byte 10 
Bits 2 • 3 monitor type 

FontSiz:e In units of 4K 
ADF'S use 
Set •eat format 
Set •Examine format 
'!Win's byte 
Screen sll.e In p88eslze units 
RAM d <se siz In J)allesize uni ts 
System heap siz In paaeslze to add after initialisation 
RMA sllle In paeeslze to add after Initialisation 
Sprite size i n paaeslze 
SoundDefault parametet'S 

Bits 0 • J cNnnel 0 default YOice 
Bits 4 • 6 loudness (0 • 7 = &01, 13. 2S. 37. 49. 58. 60. 

1-347 



• 

NorHoladla milmOfy (CMOS RAM) 

:;;:·:·:·:·:•:·:·:•:•:•:::•:•:•:·:•:·:·:·:·:•:-:.:·:ve-»».-. ...:-:·:·:.:-:w:««-:~.-:·:·:·:·: ·=·:·:·:·:·:·:·:·: -:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:· :-:·:·:·:·:.:.:. :·:·:·:-:.;:;.;.:.:-:-x.:·:·:·:·:·:·:·:·:·:·x·:.:·:.:·:.:.:vx·:-:·:·:·»:·:·:>:-:·:·:.:·:·:•:·:·:•;:;;;.;:,~::;:;:·:·:·:•:-;«.:: 

1-348 

149 · 152 
15). 157 
158·172 
173·176 
1n-1so 
181 ·184 
185 
186 
187 
188 
189 · 192 
19) 

194 
195 

196 
197 
198 

Bit7 
BASIC Editor 
Printer server name 
File server name 

7F) 
loudspeaker enable 

•unpllli for ROM modules. l2 bits for up to l2 modules 
4 • 8 bits for unplu~ modules in expansion cards 
Wild card for BASIC editor 
Configured language 
Configured country 
VFS 
Bottom 2 bits are ROMFS Opt 4 state 
Winchester size 
Protection state 

BitO 
Bill 
Bit2 
Bit l 
Bit4 
Bit5 

Peek 
Poke 
JSR 
User RPC 
OSRPC 
Halt 

Bit 6 GelRegs 
Mouse multiplier 
System speed- currently unused 

Bits 0 • 3 RAM speed 
Bit 4 ROM speed 
Bit 5 Cache enable for ARMJ 
Bit 6 Broadcast protocols enable 
Bit 7 Colour hourglass enable 

Wimp mode (actual mode EOR &OC) 
Wimp flags 
Desktop Slate 

Bits 0.1 
00 
01 
10 
II 

Bits 2,1 
00 
01 
10 
II 

Bit4 
Bit5 

display mode (Filer) 
large icons 
small icons 
full info 
reserved 
sorting mode (Filer) 
sort by name 
sort by type 
sort by size 
sort by date 
sorting mode (0 = name, I = number) 
confirm option (I =confirm) 

Memory Manag«nMI 

m--:;;:;:;:;~;:;::;:;:;~:;:;:;:;;;;;;;.;.:•:•:•:·:•:·:·:·:·:·X·:-:Y::.:>:>:·:·:·:·:·:·:.;.:·:-:.:-:·:.:.>:::««o:.;.;.:·:.:·:>»:o:.:.:<•:·:·:~;.;.;.;.-.;.;.;.;.;.;.;.;.: .. -.:.;.;.:.;.;.;.;.;.;.;.;.;.;.;.; :;:; :;:;:;.;.;::·:·:·:·:·:·:-::;;;:;:;.:-:·:·:·: 

199 
200· 207 
208 

209 
210 
211·214 
224. 2)8 
239 

Bit6 verbose option (I =verbose) 
Bit 7 reserved 

ADf'S directory cache sl~~e 
FontMu. FontMul • FontMu7 
SCSIFSRap 

Bits 0 • 2 number or discs (0. 4) 
Bits J - 5 default drive- 4 
Bits 6, 7 reserved 

SCSIFS file cache buffers (must be 0) 
SCSIFS directory cache size 
SCSIFS disc sizes (their maps' sizes I 256) 
ReseNed for RISC IX 
One byte for CMOS RAM chedsum (not used in R1SC OS 2) 

1-349 



SflfVIcs Calls 

;:;:;:;:;:;:;:;:;:;:··::;:;: .. ;:; :·: ;:;:;:;:;.;:;:;:; .;:;.;.;.;:;.;.;!;.;!:-:-::::;::;,..-.r~~<:::~x;:~~:.:::~~:::::~:~::::::::~::::::~<:~:;:;:;:;:; :;:;:;:;:;:;:;<;::;:;:;:; :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.;.;.;.;.;.;.;.;.::::~:=:·:·· 

Service Calls 

1-350 

Memory controller about to be remapped 

Service_Memory 
(Service Call & 11 ) 

On entry 

RO = amount application space will change by 
Rl =&II (reason code) 
R2 =current active obfect pointer (CAO) 

On exit 

u .. 

R I = 0 to prevent re-mapping taking place 

This is issued when the contents-addressable memory In the memory controller is 
about to be remapped. which alters the memory map of the machine. You should 
daim this call if you don't want the remapping to take place. 

A module will initially be given the current slot size for its application workspace 
starting at &8000. However. modules do not generally need this area, as they use 
the RMA for workspace. Therefore. when a task calls Wimp_lnitialise. the Wimp 
inspects the CAO. If this Is within application workspace, the Wimp does nothing. 
However. if the CN:J is outside of application space (a module's CN:J is its base 
address in the RMA or ROM). the Wimp will reduce the current slot size to zero 
automatically, except as described below. 

Some modules. notably BASIC. do require application workspace. Therefore the 
Wimp makes this service callfust before returning the application space to its free 
pool. A task can obfect to the remapping taking place by daiming the call. The 
Wimp will then leave the application space as it is. 

Memory Man~~gt~ment 
:: ;.;:;;;:;.;-:-:-:-: ;;;:;.;.;.;!;.:.:·:·:·:·:+ ;.;:;.;!;.;.;.;.;!; .;.;!;.;:;:;:;:;:;:;:;:;:;:;: ;:; :;.;:;:;:;:;:;:;:;.;.; .;.;!:k:;.:.:; ;:;:;.;!; ;!;.;!;.;:;:; :;:;:;:;:; :;:;:;:;:;:;:;.;::::::::::::-::::;.;.;:;::::-:-::~:;:::::::::::::::::::~:;;~:;:::;:;;::;::;::;:;-;:::::{~:.:::: ;:;:;:· 

Service _MemoryMoved 
(Service Call &4E) 

OS_ChangeDynamlcAru has fust finished . 

On entry 

Rl = &4E (reason code) 

On exit 

Use 

Rl preserved to pass on (do not daim) 

This call is made wheneverOS_ChangeDynamlcArea (SWI &2A) has just linished. lt 
Is used by the Wimp to Udy up and should never be dalmed. 

1-351 



SIKVk»_ Valldllt11Addr116S (StKVicll Call &60) 

;;:;;;.;;;:;.;-:-:=:·:·:·»:·:·:·:·:·:·:·:·:·:.:.:·:·:·:·:.:·:·:.:·:·:·:·:.:·:·:·:·: -:·:·:·: ·:·:·:·:·:-;.;.;.;.: .... :-:·:·:···:·:-: ·:·:·:·:·:·:·:·:.:·:·:·:·:-:.:x.;-:-:.;.;.::O:·:.(-:·:·:·:·:·:·:· ;.;.;.;.;.;:;.:.:·:·:·:•:-:•:·:·:•:-:·:·:•:•:·:·:•:«« ... ~;.:-:.·:·:-». .. :·:·:·:~::.;.;.;.;•;.:•:•: 

1-352 

Service_ ValidateAddress 
(Service Call &60) 

This service call is for internal use only. You must not use it in your own code. 

M9mory Manag«nMI 

»>~"(;5!>~x-:·:o:=:o:::•:•:<:=:.;:;:.»»».-:e~:-:•:·:·:·:·:·:·:·:·:·:·:·:·:·»:·:·:·:·:·: ·:·:-: ::;.:::-.v:-:·:•:Y."Y».:W."V:·:·:·:·:.:;.-<.:.x«««««-.~.:·:..'-:.;.;·:.:·:·:•: •:·:·:•:·:·:=:•:•:•:·:•:•:::::·:·:·:·:-::;.;:;:; =:•:::::::*~«:.:·:.::;. :·:·:-:::: 

SWI Calls 

Read battery-bacied CMOS RAM 

On entry 

RO 'Z 161 
R I " RAM location 

On exit 

RO. Rl preserved 
R2 s contents olloc:atlon 

Interrupt• 

Interrupt status Is not altered 
Fast interrupts a..e enabled 

Proc:e .. or Mode 

Processor is in SVC mode 

Re-entranc:y 

Not defined 

U•e 

OS_Byte 161 
(SWI &06) 

This call provides read access to any of the locations In the battery-backed CMOS 
RAM. For example. this call may be used by a module to read a derault 
configuration parwneter Moreover. this parameter rould be examined by the user 
using the •status mmmand,IC the module provides a suitable entry in its 
command decodu11 table See the section entitled H.., aiMI (I)IIUUM &ywori 116Won 
page 1-207 ror more details 

Related SWI• 

OS_Byte 162 (SWI &06) 

1·353 



OS_ Byt• 161 (SWI &06) 

:;::•:~::=:•:•:o:.-:.;.-.:·:-~.;;.:•:·:•:·:·:·:-:·:·:•:·:<·:·:•:·:-:·:---* M"):-; ~«·:·:·:•:·:•~:•»:·:•:•:•:;;.•:::•:•:::•:•:•:::::•:•:•:•:•:•:•:•:::-~,;,.~-:;::::::::::;:;:::::::::::::::::::::x::::::::::-~«~:·:·:=:·:•:·:·:·:·:.:-:«·:-»:«·:·:•:·:·:.:.;-:-:;::.:-x 

1-354 

Related vectors 

ByteV 

;;;:;:;:::;:;::•:•:•:•:•:•::;.;:;:;: 

MflfTIOfY ManBg~KTJIK'II 

:·:·:·:·:·:·:;:;:;:;:;:;:;:;:;:;:;:;;m:;;:;;;:;::·X~;;.;.;;;:.:.l»Y.-:-:-:-:.:-:·:·:•:·:•:···:·:•:·:•:·:~h:O:·:·:•:-:•:•:·:•:•:·:•:•: ;·;;;;:;:;:;::•:·:·:• :·:·:·:·:-::;. ;:;:;:;:;:;. ;:;:;:;~:;~;;;;::::;:.x::-~ 

Write battery·badr.ed CMOS RAM 

On entry 

RO = 162 
Rl =RAM location 
R2 =value to be written 

On exit 

RO. Rl preserved 
R2 corrupted 

Interrupt a 

Interrupt status Is not altered 
Fast interrupts are enabled 

Processor Mode 

Processor is in S\IC mode 

Re-entrancy 

Not defined 

Uae 

OS_Byte 162 
(SWI &06) 

This call provides write access to any of the locations In the battery backed RAM 
with the exception of location z.ero. which Is protected. 

RelatedSWia 

OS_Byte 161 (SWI &06) 

Related vectors 

ByteV 

1-355 



OS_ Updat9MEMC (SWI & 1A) 

;:-;;:;:;: ;:;:;:;:;::::--:::::::::::-::::;:;:;:;:;:;:;:;: ;:;:;:;:;.;:;:;:;:;:;:: :;:: :;:;:;:;:;:; •::;.;;;:;;;:;:;:~:;:;.;:;:;:;: ;:;;:;::.:::;:;:;:; :;:;:;:;:: :;:;:;:;:;:;:;:;:;~:: :;:;:;.;:;:;:;:::::;;;;;:;:;:;:;:;:;:::::::;:;:;;;:;:;:;:;:;<::;:;=:;;:;;;:;;:;.;:;:;;;:;:;:;:;:;:;:;:;:;.~:=::-.:!=~;:;:~;:;:;:;:;:;:;:;:::;:: 

1-356 

OS_UpdateMEMC 
(SWI &1A) 

Read or alter the contents of the MEMC control register 

On entry 

RO =new bits in field 
Rl =field mask 

On exit 

RO = previous bits in field 
Rl =previous field mask 

Interrupts 

Interrupts are disabled 
Fast interrupts are disabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWl cannot be re-entered because interrupts are disabled 

The memory controller (MEMC) chip is a write-only device. The operating system 
maintains a software copy of the current state of the control register and 
OS_UpdateMEMC updates MEMC from the software state. To allow the 
prQiramming of individual bits the call takes a field and a mask. The new MEMC 
value is: 

newMemC 
RO 

= (oldMEMC AND NOT R I) OR (RO AND R I) 
=oldMEMC 

So to read the contents without altering them. Rl and R2 should both be:tero. To 
set them to 'n'. Rl=&FFFFFFFF and R2=n. 

Related SWis 

None 

Memory Management 

::::.-::;;;;:;:;:;::::;:::«.:--2·:.;<»:.:-:-:-:-:·:·:·:·:·:·:· :·:·:=:·:·:·:·:· :-:·:·:·:·:·:· ;.;:;.;.;.;.;.;:;:;:;:;:;:;.;:;.;.;:;.;:;:;:;:;:;:;:;:;.;:;:;:;;;:;:;:;:; ;:;:;:;:;:;:;:;:::::::::;:; :.:.:.:.:.:;:;:;:;:;:;:;:; •••• ·•••· :;:;:;:;:;::>;;:;:;:.;:;:;:;:;:;:;:;:;:;::<:•:o;;:;.-:;:;:::.:;.:;.-.... -:;:;:;;;.;::.:-;.;;.;;:.;. 

Related vectors 

None 

1-357 



OS_Heap 0 (SWI & t D) 

::-~::::::«-::;:;:;:;:;:;:;:;:;:;::~:;:;:;:::;:;:;:;:;~::-::~;::::::::;.:~:o-h:~:;:;:;:~ .. ;::::-.-:;:::;:;::*~!"-: .. ;::;:;:;:::::::::;:;:::=-."<:'-:-~:::-::~::::::::::::;::::::::::~:~:;::::::;:;:;:;:;:;:; :;:;:;:;:;:;:;:;:;:;:;.::~:::::::::::=:~::;:;::;-;:;:;:;:;:;:;:;:;:;:;:;:::::::;:; 

1-358 

Initialise Heap 

On entry 

RO = 0 (reason code) 
Rl =pointer to heap to initialise 
R3 = site of heap 

On exit 

RO. Rl. R3 preserved 

Interrupts 
Interrupt status Is not altered 
Fast interrupts are enabled 

Proceasor Mode 

Processor Is in SVC mode 

Re-entrancy 

SWI is re-entrant 

Uae 

OS_HeapO 
(SWI &10) 

This call checks the given heap pointer. and then writes a valid descriptor into the 
heap it points at. The heap Is then ready for use. The value given for Rl must be 
word-aligned and less than 32Mbytes (ie must point to an area of logical RAM). R3 
must be a multiple of four and less than 16M bytes. 

Related SWis 

None 

Related vectors 

None 

MtJmOry Management 
•.;.;.;.;.;;;:;.;:;.;:;:;.;;;:::::;:;:;.;::::::•:·:>:;::;:;o;:;~:;;:;:::~~;;~~:>:•:•:·:·::;:;:;;:.;:~~:;N~~~:-'!®ro:;:::-::;:;.;::::::.:-:.:::.:.::::;.;:;:;.;:; .;.;:; :;:;:;:;:;:;.;:;.;.;.;:;.;:;:;:; .;:;::·:·:·:·:·:·:·:·:·:·:•:::::.-s::::~~;:;:;:::::: 

Describe Heap 

On entry 

RO = I (reason code) 
Rl =pointer to heap 

On exit 

RO. R I preserved 
R2 = largest available block size 
R3 = total free 

Interrupts 

Interrupt status is not altered 
Fast Interrupts are enabled 

Proc .. sor Mode 

Processor is in SVC mode 

R~ntrancy 

SWI is re-entrant 

Use 

OS_Heap 1 
(SWI &10) 

This call returns infonnation on the space available In the heap. An error is 
returned if the heap Is Invalid. This may be for any of the following reasons: 

• the heap descriptor Is corrupt 

• the infonnation within the heap Is not sensible 

• Rl does not point to a heap 

Related SWis 

None 

Related vectors 

None 

1-359 



OS_HMp 2 (SWI &10) 

·.;.;.;.:.:·:·:·:·:·:-:.:.:-~-:.;-:«·:·:· :-:·:·:·:·:·:.:·:·:· •• ·:·:·:·:·::l;~:-:fil~·~·o~n·c·c:::-~:.:;:;:;:.;:;;;;;:;:;o;:<»-;.;;.:;:;::::::::::::::::;;::::=::.-.r-:::::>:•:::::::::::::::::;::;:;:;:;:::;:;;;:;::;:~::;::;;;;;;:::;;;;:;;;:;.;;;.;;;;;;;.:·:·:·:·:-:;;;~.:;:;.:::.:::;:;:.;-:« 

1·360 

Get heap block 

On entry 

RO = 2 (reason axle) 
Rl • pointerto heap 
Rl • s12e requ1red In bytes 

On exit 

RO. Rl preserved 
R2 "pointer to claimed block or zero if allocation failed 
Rl preserved 

Interrupts 

Interrupt status is not altered 
Fast Interrupts are enabled 

Proce .. or Mode 

Processor Is in SVC mode 

R .. ntrency 

SWI Is re-entrant 

u .. 

OS_Heap 2 
(SWI &1 D) 

This allocates a block from the heap. !vi error is returned If the allocation failed for 
any of the followina reasons: 

• there IS not a large enouah block left in the heap 

• the heap has been corrupted 

• Rl does not point to a heap 

RelatedSWia 

None 

MtlfTIOI'/ Ma/IIJ(Iflfi'IIKII 

»:<-:@:::::;::;-:;;;:;:;:;:;:;:::;:;:;:;:;:;::;::::x;:;:.;o .. ~;.::;.;;;;;;;;;.:-:>:-:-:«-;.:-:-:-:.;;_:;.;-:-:.;-;;;.;.;.;.;~;.;.;:;.:·:·:·:·:~»;.;;;.;.;.;.;.:-:·:·:·:·:·:·:·:.:-:-:-:-:-:.;:;.;.;.;;;:;:;:;:;:;.;:;:;:;.;.;.;:;. ;::=x;;:;:;:;;, .. -:.-:.;::;:;.;-;;;:;;;. 

Retated vector• 
None 

1·361 



OS_HfNII13(SWI &I D) 

·:·:·:·:;;:;;;;;,;.;.x~.;.;;;.;.;.;.;.;.;.;.;:;;;.;.;.;.x~>::;.;.;.;.:.~x·:·:·:·:·:·:·:·:·:·: ·:·:-::;-:..:·:-:.:·:·:".::::;.·: .·.· .. ·.·.·.·.·.·.·.·.·.·.·. :::::::::::::::::::;.;::·:·:·:·:·:·:·:-:::·:·:···:·:·:·:.:-:-:..:·:·:·:·:-:;;..:·:·:·:·:·:.:·:·:·:·:·:·:·:·:.:~-~~ 

1-362 

Free heap bloclt 

On entry 

RO • 'J (~ason c:ode) 
R I • polnter to heap 
R2 • polnter to block 

On exit 

RO • R2 preserved 

lnterrupta 

Interrupt status Is not alter~ 
Fast Interrupts a~ enabl~ 

Processor Mode 

Processor Is In SVC mode 

R ... ntr1ncy 

SWIIs ~-entrant 

u .. 

OS_Heap 3 
(SWI &1 D) 

This checlts that the pointer aiven refers to an allocated bloclt In the heap. and 
deallocates it. Deallocation tries to join free bloclts toaether If at all possible. but If 
the bloclt belna fr~ Is not adJacent to any other free bloclt it is Just add~ to the 
list of free bloclts. An error Is ~tum~ If the deal location fail~ which may be 
because 

• Rl does not polnt to a heap 

• the heap descriptor or heap was corrupted 

• R2 does not polnt to an allocated bloclt in the heap. 

Rel1ted SWis 

None 

MBn!Ot)' Manag9mllfll 

»:·:-:..:·:.»:::·:o:::·:•:;;;:;.~:~-::::::::::::::x::;;:<::M»:~:-:::::::::::o:oY&~:o::::::::::::::::;:;:::::::::::::::o»»....;::x,;:~:x«.-»>:-:-»:·:::::.:::.;::.~Xl-:·:::::::~::..%~=$:>::::::::::::::;.:::·:·:·:·:-:=:.:·:·:· :·:..:· 

Related vectors 

None 

1-363 



OS_HINJP4 (SW/&10) 

·:·: :·:· :·:·:·:·:·:·:·:-;.::;.:.;.;.;-:.· ·.·::-:-:-xv»: oN .. ~:-:•:;;:;.;:;:;;:;:;:~;:;.::;:::::::::;;:•:::;:::::::~:·:•x:::::::::::::::::::::::::::: :;:::::::::::::::::::.o;x;:::•:::-:=:::::•:::::.;:::: =:=:·:·:·:·:·:=:.:-:-:-:-:-:·:·:.:·:·:·:~~..:-:.:·:·:·:.»»:·:.: 

1-364 

Extend heap block 

On entry 

RO = 4 (rea.son code) 
R I = potnter to heap 
R2 • potnter to block 
Rl "'required SIZJe chan~ in bytes (signed integer) 

On exit 
RO, Rl preserved 

OS_Heap4 
(SWI &1 D) 

R2 "'new block pointer, or -I if heap block extended to siZJe 0 (or less) 
Rl preserved 

Interrupts 

Interrupt status Is not altered 
Fast Interrupts are enabled 

Proceaaor Mode 

Processor is in SVC mode 

Re-entrancy 

u .. 

SWIIs re-entrant 

This attempts to enlar11eorshrink the given block in its current position if possible, 
or. tf this Is not posSible. by reallocating and copying it. Note that if the block has 
to be moved. it IS your responsibility to note this (by the fact that R2 has been 
altered), and to perfonn any necessary relocation of data within the block 

RelatedSWia 

None 

Related vectors 

None 

:«<·:·:·: ·:·:·:·:·:·:=:-;:;.;;;:;:;.;:;:;.;:· ·:·:=:·:·:·:-:-:-:-:.: :;:;:;.;.;:;:;.;.:;:;c:::;.y;x;c.:;:.::::;.;.:-:•:.:::;...;:.:.:·:~·:·:-:~ .. :.»:·:·:·:~*;.:-:·: 

Extend heap 

On entry 

RO = 5 (reason code) 
Rl =pointer to heap 
Rl = required slz.e chance In bytes (signed intqer) 

Onextt 

RO. Rl . Rl preserved 

lnlerrupta 

Interrupt status Is not altered 
Fast interrupts are enabled 

Proceaaor Mode 

Processor is in S'IK: mode 

Re-entrancy 

SWI is re-entrant 

u .. 

AHmoty Mllnagetnlll'll 
,.;.;:;.;.;.;.;.;.;:;:;:;:;.;:;:;:;:;:;:;.;.;:;.;.;.·.·· 

OS_Heap5 
(SWI &10) 

This updates the heap size lnfonnatlon to take acx:ount of the new siZJe. An error is 
returned if it cannot shrink far enough, because of data that has already been 
allocated. 

RelltedSWII 

None 

Related vectors 

None 

1-365 



OS_HHP 6 (SW/ & tO} 

;.;;;:;.;.;.;;;;;:;.;:;.;.;~:lh»'.i:~:.:•w..:·:·::;:;:;.;:;:;.;.;:;:;:;.;·:·:·»»'!::O:-:·;·:·:·::::;.;.;.;.;::·:·:·:·:-:·:·:·::;.;:;:;.;.;:;.;·:·:~X<-::::::;:;:;~•~:>::;:; :;:;:;:;:;: ::::::::::::::::::::;:;;;-:;:;:;:;:;:;:;::::::•:':~~;;:{;;:;:;:;:;:;:;:,o;;;x;:~::::;;::;:;:;:;:::;:::: 

1-366 

Read block stu 

On entry 

RO = 6 (reason code) 
R I ,. pointer to heap 
R2 .. pointer to block 

On exit 
RO- R2 preserved 
Rl ,. current block size 

Interrupts 

Interrupt status Is not altered 
Fast interrupts are enabled 

Processor Mode 

Processor Is In SVC mode 

Re-entrency 

SWlls r~ntrant 

u .. 

OS_Heap 6 
(SWI &10) 

This reads the size or a block In the specified heap. An error is returned If the heap 
or the block could not be found. 

Releted SWls 

None 

Releted vec1ora 

None 

MBmaty Man~IKII 

;;:-:·:•:·:·:·»*-->:•::::;:;:;;;:;.;.:~~:·:·::;;;:; ·:·:·:·:·:·:·:·:·:·:·:·:-:«.;.;.; .......... :.:.:.;.;.;)."Y;o.:.-:«·f->.»;..::;.;.;:;.;:;:;:;.;:;:;.;.;:;:;.~-.:::~;:;:;:;:~:::..~:;:;:;:;:;~:;~;:;:;;:::;:;:;::;.;.;.;.;.;:;:::::::;:;:;.;. 

OS_ ChangeDynamicArea 
(SWI &2A) 

Alter the space allocation or a dynamic area 

On entry 

RO =area to alter 
Rt =amount to 1'IIOYe In bytes (slaned lntqer) 

On exit 

RO = preserved 
Rt =number of bytes mewed (unsianed lntqer) 

Interrupts 

Interrupts are enabled. or interrupt status Is not altered (RISC OS 2.0) 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC rTtOde 

Re-entrency 

SWlls not re-entrant 

u •• 
OS_ChangeDynamlcArea allows the space allocated to an area to be altered in size 
by removing or addtna ••orkspace rrom the application wortspace. 

The area to be altered ~pends on RO as follows: 

Valu cl RO A.- to alter 

0 system heap 
RMA 

2 
'j 

" 5 

screen area 
sprite area 
font cache 
RAM filing system 

1-367 



OS_ChangiiDynamlcAriNI (SWJ &2A) 

<:r.o:·:·:<:·:·:•:·:·:·:·:·:.:·:·:·:·:·:-:·:-:·:·:·:·:·:·:·:·:.:·: ,·:·:·:·:·:·:·;.;.;•:-:·:~H~·»»:·:·:•:•:•:·:·:·:·:·:·W/.-!V:<:·!·!·!·!·!•!W.«>»:--.O:·:: !•!•!•!·!·!-!·!·!·!·!·!·!·!·!·!·!·:0!·!·!·!·!·!·!·!·!..:·:·:-::;:;.;.;.;:~:;:."""«;;.;.;:;:;.;:;:;.;::~:·:·::;:;.;:;.;.; 

1·368 

The amount to move Is given by the sian and maanltude orR I : 

+Ve means • •lal'lt the selected area by at least the given amount 
-ve means elutak the selected area by no more than the given amount 

U the amount to be moved is not an exact number or paaes. It Is rounded up (ie In 
the +ve direction) to the next number or pages. 

Note that normally, this cannot be used while the application work area is beina 
used. lor example when a language is acti~ outside the RISC OS desktop An 
auempt to do so will result in a 'Memory in use' error (In ract. when th1s call is 
made, the OS passes a service call round to modules, which can veto the change 1r 
they can' t handle it correctly. See$cnliu_Mt,.ory ($cnliu C•ll &II) on page 1·350 
and Srn.oU_M,,.oryMDIW (54MuC.U &4E)on page 1·351 lor more details 

Any area size change will rail if the new size is smaller than the ament 
requirements. but will shrink the area as far as it can. tr you need to release as 
much space as possible rrom an area. try to reduce its size by 16 Mbytes 

Expand ina, on the other hand. does nothing i f it can' t move enough In this case. I( 
you asked ror the extra space you probably need it all: RJSC OS assumes that hair 

the lob Is no use to you. 

This SWI also does an UpCall. to enable programs running in application 
workspace to allow movement of memory. If the UpCall is claimed when the 
application Is running in application workspace. the memory movement Is allowed 
to proceed. F'or rull details seeOS_U,C.II257 (SWI &33) on paae 1· 187. 

An error Is returned tr not all the bytes were moved, or ir application workspace is 
being used- lean application is acti~. 

Related SWia 

OS_ReadDynamicArea (SWI &5C) 

R•ted vectors 
No ne 

M9t710t)' Manag«nenl 

~:=:•:•:·:·::;.;:~:<.w»x«;:·:·:·:·:·:·:·:=:=:·=·=· :-:·:·:·:·:-:::::-:-:~:•:-:::•:•:•:=:•:•:•:·:•:•:· :·:·:·:~:.:.:-:=:-:-:-:-:·:-$$»:::-:-:-:-:««-::;.:.:•:-:.:·:·:·:·:·:•:•:•:.;;:.~:·:·:·:·:=:=::::::::::::::...:::::::::::.-::=::::::::~:=:=~::<':::::::::::::::::.::::~::~:-:;:~:.-...".-

OS_ Validate Address 
(SWI &3A) 

Check that a range or addresses are In loelcal RAM 

On entry 

RO =minimum address 
Rl = max1mum address 

On exit 
RO. R I preserved 
C 1Jai Is clear if the range Is OK. set otherwise 

Interrupts 

Interrupt status Is not altered 
Fast interrupts are enabled 

Proce.sor Mode 
Processor is in S'YC mode 

Re-entrancy 
SWI is re-entrant 

u •• 
This SWI checks tile address range between RO and R I minus I to see if they are 
valid. tr they are equal. then that single address Is checked. Valid addresses are in 
logical RAM (0 ·12M) and have a mapping Into physical RAM. including screen 
RAM. throughout the specified range. 

Related SWis 

None 

Related vector• 
None 

1·369 



OS_ ClaimScrHnMBmory (SWI &41) 

·:::~~~~::::::;;:;:;w.,..:.;.-:::~:;:"-:·:~:-:-: ·>:·:·: ·:=:·:·:·:· .;.;:;.;.;:;:;:; :;:;:;:;.;:;.;:;.;.;:;:;:;:;:;:; :;:;:;:;:;.;!; :;:;:;:;:; .;:;:;:;:;:;.;~:-:=:·:·:-:-:-;.;:.;.;. :-:-:·:·:·:-::;.;:;.;.;.;:;:;::::;:;~:;:~:::::::.:·:: :·:·:···:·:·:·:·::;:;:;.;. :-:·:·:·:=:·:·:=::;.;-~;:;.-,;:::::;:.;:;;: 

1-370 

Use spare screen memory 

OS_ ClaimScreenMemory 
(SWI &41) 

On entry 

RO = 0 for release. I for claim 
Rl =length required In bytes (if RO = I) 

On exit 

ROpreserved 
if the C nag is 0. then memory was claimed successfully 

R I = length available 
R2 =start address 

If the C nag is I. then memory could not be claimed 
R I = length that is available 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor Is In SVC mode 

Re-entrancy 

u .. 
SWI is not r~ntrant 

There are several restrictions to the use of screen memory. It can only be claimed 
by one 'client' at a time. who gets all of it. It can only be claimed if no bank other 
than bank I has been used. You can't claim it. for example. if the shadow bank has 
been used. 

While you have claimed the screen memory, you must not perform any action 
which might causes the screen to scroll. This means avoiding the use o( routines 
which might cause screen output. 

It is important to release the memory after it has been used. 

MBmory Managemfltll 

:::~:~:-:;:;:;-:-:-:.:<:·:·:·:=::: :;;:::.::-:-::.:::-: ·:·:=··:·:·:·:·:·:·:·:·:=: =:·:·:=:-:-:::.:·:":·:-:·:=:·:·: :;:: ::=:-::.--x.:o:-::::::*·:·7.·:=:-:-::;.;:;.;:;.;::::::::::.;-::: ·:·:·:=:-:::=:-:-:.:·:·: .;::::::::::::::::-::::»:·:-x-::::::: :;.;.:.;:;.;:;::.:-:-:«!»:.;:::«-:·:·:·: .;:;:;;;.; :-:=:·: 

Related SWis 

None 

Related vectors 

None 

1-371 



OS_RNdRAMFsUmlts (SWI &.fA) 

·!·!•:•:.:•:•:·:;~:-:·:«V:·~.:-;-:«-;o;·:-»:{•' ·:").·:>:· :"':«•:-;.:-;:;;;;;:;:;:;;;;;:;:;.~;:::;;;:;:;:;:;;;;:«•::;:;:;o;:;:;:;;z:;;::;:::;;:::::;:;:~n.:;;.:::::;;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:; :;:;:;:;:;.;.;:;::.:-:-:~o:;x=:;;;;.;~;.;.;.;.;.~:·:·:•:·.~ 

1·372 

OS_ReadRAMFslimits 
(SWI &4A) 

Get the current limits or the RAM filing system 

On entry 

On exit 

RO • start address 
Rl ,. end address+ I byte 

lnterrup .. 

Interrupt status Is not altered 
Fast Interrupts are enabled 

Procesaor Mode 

Processor is in SVC mode 

R .. ntrancy 

Uae 

SWIIs re-entrant 

This reads the start and end addresses of the RAM filing system. This infonnatlon 
can also be read from OS_ReadDynamicArea. 

If the RamFS Is configured to zero size then RO and R I have the same value on exit . 

The size of the Rami'S after a hard reset (ie the difference between the two retum 
values) can be configured using · configure RamFsSize. 

RetatedSWia 

OS_ReadDynamicArea (SWI &5C) 

Related vector• 
None 

M8moty Management 

:;;::.;:.;:;:.;:;:.;:;,~w~.;;::-;:':·:·:·:·: ·:·:·:·:;:.::.:•:·:·:·: ·=·=·=-:·:·:·:·: =:=:·:·:=::::;·•:=:·:·:·:·:·: -:·:« ... -<~-»M-:·:·:·:·:·:·:·:·:-:-:~·:«.:-:•:·:·:·:·:-:•:•:·:-:•:•:•:•:·:•:•:•:::::::::::::::::;;o::::w:•:::•:'>*»:•x·:•:•:·:=:;;.:.;.:.;:·:·:·:·:·:=:·:<:»: 

OS _DelinkApplication 
(SWI &40) 

RetnoYe any vectors that an application Is usilli 

On entry 

RO = pointer to buffer 
Rl =buffer size In bytes 

On exit 

RO preserved 
R I = number or bytes left In bul'fer 

Interrupt a 

Interrupts are dlsabled 
Fast interrupts are enabled 

Proceaaor Mode 

Processor Is In SVC: mode 

Re-entrancy 

Uae 

SWI cannot be re-entrant because Interrupts are disabled 

When an application runnllli at &aOOO Is 1oing to be swapped out. it must remove 
all vectors that It uses. Othenrlse. lf they were activated. they would fump into 
whatever happened to be at that location In the new application running in that 
space. 

RO on entry points to a buffer This Is used to store details of the vectors used. so 
that they can be restored aftenrards Each vector requires 12 bytes or storage and 
the list Is terminated by a single byte. 

If the space left returned In R I Is zero. then you must allocate another buffer and 
repeat the call. the butferyou have contains valid information When you relinkyou 
must pass all the buffers returned by this call . 

Related SWis 
OS_RellnkApplication (SWI &<CE) 

1-373 



OS_DellnMppllcallon (SWI &40) 

.·;·.·.;.;;;.;.;;;;-,;;.;;:•:•:•:•:=:•:-;::;x::;.;;:::..:;;;.::x•:;;::w:::;:.;:;:;.;.;.;:;.::;.;:;.;.;.;::•:•:·~~·»:•:;;:;:~~x;:::;;.;:;:::::::: :::::::::::::::: :;:::::::: .;::::::~· ·=·=·=···:···=·=·=·=·:·:·:-:-:::..:-: .. --:«·:·:·:::.:::~•:::•:•:·:•:•:•m:;:;:•: 

Related vectors 

None 

1-374 

Memory Man~~g«T~ent 

!·! •!·!•X•!-!•!•!O:•X:.::::;.o .. ;.;:.;;.;:~.;-;.;.;:; ·!·!·!·!·!·!·!·! <·!·;·!·!·!•!·!·!·!·!·!·! ·:·:·:-:v:..::: .. -...o.;:.:.>:-:-:.-:·:.:·:·:·:·:·:·:·:·:~~~x·:·:=:=:·:-::::::::::::::::::::::::::::::::·:·:·:·:·:·:. :·:·:=:·:·:·:·:·:·:=:: :::::::::::::::::::::::::::~=: 

OS _RelinkApplication 
(SWI &4E) 

Restore any vectors that an application Is uslna from a buffer 

On entry 

RO = pointer to buffer 

On exit 

RO preserved 

Interrupts 

Interrupt status Is not altered 
Fast i nterrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWJ is re-entrant 

u •• 
When an application Is 1oln1 to be swapped ln. all vectors that it uses must be 
restored. 

RO on entry points to a bufl'er. which has previously been created l7j 
OS_DelinkAppllcatlon. 

RelatedSWia 

OS_DelinkApplicatlon (SWI ~D) 

Related vec:tora 

None 

1-375 



OS_R98dMIHTIMaplnfo (SWI &51) 

::::·:·:·:~:-:~:~:~~x;;;o;:~:::::•:•:•:•:•:::•:•:.:·:·:•:·:·:·..:· ........ ·:·:·.·:···· :;:;:: :;:;:;.;.;:;::~:-:·:~::O:::·:·:·:·:·:·:·:···::;.;.;:;:;:;:;:;:;:;:;l;:J:.~l;:;~;;;.;.;:;:;;;~;.;;;:;.;.;..o.:.:.:;x;;.;.;.;-:·:-:-:.:·:·:·:·:·:·X:;;:;:;::·:·:·:·: 

1·376 

Read the page size and count 

On entry 

On exit 

RO = page size in bytes 
R I ., number of pages 

Interrupt• 

Interrupts are enabled 
Fast interrupts are enabled 

Proce.aor Mode 

Processor is in SVC mode 

R .. ntranc:y 

SWI Is re-entrant 

u .. 

OS_ReadMemMaplnfo 
(SWI &51) 

This call reads the page site used by MEMC and the number of pages in use. The 
valid page numbers are 0 to R I • I. and the total melllOf)l site is RO times R I bytes 

R ... tedSWI• 

None 

Related vectort 
None 

Memory Management 

x::::;::::x~:·:·:-:v:·:·:·:·:·:·:·:-:-:·:·:::.;.:::::::::.-:·:·:·:=:=:·:~~-: :;:;:;;:..x;-;:;;;:;:;:;:;:;::;:-x•:.:::;:.:·:·!·:·:·:·:-:.:-:·:·:.:·:·:·:·:· :·:· ::::::::::::.:::$!~:::.-::;.;.,,.:-x,.;;;:;:;:;:;:;.;:;:;:;.;:::x:::::;:;:;:;.;.;.:.:v:.:·:«·;..;. 

OS _ReadMemMapEntries 
(SWI &52) 

Read the losical to physical memory mappil18 used by MEMC 

On entry 

RO • pointer to request list 

On exit 

RO prese1Ved 

Interrupt• 

Interrupt status Is not altered 
Fast Interrupts a~ enabled 

Proce.aor Mode 

Processor Is in Sloe mode 

Re-entranc:y 

SWI Is re-entrant 

u.e 
This call ~ads the losical to physic:al memory mapplna used by MEMC. For aiven 
pace numbers. it finds the c:or~pondil181osical add~s and prote<:tion level. 

The request list Is a series oC entries th~ words lon&. tennil"lilted by a -1 in the 
first word The th~ words are used for: 

Word 

I 
2 
3 

M ..... 
paae number (from 0 upwards) 
I<Jilcal address that It Is mapped to 

protection level 
This is a bit field. which uses the bottom 2 bits 

00 ~adabie and writable by everybody 
01 ~-ooly In user mode 
10 Inaccessible in user mode 

All other bits a~ reseNed and must be written as zero. 

On entry. the page number fields must be set; on eJCit. all fields a~ set. 

1·377 



OS_ RNdMemMspEntrle6 (SW/ &52) 

:::::::::::::~:~:~~~_.:.::;.....-..:-.:;.:.--' ·-:-:-;->:·~···:·:·:-;:;:;.;::::::~:· ....... m:;:;:;::;«::•:•:?::::;:::::;:::;.;::.;:::::;::_..;:-:-:•:;::::;:::;:;:::::::::::::::::::::::::::::::::::::::::::::::::::::x:::::-x:.::::::::::::::::;::;:i.";;«:':·:·:·:·:·:·:·:·:·:;;.;.:-:·:·:·:·:•:·:-:·:·:·:·:-::;:; 

ReletedSWie 

05_5etMemMapEntries (SWI &53), OS_FindMemMapEntries (SWI &60) 

Releted vector~ 

None 

1-378 

Memory Manllgllment 

:::::::~:·:•:•: :::::::::::::::::::::::::::-::::::::::::::::::::::;::;.~;:;.::::::;::::::·:·:·:<:;:.:-:.:«•~:..o.:>;."':-:o-:-:.;:•:·:·:::;:-:·:·»x-x•:-:-:·:·:•:•:•mw .. ::..«•:·:•::::::~:•:·:•:;;;-~:::•:•:•:•:;.~:•:•:=:=:·:·:•:•x>:>::::::;:;::::x~:=:=:;:;:.: 

OS_ SetMemMapEntries 
(SWI &53) 

Write the logical to physical memory m~~pplna used by MEMC 

On entry 

RO = pointer to request list 

On exit 

ROpreserved 

Interrupts 

Interrupt status Is not altered 
Fast int~rrupts a~ ~nabled 

Processor Mode 

Processor is in SYC mode 

Re-entrency 

SWI is re-entrant 

Use 

This call writes the IO(IIcal to physical rnemofY mappins used by MEMC. 

The request list Is a series or entries th~ woros Ions. terminated by a -I in the 
first word. The th~ words are used ror: 

Word M•alac 
I pase number (rrom 0 upwards) 

2 IO(Iical address that it Is mapped to 

3 protection level 

This is a bitfiekl. which uses the bottom 2 bits: 
00 readable and wnt.abl~ by e-.oerybody 
01 ~ad-only In user mode 
10 lnacx:esslble In user mode 

All other bits a~ reserved and must be wrltt~n as 1.ero. 

All fields must be set on entry 

1-379 



OS_S.IM11t71MapEnlrlll6 (SW/ &53) 

-:·:·:·::;:;.;::·:·:·:·:·:;;.;-;.;.;.;.;.;.;.;·:·:·:·:·:·;-:•:·».-..~:<:-:·:-:·:-:·:·:·:·:-:<-.....o\.·:·:·:·h·.·:·:·:.:.»:Y:•:·:·:.»:O:•:•:•:•:::o;;;:;o;:;:;~"';;:;:;:;:;:;:;;;:x.;.::::;:;: .,:;:;:;:;:;:;.;:;:;:;.;.;.;.;.;;;.;.;.;.;.;.;.;.;.;.;.;.;;;.;.;.;.;.;;;.;,X.~:·:·:·:.:::;:.:.;;;.;;;.;.; 

1-380 

My address abo~ 32M byte (&2000000) makes that page lnacx:esslble. This also 
sets the protection level to minimum accessibility. 

This SWI assumes you know what you are doing. It will set any page to any address. 
with no checks at all. 

If you are using this call, then you can only use OS_ChangeDynamlcArea if the 
kernel's hm1ts are maintained. and all appropriate areas oontain continuous 
memQIY 

Related SW1a 

OS_ChangeDynam1cArea (SWI &2A). OS_ReadMemMapEntries (SWI &52). 
OS_FindMemMapEntries (SWI &60) 

Related v.ctora 

None 

Memory Alansgsment 
:>:·:-e-:-:-:·:-:::·:·:·:·:-:;:;;;;;;.:-:v:;.:::.:-:-;;:•:.:·:•:•::x?~:•:·:·:•:•:·:·:·;;:.;~.;-:.;·:·x.;.;.;.;y;.;.;.;,;:;~v:·:·:.:.X.:*:-»:::::::::.:·:•:·:•:-:::.~::::.x.:-:;:-:.:·:•:-:-:::·:· :-:-:-:.:·: -:·:·:·:···:·:·:·:·: =:·:·:·:·:·:·:-: -:·:·:=:·:·:· ·.·:·:•:::: :::::::~:;:•:·;·:·:·:·: 

OS _ReadDynamicArea 
(SWI &SC) 

Read the space allocation of a dynamic area 

On entry 

RO = area to read 

On exit 

RO = pointer to $Uri of area 
R I = ament number of bvtes In area 

Interrupt a 

Interrupt status Is not 81tered 
Fast interrupts ue enabled 

Proceaaor Mode 

Processor is In SYC mode 

Re-entrancy 

SWI is not re-entrant 

Uae 
This SWI reads the size of an area. The area read depends on RO as follows: 

Vlll•e of RO At. to .-..d 
0 system heap 
I RMA 
2 screen area 
3 spnte area 
4 ~t~e 

5 RAM fllin&system 

Related SW1a 

OS_ChangeDynamk:Area (SWI &2A) 

1-381 



OS_RNd0ynamlcAt9a (SWI &SC) 

>:-:<:<;;:.:w..:<:·:· :·:· :·:·:·:·:-::;:;.;:;:;.;: ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;. :-:=:·:·:·:·:·:·:·:·:·:·:·:·: .·.;.;.;.;-:-:·:·:·: ·:·:.:-~:.»:::•: .;.;:;:;:;: ;:;:;:::::::::::;:::~;:;:;:;::;::=;:;:;:; :;:;:;:;:;:;:;:;. :-:·:·:-:::·:·:·S'.-:-:-o«•:·:·:•:•:-:-:-!·!·!·!·~::::::;:;:;:;:;:;:;:;:;:; 

1-382 

Related vectors 

None 

~Manag«nllfll 

:-~:.:.:·:•:· .·.··=· •:::•:·:~:-:-:=:=:::::::::•::::: :::::::::::::::: =:•:=:•:•:•:•:•:•:-:•:•:•:$..:::•:-:·:·:·:•m:-.-.:::.:.>:·:·:-:-:::.:·:·:· :-:•:=:.:=:=:=:=: ·:=:=:=:•:-:::::·:·:·:·:·:•:::·:·:·:·:·:·~~$:·:-:-:=:.:·:·:·:=:::•:=:::::=:·:=:=:w.::::::::::::::;.;•:::::::::::~::::* 

OS _FindMemMapEntries 
(SWI &60) 

Read the IQilcal to physical memory mappinc used by MEMC 

On entry 

RO = pointer to request list 

Onexh 

RO preserved 

Interrupts 

Interrupt status Is not altered 
Fast interrupts are enabled 

Processor Mode 

Proressor Is In SVC mode 

Re-entr1ncy 

SWIIs re-entrant 

Use 

This call reads the I<Jilcal to physical memory mappinll used by MEMC. For 11iven 
lot~ical address. It flnds the CQI'I'espondinll pafle number and protection level. 

The request list is a series or entries three words lona. tennlnated by a -I in the 
flrst word The three words are used ror: 

Word 

I 

2 
3 

M•lll•c 
pace number (hom 0 upwards) 

qlcal address that it is mapped to 

protection level 

Thl.s Is a bit field, which uses the bottom 2 bits: 
00 readable and writable by everybody 
01 read~nly in user mode 
10 Inaccessible In user mode. 

All other bits are reserved and must be written as zero. 

1·383 



OS_FindM~~mM~nr/66 (SWI &60) 

.. :.;.;::;:.~;:~~·:·:·:-:.:·:.:,:.:.:-:-:v w..:-..-..-.-.IQ>.:·:·.·~ ... ~::;.;.;•:·:..:<·:·:·:·: ·:·:·:·: ·:·:·:·:·:·:·:·:·:·:·:·:· .·.·:·:·:·:·:·:·:· :-;.::;.;.;:;.;.;;;.:-:·:·:·:·:-: ·:·:·:·:·:·:·:·:·:•:·:·:·:·:•:t.-.'««Y'_.:.;.:.;·:•:·:·:•:·:·»S»XXW~·:•~: 

1-384 

On entry, the qlcal address fields must be set. You may supply probable p;iie 
numbers. which (if correct) will make this call return more quickly than It ml&ht 
otherwise. If you have no idea what the J)aie number misht be, you should set the 
J)aie number to zero on entry. The protection value Is I snored on entry. 

If the paae number is -I on exit, then the memory map entry was not found. in this 
case. the protection le~~el will always be 3. Otherwise the request list has been 
updated w1th the p;iie number and protection level for the &iven loalcal address 

This call is not available in RISC OS 2.0. 

RelatedSWI• 

OS_ReadMemMapEntnes (SWI &52). OS_SetMemMapEntries (SWI &53) 

Related vector• 
None 

Memory Managemllf'lt 

~~;;.;-m-.;:;;;:;:;:;:;:;:;::::::::::::"fl$$»'!':•:::::::::::~:;.;:;:;.;.;.;::-x-:««·»..~.;.;.;.;.;.;.;.;.;.;.;.;.;::.;.;*-»>»:•:.:::::•:·:·:·:·:•:•:;;;;:;.:;;;:;::•:•:•:•:•:•:.;•;:;:~~:•:::•:•::~:::::•:•:•::~:::<:~!l»f® 

*Commands 
*Configure 

Sets the value of a oonflcuration option In the CMOS RAM 

Syntax 

*Configure [option (value]] 

Parameten 

u .. 

option 
value 

the name of a oonflcu ration option 

Its .-value(s) 

•confisure sets the value of a oonfiauration option In the CMOS RAM. These are 
used to permanently store the Ulrl{i,..ralillrt (or set-up) of the computer. They are 
made OJ trent on Initial power-on •nd after a hard bmlk (Ctri-Reset), and do aot 
take effect immediately. 

If no parameters are specified, the available conflsuration options are listed. 

If parameters are specified. the alven value Is stored In the location in CMOS RAM 
appropriate for the tlven option. Some options require more than one value. and 
some require none at all . 

Where a number Is required, you may alve It In decimal. as a hex number preceded 
by&, or a number of the form iut_ llltlll, where Nw Is the base of the number in 
decimal In the ranae 2 to 36. For example 2_1010 is anotherwayofsayin& 10. 

Here Is a list of the available oonflauralion options, the details of which can be 
found on the appropriate paaes: 

U.r PrefeNttc• 
·confisure Boot 
·eonfiaure Caps 
·eonfiaure Delay 
•eonfisure Dir 
•eonfisure Oumpformat 
•Confisure FileS)'Stem 
·confi&ure FontMax I 
•eonfisure FontMax2 
•Conflcure FontMaxl 
•confi&ure FontMax4 

Ia tile c••pt.er 
FiMS"""-i 
Cltar.a.r lywt 
Cltar.a.r lywt 
Falleorr 
Fii6Md 
FiMS"""-i 
TMFIMI MaUft' 
TM F1111t MaUft' 
TM FIMI MaltO!fG' 
TMFIMI MaUffJ' 

oa,... 
p;iie 3-141 
p;iie 2-422 
p;iiel-423 
p;iie 3-239 
pase 3-142 
p;iie 3-144 
p;iie 5-91 
p;iie5-93 
pase5-95 
p;iie5-97 

1-385 



'Coofigure 

·:-:-:-:-:-:-:-:-::-:-:-..- ·.:-:...... t-:-:-:.;~.;:;;:;;.;:;:;.;;:.;-:-:-:-;:;.;:::::.:;:;=-:::;:;::;:;:;:;:::;;o,;;;x~:«-:o::;.;:;:;:;:;:;:;.;.;::-x::-:-::;.;.;.;.;.;.;.;.;:;.;.;.;.;:;.;.;.;:;.;-:-:-;:: .;:;:;.;-;.;.;.;.;.;.;.;::-:..-«-:·:;~~:.:·~~:-:..:::·:·:·:-::;.;-:~-::-::: :;:;:;:;:;:; 

·confisure FontMax5 Tu Fo1tl M•upr p&~~e5-97 

·confisure Lansuase TM mt II{ tw urMl pase 2-<15<4 
·confisure Ub N.tFS pase 3-356 
·confisure Loud VDUDrMn pase 2-2)() 
· confisure Mode VDUDrMn paee 2-231 
· confisure MouseStep VDUDrMn paee 2-234 
·confisure NoBoot Fil.swa pase 3-145 
·confisure NoCaps Cft.ar.a.rt"""' p;~~~e 2-<124 
· configure NoDir Fii.Corr p;~~~e 3-240 
•configure NoScroll VDU Dn.m p;~~~e 2-235 
•configure Quiet VDU Drt.m p;~~~e 2-236 
·configure Repeat Cft.r.a.r l1tput p;~~~e 2-425 
•configure Scroll VDU Dn.m p;~~~e 2·238 
•configure ShCaps Cft.r.a.r l~tpul p;~~~e 2-426 
· configure SoundDefault T~t Soult41 SY5UIIt p;~~~e 5 • 384 
· confisure Truncate Fil.switc~ p;~~~e 3·146 
•configure WimpAutoMenuDelay TM Witt41qw M.N.,.. p;~~~e 4-120 
·configure WimpOoubleCiidDelay TM Witt41qw M•11.,.. p;~~~e 4-321 
· confisure WimpDoubleChdMoYe TM Witt41qw M.N.,.. paee 4-322 
•configure WimpDragDelay TM Witt41qw M.~t.,.. p;~~~e 4-321 
·confisure Wimp[)ragMOIIe TM Witt41qw M.~t.,cr pase 4-324 
·confisure Wimpflass T~t Witt41qw M•n.,.. p;~~~e 4-325 
•confisure WimpMenuDrasDelay TM Witt41qw M•~t.,.. p;~~~e 4-327 
•configure WimpMode T~t Wif141qw M•11•9" p;~~~e 4-328 

Hardware co•flc ... •tlo• Ia the chapter 01 .,..e 
'Confisure Baud SINIUvict pase 3-454 
'Configure Country l"llnl•liDrl.ti,.OIIult p;~~~e 5-272 
•confisure Data SINI Uvict p;~~~e 3-<156 
' Configure Drive ADFS p;~~~e 3-288 
· confisure DST T~t Ttnitory M•upr page 5-330 
•confisure Floppies ADFS paee 1·289 
·confisure FS N.tFS paee 1-355 
· confisure Hard Discs ADFS paee3-290 
'Confisure IDEDiscs ADFS paee3-290 
'Confisure Ignore Cft.lruur Output pase 2-36 
•configure MonitorType VDU Drt.m p;~~~e 2-232 
·confisure NoDST T~t Ttnilory M•...,, p;~~~e 5-311 
·confisure Print CM r.a.r Oltlpltl p;~~~e 2-37 
•configure PS NnPriltt p;~~~e 3-380 
•configure Step ADFS pase 3-292 
•configure Sync VDU Drt.m p;~~~e 2·239 
·configure Territory T~t Ttnilory Ma"•gcr p;~~~e 5-332 
•configure TV vouDn.m p;~~~e 2-240 

1-386 

Memoty Mllllag«niKit 
~:. ,;:::=»:·:·:.;;.w:-::::::::::::;.:.;:.. .. ~:::::~::::::::::::::;.w:o;.»»,<::;.:::.:·:·:-: .. -.:.;:~:-:-:.;.;;;x::w.: -:=::::::::::: ::::::::::::::::::::::>::::::::::::::::x::;xo:::::::::;:~:-:::::.;::.;::::::::::-:;;:;.:-:-~:·.;-:::::·:·:·:·:·:-:::.~~:::::::~:~~~:~ 

Memorr aloclltlotl 
•configure ADFSbuffers 
·configure ADFSDhCache 
· configure FontMu 
· configure FontSize 
·configure RamFsSize 
'Configure RMASize 
· configure ScreenSize 
•configure SpriteSize 
· configure SystemSize 

Example 

*Conflqure Baud 7 

Related commands 

•status 

RelatedSWis 

None 

Related vectors 

None 

Ia tlle chapter 
ADFS 
AOFS 
TN F"'t Mulf" 
TM Fooet M.1t.,.. 
R.tllli'S 
~Mu•f110Uitl 
VDUDrivm 
s,nus 
M.~~tory M.,.•flllll~tt 

oa p.,e 
PaiJe 3-286 
PaiJe 3-287 
PaiJe 5-89 
PaiJe 5-101 
p8ie 3-103 
PaiJe 1-388 
page 2-237 
page 2-120 
page 1·389 

1-387 



•eontigurB RAIASizB 

:-:···.·.·.· ·.·.·.·.·.·.·.·:::.:-:=. ·:=:·:·:-:v:-:-:-:·:·:·:-:::·:-: ·:·:·:-:;:::-::-::::::::~::;:::~·:::::::::•:·:::.'::-:::::.:::::;:~:::::::::::;::::::x~::::::::::::::.:::::::w.:m:~">~:::<:"-:::::::::::::::::::::: :::::::;::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::· 

1·388 

*Configure RMASize 

sets the confisured extra area of memory reserved for relocatable modules 

Syntax 

*Configure RMASize mK Jn 

Parameter• 

u .. 

mK 
n 

number of kilobytes of memory reserved 

number of paQeS of memory reserved; n s; 127 

· confiaure RMASize sets the confiaured extra area of memory reserved in the 
relocatable module area (RMA) after all modules have been Initialised. The default 
is to reserve 2 extra paaes. 

If the parameter is 0. no extra memory is reserved. 

Example 

*Configur e RMASize 128K 

Related commanda 

None 

RelatedSWla 

OS_ChanaeDynamlcArea (SWI &2A) 

Related vector• 

None 

M9maty Afanagem!Nit 

:-:·:·:-:"·:=:=.·.·.·.·.·:=:=:=:::-:::::;:::···:::: •• ::::::::::::::::::::::::::::;::::>:::::-::::::::: ::::::::::::::::::;::::::.::::::::::::::::.-::-..m:t::::::::::::::::-:.-=x=:~:::::::::::::::::::::::::~:::::::::::::r.:::::::~:::;::::::~-:::::::::•:=:=:•:;:~-: ·:·:=:-:·:·:·:·:·:·:·:=:·:·:·:·; 

*Configure SystemSize 

Sets the conflaured extra area of memory reserved for the system heap 

Syntn 

*Configure SystemSize mK Jn 

Parametera 

mK 
n 

Uae 

number ol kilobytes of memory reserved 
number ol paaes of memory reserved; n s; 6J 

•conflaure SystemSize sets the conflcured extra area of memory reserved for the 
system heap after all modules have been Initialised. The default value is 0. 

Example 

*Configure SystemSize 32K 

Related command• 

None 

Related SWla 

OS_ChanaeDynamicArea (SWI &2A) 

Related vector• 

None 

1-389 



•status 
.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:;: .. ;:;:;:;:;:;:;:;:;:;::····· ::::::=::::::::::::::::::::::;;;::::::::::::::::.;: ::;:::::;:: :;:::::::::::::::::::::;.;.;;:·:·:-:::::::::·:·:·:·:-::::: .;:::::::::;. :-: -:-:·:·:·:=:·:·:·:·:.::;.;::::::~:.:·:·:-:-::;.:;:~,~:--:;:::::~:::;;;;::::;.-.:;:ox:: 

1-390 

*Status 

Provides infonnation on how the computer is configured 

Syntax 

*Status (option ] 

Parameters 

option the name of a configuration option 

Use 
•status displays the value of a configuration option in the CMOS RAM. If no option 
Is specified. the values of all configuration options are shown. 

Because the values of these configuration options are held in non-volatile memory 
[the battery-backed CMOS RAM) they are preserved even when the computer is 
switched off. until reset by using either the Configure application from the desktop 
or the •configure command from the command line. 

Example 

•status 1V 

Related commands 

•configure 

Related SWis 

None 

Related vectors 

None 



St@:<."?M-:«< .. .;.::;.;;:•:·:·:·:;;.;<:.:-»:o:·:·: ··:·:::.:=:=:·:=:·:;:::::;::: ::::::::::w.:::::::::x::::::::::::::::::::::~=x:::::~~=~:::::::.~.:::;x::.:·:·:·:·:·:·:·:·:·::::::::::::: ::::::::::::::::=:=:=:=:·:=::.:::::: :::::::: :::::::::::::::::::::m 

17 Time and Date 
'**:x::x::::::::::::..:~:::~~.:::~z:::::: ::::::::=:=:=: =:=:=:=:=:=:=:=:=:=:=:=:=:=: :::::::::m::::::::::::::::::::::::::::::::-;::x*"-~~:~_:.;~:~~=~::::::::::::::::::::::::::::::::::::::::::::::::::::::=:~::::::::::::::::::::;:;::::::::::.::::x~ 

Introduction 
There are two basic aspects of time dealt with in this chapter: passive aspects such 
as reading various dod settings; and active ones. where an event occurs when a 
given time Is reached. In this chapter. a doci is a place where a stored value Is 
incremented on a reaular basis. The li1111ls the name of the value as it is read or 
written. 

There are several clocks that Increment every 1/IOOth or a second (~ntisecond). 
One of them cannot be changed except by a hard reset This is useful for 
time-stamping events. such as mouse moves. Another can be changed by a 
program. so Is useful for elapsed time calculations. 

The real-time dock keeps the real-world time. and represents time In centiseconds 
since 00:00:00 on January I 1900. There are calls to present this information In a 
number of ways. The real·tlme can be converted to a string with complete program 
control over its format. 

A variety of timer events can be set up. There are SWis that will call your 
application after a given delay has passed or every time that delay has elapsed. You 
can set up a routine to sit on the ticker vector. to enable it to be called every 
centisecond. 

A spedalised form or timer event Is one that will occur every time the screen 
driving hardware reaches the bottom or the screen. This event Is useful for 
Oicker-free redrawing. See the chapter entitled VOU Drilws on paae 2·l9 for further 
details. 

1-391 



~~~~and Techn/aJI Details 

·>:·:·:·:·:·:· :·:·:·:·:·:·:·: .;:;:;:;. ;:;:;:;:;:;:;:;:;;;:::;;:;;-.... :«-:«.:;:;o,w ·:-;.x.-:-:-:-:-:·:·:·:-:-x:X.»:-X<'-:·:·:·:·:·:·:·:·:·:·:•:•:·:«:-:'-:-:;:-»:-:·:·:·:·:•;-:v:o:.:;z:.:;;:;::;;:;::::::;:;:::;:;::;:•::~..,;;;:;:;:;;:;:;::::::::~·:·:·:·:·:•:·:·:·:·:•:.: 

Overview and Technical Details 
TheA! are four timers. which lnCA!ment at a centisecond rate. They &A!: 

• the monotonic timer (A!ad-only) 

• the system timer (read/write) 

• the Interval time (A!adllvrlte) 

• the real-time dock (read only in f!eneral- ie only u~rs should chanf!e it) 

Monotonic timer 

System clock 

Real-time 

1·392 

1\. monotonic timer cannot be written. except by a hard reset or when the machine 
Is turned on OS_ReadMonotonlc11me (SWI &42) allows you to A!ad this value It Is 
u~ful for time-stamplna within an application. such as ev-ent times. Because It can 
nevoer be chanf!ed. the order of events cannot be confused. 

It Is stOA!d as a 4-byte value with least significant byte first. It Is incA!mented evoery 
centlseoond, which means that it would take nearly 500 days for it to wrap around 

The system dod Is stored as a 5-byte value. Like the monotonic timer it is A!Set by 
hard resets and Increments every centisecond. However it can be altered. This is 
u~ful for measuring elapsed times in an application. OS_Word I A!ads the value 
and OS_ Word 2 writes it. 

The A!al ·time dod Is stored as a 5-byte value in the CMOS clock chip and A!flects 
the nonnal usaae of the word dod. That Is, it stores the elapsed number of 
centiseconds since 00 00.00 on January I 1900. You can set It uslna the Clod or 
1\.Jarm applications on the desktop. 

Under RISC OS 2 0 the A!aHime dod is assumed to be set to local time Under 
later v-ersions. the A!al·time dod Is assumed to be ~t to lTTC, or Uftiwn.tl 1i1111 
CAorti,..IMI (This Is the same as GMT. or Greenwich Mean llme.) Territory modules 
provide the necessary l nfonnation for the kernel to convert the real-time dod 
value to a local time In a suitable fonnat . 

1\. soft~ of the A!al time dod is also kept by R1SC OS and is used by the filing 
system to date-stamp files This soft-«>py is updated from the CMOS dod chip 
lollowms a hard~ 

T1me and Dare 
;:;:;.;-;:;:;.;.;.;: ;.;:;:;.;.;.;.;.;.;.;.;.;:;.;,;:;.;:;.;.,::;.;{-:-:· :·:·:·:·:·:·:·:·:=:·:=:·:·:·:·:•:·:·:·:•:·:·:·:·:· ;.;.;.;:;.;.;.;:;.;.;.;.;::;:.;. ;.;.;:;:;:;::o:-»:•:·'».~««;.~,.:.;.;.;:;.;:;.;~,;.~;;::;:;:~;~;:;:;::;:~:%:-::=::::;:;:;:; :;:;:;:;;;.;.;:;:;:;.·.···· 

String format 

•nme displays the local time and date as a strlna. lt calls OS_Word 14.0 to do so. 
The fonnat of the strlna depends on the territory which the computer is set to use. 
(It is fixed In RJSC OS 2.0. which does not support territories.) For example: 

Tue,28 Mar 1989.13:25:54 

5-byte format 

The A!BI·tlme clock can be A!ad In the standard 5-byte format usinaOS_Word 14.3. 
This. or any. 5-byte time can be converted Into a strfna usina 
OS_ConvertStandardOatel\.nd'llme (SWI &<:0) 

Changing real-dme 
The real-time dock's time ol day can be alteA!d with OS_Word 15,8. its date with 
OS_Word 15.15. or both with OS_ Word 15.24. These calls all use the time in a 
strina format (see above). 

Format field name• 
The above time strlnals not flexible. You can customise the way that the time and 
date is pA!sented by supplytnaa format strlna. The strlnats copied character for 
character to the output buffer unless a ''ll' Is found. If this character Is followed by 
any of the followina codes. then the appropriate value is oopied to the output 
buffer. 

1·393 



RMI·Iim8 

::::: ::::::::::::::::::::::::::::::::;:::::.:=:·:·:· :-:·:·:· :-:·:·:·:·:·:.:·:·:·:·:·:·:<=·: ·=·=·:.;~»~:.:·:;:::;:::::•:::::::<:=x:::x:::..;.:::::•:>:=:>::::::::::::: ;;::.:=:-:::::::::;: ·:·:·:·:=:=:·:=:=:·:·:·:·:·:;:·:=:·:·:·:-:·:·: ·:·:·:·:·:=x.x-:·»:·:-:·:·:•:·:•:•:•:::•:;:•:•:::•~9'.««•:;::::: 

1-394 

N.me Valle Example. 
cs Centi-seconds 99 
SE Seconds 59 
Ml Minutes 05 
12 Hours in 12 hour format 07 
24 Hours in 24 hour format 23 
AM AM or PM indicator (in locallangua8e) PM 
PM AM or PM indicator (in locallanguii!e) AM 
WE Weekday- full (in locallanguaj!e) Thursday 
W3 Weekday- short (in local language) Thu 
WN Weekday- number 5 
DY Day of the month (in locallan8Uaj!e) 01 
sr Ordinal pre/suffix (in locallanguaj!e) st nd rd th 

MO Month name- full (in local lan8Uaj!e) September 
M3 Month name- short (In locallan8Uaj!e) Sep 
MN Month- number 09 
CE Century 19 
YR Year within century 87 
WK Week of year (usin81ocal start of week) 52 
DN Day of the year 364 

0 Insert an ASCII 0 zero byte 
... Insert a'%' 

You must not make aay assumptions about the nature or length of any fields that 
use the locallan8Ua8e. For example: short forms o( the weekday or month are three 
characters lon8 in the UK territory. but may have a different len8th in other 
territories: the day of the month may not be numeric: ordinals may be null; and so 
on .. . 

To cause leadin8 zeros to be omitted. prefix the field with the letter Z. For example. 
'tzmn means the month number without leadin8 zeros. %0 may be used to split the 
output into several zero-tenninated strin8S. 

As an example, this format strin8: 

\W3,\DY \M3 \ CE\YR.\24:\MI:\SE 

would produce this time strin8 In the UK territory: 

Tue, 28 Mar 1989. 13:25:54 

OS_ConvertDateAndllme (SWI &<:I) wi ll convert a 5-byte time into a strin8 usin8 a 
supplied fonnat strin8. 

Time lltld Date 
·:·:·:·:·:·:·:·:·:·:·:.:·:·:·:·:-: ·:·:·:·:·:·:-:·:·:·:·:·:·::;.;.;.;.:.;·:·:·:-:·:·:·:·:·:·:·:·:-:-:-:.;~;.;.;;:.;:,;.;.;;;.;•:~:--::;:::;;;:;:::z,m;:;::::-«=::?~;;;:;:; :;:;:;:;:;:;.:;:::::;:;.:;:;:;:;;;:;;;:;:;:;;;:;:;:;:;:;:;;;:;;;:;:;:; :;:;;;:;:; ;;;;:;:;;;. 

BCD conversions 

Timer events 

The CMOS clodt chip stores the time internally in a Binary Coded Decimal (BCD) 
fonnat. OS_Word 14, 1 will read the time as a 7-byte BCD block. OS_Word 14.2 will 
convert this BCD blod into a strin8. 

There are three different causes of timer events: the interval t imer. the timer chain 
and the VSync timer. 

Interval timer 

The Interval timer is a 5-byte dod that increments every centisecond.lf enabled by 
OS_Byte 14. an e¥ent will occur when the counter reaches zero. Thus to wait for a 
8iven time. the interval timer must be set to the nqatiYe of it usin8 OS_Word 4. 
OS_ Word 1 can rnd the c:urn!nt setting of the interval timer. 

For example. to wait 10 seconds. -IOOOmust be passed toOS_Word 4. 

The interval timer is kept for compatibility with earlier Acorn operatin8 systems. Its 
use should be avoided if possible. It is especially important that this is not used 
under the Wimp, since It cannot cope with more than one program using it at once. 

Timer chain 

An easier to use and more sophisticated way for an application to be called at a 
given time is the timer chain. These are independent of event routines, but are 
used in a similar manner. OS_CaiiAfter (SWI & 38) can be used to j!et a given 
address to be called after a certain time has elapsed. OS_CaliEvery (SWI &3C) is 
like this. but automatically reloads the counter when it has expired. 
OS_RemovellderEvent (SWI &3D) will cancel either OS_CaliAfter before it occ:urs 
or OS_CaiiEvery to stop it repeating forever. 

OS_CaliAfter and OS_CaiiEvery are passed an address to call. the delay to wait and 
an identification word to return in Rl2. Thus. many timers can be runnin8 
concurrently. 

These are stored in a list which can be any size up to the machine memory limit . 

VSynctlmer 

The screen is refreshed 50 times a second In Standard monitor type modes. From 
the time that the bottom of the screen is complete till the top of the screen 
commences aj!ain is a delay called the vertical sync period. This allows the electron 

1-395 



Obso/919 lim9rS 

~::.::;::;:;:;:;:;: ;:;:;:;:;:;:;:;:;:: :;:;:;:;:;:;:;:::::::; :;:;:;:; :;:;:;:;:;:;:; :;:; :.:.:;:::; .• :.:;········ :;:;:;:;:;:;.;.;. ;.:-:=:·:·:·:·:·:·: .;.;:;.;.;.;.;:;.;:;:;:;.;:;.;::~w.-::.::::;:::;:;:;:;:;:;:;::.::::<:::::~:=?;;:~:::::::;;::;:;:;:;:;:;:;:;:;:;:;:;:;:;:; :;:;:;:;:;:;:; 

beam to go to this start position. The VSync event coinddes with the vertical sync 
beginning. You can use OS_Byte 14 to enable this event. so that flicker-free 
re-drawing can be done while the VDU is not being written to. 

OS_Byte 176 provides access to a one byte counter In 50Hz periods; le It 
decrements at the rate of the VSync event. 

Obsolete timers 

1-396 

OS_Byte 243 reads a temporary location used by the timer software. It Is kept for 
compatibility with earlier Acorn operating systems and must not be used. 

Tm9llfld Dal9 

;:;:;:;:;:;::;;::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;::~::;:;:;:;: ;:;:;:;:;:;:;:;:;:;:;:;: ;:;:;:::;:;:;: ;:;:;:;:;:;:;:;:;:;:;:;:;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::::::::::::::-?.::::::::::::<::::;:;:;:;:;:;:;:;:;<;:;::;:;:::;:;:;:;:;:; ••.. ·.·.·.:::;.;::: •• ;:;:;:;:;:;.;:;~:;:;:;:;:;:;:;~::>;::::::::':>' 

SWI Calls 

Read/Write 50Hz counter 

On entry 

RO = 176 
Rl = 0 to read or new value to write 
R2 = 255 to read or 0 to write 

On exit 

RO preserved 
R I =value before being overwritten 
R2 corrupted 

Interrupts 

Interrupt status is not altered 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Notdeflned 

Use 

OS_Byte 176 
(SWI &06) 

The value stored is changed by being masked with R2 and then exclusive ORd with 
R I : ie ((value AND R2) XOR Rl ). This means that R2 controls which bits are 
changed and Rl supplies the new bits. 

This call reads or writes a one-byte counter which Is decremented at a 50Hz rate; or 
more precisely at the rate of the VSync interrupt. 

Related SWis 

None 

1-397 



OS_8yt11 t76(SW/&06) 

;:;:;:;.;.;:;.;.;.;:;;;:;:;:;;;:;:;:;:;:;;;:;:·:··· ·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:=: ·:·:·:-::;.;:: =:·:·:·:=:·:·:;:·:;:.::•:·:·:<:· ······:•:•:•:·:•:·: ·:•:·%•:•:::·:·:•:::.:•~:-:::•:~;.:;:.:::•:::•:·:::~~:=:•:::::::•:;:.om:o:·:•:·:::•:::;;•:.:•:o:~~==-'* 

1-398 

Related vectors 

ByteV 

Tuns and Oats 
::»wm.:»~-;;.:::::::::::::::::::::::::::~.<<:::::-.::::::::::::::::::.~:::•:;:::::-:«$:•:·:·:<:-x::·:·:-::;.;::.::•:-:.:.:;:;:.;.~.:·:•:::.;;::x;:::-:-:~:-:::;:::.:=:=:::-:.:·:- :·:·:·:·:···:·:·:=:=:=:=:=:·:·:·:·:·:·:·:·:· :-:-: ·:·:·:·:·:-:;:·:·:·:•:::::•:::•:•:•:::::::::::::;;: 

Read timer switch state 

OS_Byte 243 
(SWI &06) 

On entry 

RO = 243 
Rl =0 
R2 = 255 

On exit 

RO preserved 
R I = switch state 
R2 corrupted 

Interrupts 

Interrupt status Is not altered 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

In order to protect the centi-second dock asainst corruption during reset. the OS 
keeps two copies. One of them is the one which will be read or written when one of 
the OS_ Words is called. the other Is the one whkh will be updated during the next 
lOOHz interrupt. When the update has been performed correctly, the values are 
swapped. This OS_Byte enables you to read the byte which indicates which copy is 
being used. Its only practical use is as a location which changes 100 times a 
second. 

This call Is obsolete and should not be used. 

Related SWis 

OS_ Word 3 (SWI &07). OS_ Word 4 (SWI &07) 

1-399 



OS_BytB 243 (SWI &06) 

·:::: •.• ·.·.·.·.·:=:::::;: .;::::::=:-:::::::::::::::::::::::::::::::::::::::«~::.=::.::::::::: ::::::::::::::: :::: ::;;::-::::::::: ::::::::::::::::::::::::::::::::.x::::::::z::::::::=::::.::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::*::::::::::;.--:::::::::::=:=:::::;:::::::::;:;::x.o/~::::::·:· 

1-400 

Related vectors 

ByteV 

TH719 /JIId OatB 

;:;:;:;:;:;:;:;:;:;:;;::;:;:;:;:;:;:;:;:;:;:;:;:; :;:;:;:;: ;:;:;:;:;:;:;~~-==:;::;.;:;::;:~:;;.;;;;.~:;:;:;:;:;:;:~·~:::::::;;;:;.;:;:;.;:;:::;:;:;::::;:;:::..~;;;:;:;:::;.'%;~~~==::::::;:~~:::::;:::::::;;::;~%"*':'::;:;:;:;::;:;:;:;:;:;:;:: 

Read system clock 

On entry 

RO= I 
R I =pointer to five byte block 

On exit 

RO. R I preserved 

Interrupts 

Interrupt status Is not altered 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

OS_Word 1 
(SWI &07) 

On exit, the parameter block contains the value of the system clock at the Instant 
of the call . 

R I+<>= time (least significant byte) 
Rl+l = 
Rl+2 = .. . 
Rl+3 = .. . 
R 1+4 =time (most significant byte) 

The dock is incremented every centi-second. The value of the clock is preserved 
over a soft break and set to zero after a hard break. 

Related Swts 

OS_Word 2 (SWI &07) 

1-401 



OS_ Word 1 (SWI &07) 

.:::;:;:;:;:;:;.;:;:;:;:;;;.;;;.;;;:;:;:;:;.;.;.;.;.;:;:;:;.;.;:;.;.;:;:: :;:;;;.;:;:: :;.;:;:;:;;;:;;; ·:·:·:·:·:··· .·•••••·.•.•.••••••·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.· ·.·.·•·•·• ·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·: ·:·:·:·:·:•:-:;;.;;:.;::::;~;y.wM""..::::::::;:::::;:;::::::;;::•:;::;::::•:?:<:::>k»: 

1-402 

Related vectora 

WordY 

Time and Date 

:::::::•:::::~~:::::•:::::•:•:•:•:::::o::w~ .. :::;:•:::~::::::::::::::;:;;;::::::::::::::::::::::::::::::::::::-:~:::o:o;::;:~:;:::::::•:::::::::::x:::::::::~::::~~w.::::::::;::::::::::~:::::x::o:•:::•:::•:·:•:::::•:=:•:--:;:.;:;.-.:;x.x.:-:.::·:·: 

Write system dod 

On entry 

R0=2 

OS_Word 2 
(SWI &07) 

Rl =pointer to five byte blod with centi-serond d od value in it 

On exit 

RO, R I preserved 

lnterrupta 

Interrupt status Is not altered 
Fast interrupts are enabled 

Proce .. or Mode 

Processor is in SYC mode 

Re-entrancy 

Uae 

Not defined 

On entry, the parameter block contains the value to set the system dock. 

R I +0 =time (least sianificant byte) 
Rl+l = 
Rl+2 = .. . 
Rl+3 = .. . 
R I +4 =time (most sianificant byte) 

This allows the dod to be set to a specified value. 

Related SWla 

OS_ Word I (SWI &o7) 

Related vectora 

WordY 

1-403 



OS_ Word 3 (SWI &07) 

;;.;.;.;.;.;.:-:·:·:·:·:·:·:·:•:·:.:·:·:·:: ;.;:;.: ·:·:·:=:·:•::;.;.;.;.:«-;·;·:·:·~· •.• ~~::;;:;;;;;:;:;:;:;:;:;:;:;:;:;;;:;:;:;:;:;::::;:;~..:.·:·:·:·:·:·:·:·:-:·:·:·:·':·:·:·:·:· :-:·:·:·:·:-::;.;.;;;.;;:·:·:·:·:·:·:·:·:·:·:.»:=:=~:=:•:•:•:•:•:•::;:;;;:;:;:;:;:;::;:ox.-:;:;:~:;:;::~·:;:•:-:-: 

1-404 

Read Interval timer 

On entry 

RO•l 
R I • pointer to five byte block 

On exit 
RO. R I preserved 

Interrupts 

Interrupt status Is not a ltered 
Fast Interrupts are enabled 

Proc:es10r Mode 

Processor Is in SVC mode 

Re-entrsncy 

Not defined 

u .. 

OS_Word 3 
(SWI &07) 

On exit. the parameter blod contains the value or the Interval timer at the instant 
or the call 

RI+O =time (least sianificant byte) 
Rl+l"' 
Rl+2= .. . 
Rl+l = .. . 
Rl+4 =time (most sianlfkant byte) 

Like the system dock. the Interval timer is incremented 100 times a second The 
interval timer can be made to cause an event when Its value reaches zero. To do 
this, it must be set to minus the number or centi-seconds that are to elapse before 
the event takes place. 

Time Mid Date 
:::-:•:·:•:·:·:•:;;-:-:·»:::·:·: <·:·:·:·:·:·:·:•:::: ::::::::::;:;:;:-;:::::;::--:•:=:•:-: .. -.:~·=-:•:-:::::::::•:•:=:•:::::::.:::::::::::::::::::::::::::::~::::•:•:•:•:·:•:·:·:•:~•:•:•:•:•:•:•:•:~~:=:~::=:·~%:·s~~a~x-*'w:·:·:·:·:·:·:·:•:•:•:=:~~:::::::::;:::::::::: 

To produce repeated events. the routine servldna the timer event should reload 
the timer with the appropriate number. For eumple, to produce an event every I 0 
seconds. reload It with - 1000 (&f'Fl'l"FFR: Ill). An alternative Is to use the spedal 
ticker event. described in the chapter entitled EwxiS on paae 1·1 37. 

Related SWis 
OS_ Word 4 (SWI &07) 

Related vectors 

WordV 

1-405 



OS_ Won14 (SWI &07) 

::::::::::::::::::::::::::<::::::::::·:·: .·.···::: •• :.:.:.:.:.:.:.:.:.:.:.:.::::::::::.:-:::.:=:·:-::: •• ••• •. ·.·.·.·.·.·.·.·.·.·:·:·.·.·:·.·.·.·.·.·.·.··:·:·:·:-:::·:·:·:·:·:· =·=·=·:·:·:·:-:::::·:·:·:;:·:·w.-::·:·:-:·:·:-:·:.:·:·:·:-:·:.:·?:-:·:·:::·:«-::::~;:;:;;;:::::::::;:::::::::::::::::::~=x 

1-406 

Write interval timer 

On entry 

RO =4 
Rl =pointer to five byte block 

On exit 

RO, Rl preserved 

Interrupts 

Interrupt status is not altered 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

R ... ntrancy 

Not defined 

Use 

OS_Word4 
(SWI &07) 

On entry. the parameter block contains the value to set the interval timer. 

Rl+O =time (least significant byte) 
Rl+l = 
Rl+2= .. . 
Rl+3= .. . 
Rl+4 =time (most significant byte) 

This call resets the interval timer to a specified value. 

Note that you must use OS_Byte 14 to enable the interval timer event. 

Related SWla 

OS_ Word 3 (SWJ &07) 

TmasndDara 
::::::::::::~:=:>::::::::::;::::::::m:::~:::::::~::~::::::::::::::::::::::.;:'S"'.«;x.x::-:·:·::;.: ::;.;.~:-:=:=:=:-:::-: .;.;::·: ·:·:· :-:·:·:·:<:·:~::;:;:::::~:::::;:~:;:~:.;:::vx .... :.:·:·:·:· :·:·:-:::::::::·:·:=:·:·:.:·:·:·:-: .;;:·:·:·:·:~;;;-..:;:;:-:·:·:-:;·:· 

Rel•led vectors 

WordV 

1-407 



os_worct t4,0(SWI&07J 

::•:·:•:•:•::::;::::::::;:•:•:•:•:•:•::::;::o:o:;:;.-«Ym:~•:·:•:·:·:·:·:•:··•:;:·n:>:-:·:'•·=•:·:•:•:· :·:·:·:·:·:·:•:::-:•:•:·:•:·:·: -:•:•:=:•:•:•:=:=:·:·:•:=:·:=:·:=:•:::•:·:·:·:·: ·:·:-:-:-:-:·:·:•:•:·:::::•:::•:·:•:•:·: •:·:·:-:-;.:·:· :·:·:·:·:·: .;::.:-:-:-:-:::.:•:•:•w;:«:;:;:;:;:;;:.x:;:: 

1-408 

OS Word 14,0 
(SWI &07) 

Read soft copy of the real-tifTM! clock as a strinlj. convertin8 to local tifTM! 

On entry 

ROs 14 
Rl "pointer to parafTM!ter block 

RI+O = 0 (reason code) 

On exit 

RO, R I preserved 

lnterrvpta 

Interrupts are enabled (in RISC OS 2.0. the interrupt status is not altered) 
Fast Interrupts are enabled 

Processor Mode 

Processor is In SVC mode 

Re-entrancy 

Use 

Not defined 

On exit. the parameter block contains the local time as a strin8 terminated by a 
Return character (ASCII 13). The fonnat of the strin8 depends on the territory which 
the computer Is set to use. (It is fixed in RISC OS 2.0. which does not support 
territories ) 

This time string comes from the soft copy of the real·tifTM! dock maintained by 
RISC OS. rather than from the CMOS dock chip itself. 

This call Is equivalent to the •11fTM! command. 

Related SWis 

OS_ Word 15 (SWI &07) 

TimBIII1dDatB 

;.;.; ·:·:·:•:•:-:·:·:·:·;-};;_'@;;.;;:;:;:;:;:;:;:;:;:;~;x«::;:,;;;,;;;:;;;;;;;:;~:;;:o:«-;;;:;;;;;:;;;;:;:;;:;:;;:;;;;:;;;;;;::;;~;.;;;;;;;;_;:;:;.;.;;;.:.;x::;:.;;;:;;;.;;;:;.;:;;;.;.;.;.;.;:;:;.;.;;;.;.;:;.;.;.;-:•:•:V!•X•!•!•!·!·!•!•!•!<·!•!•!·!·!•!•!•!•!O:•!·!• :·:·:·:·:·:· ;.;.;.;.;;;.; ·!·!• ;.;:;;;;;. 

Related vectors 

WordY 

1-409 



OS_ Word 14, 1 (SWI &07) 

::;;::•::::::::::::?m.:~.::::.;:::•:=:=:•:•:·:•:=:=:•:=:=:•:=:•:•:=~:=::::::::::::::::::: :::::::::::::::::::-:=:~:-:~:=:•:•:=:-:: :·:·:: ::::·.·· •• ;:;.;.;.;. :-:-:·:·:·:·:·:·:·:·:·:·:·:-:·:·:·:·:·:·:·:· :·:·:· :·:·:•:•:•:::::::::::•:::::•:•:·:::•;;w:::•::;.;•:::*-:-:::;;.;•:·:·»:{':::•: 

1-410 

OS_Word 14,1 
(SWI &07) 

Read time from CMOS clock chip in Binary Coded Decimal (BCD) format, 
converting to local time 

On entry 

RO= 14 
R l = pointer to parameter block 

Rl~ =I (reason code) 

On exit 

RO. R I preserved 

Interrupts 

Interrupt status is not altered 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

On exit, the parameter block contains a seven-byte BCD dock value: 

Rl +0 =year (00- 99) 
Rl+l =month (01-12:01 =January etc) 
Rl+2=dayofmonth (01-31) 
Rl+3 =day of week (01- 07: 01 =Sunday etc) 
Rl+4 =hours (00- 23) 
Rl +5 =minutes (00- 59) 
Rl+6 =seconds (00- 59) 

The dock value is read directly from the CMOS dock chip. Under RISC OS 2.0 the 
real-time clock is assumed to be set to local time. and so the value is not further 
converted. Under later versions of RISC OS the real-time clock is assumed to be set 
to UTC. and so the value is then converted to local time. 

Tuna and Data 
:::o:::::::::.::::::::::::::::::::-.«::~:::::::::::::::::;::::: ::::::::::::::=:·:•:::::;:;:::::·:·: :-:·:·::::.;-::::x::-:.::::~=:::::>:>;:::;:::::::::::::::.-:::-:::::::=:•::::::: :::::::::::::::: ::::::::::-:;.::::::::::::::~:-::."':~=:•: ·=· :::::: :::;:<»:«;:::·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:· 

RelatedSWis 

OS_ Word 15 (SWI &07) 

Related vectors 

WordV 

1-411 



OS_ Wcrd 14,2 (SWI &07) 

;:;.;.;.;:;:;.;~;-:;;~:;:;:;.;:;:;.;.;.;:;.;!:-:·:·:1-'::;.:.;!~~..::-:::~::::::::::::::;:;:;:::~;:;:;:;;::;:;:;:;:;:;:~::::;(:;:: :;:;:;:::: :;:;:;:::::::::::::::::::>:.:.:::=:--: :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.;.;:··:: ••• ·.·.·::::::;:;:;:;:;:;:;:;:.: ..• :.:;:;;;.;.;:; :;.;:;:;:;:;;:.;.· •· 

1-412 

Convert BCD dod value into string format 

OS_Word 14,2 
(SWI &07) 

On entry 

RO = 14 
Rl =pointer to parameter block 

Rl+0=2 
Rl+l = year 
Rl+2 =month 
Rl+3 =day of month 
R 1+4 =day or week 
Rl+5 =hours 
R 1-H> =minutes 
Rl+7 =seconds 

reason code 
(00 ·99) 
(01 - 12: 01 =January etc) 
(01- 31) 
(01 - 07; 01 =Sunday etc) 
(00- 23) 
(00-59) 
(00-59) 

On exit 

RO. R I preserved 

Interrupts 

Interrupt status is not altered 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

R .. ntr•ncy 

Use 

Not defined 

On entry. the parameter block contains a 7-byte BCD clock value: 

On exit. the parameter block contains a string terminated by a Return character 
(ASCII 13). representing the same time. The format or the string depends on the 
territory which the computer is set to use. (It is fixed in RISC OS 2.0. which does 
not support territories.) 

nmeandDate 
:-::: ;;.;.;::-»:-:-:.;;·: •;;.;;;;:.:-:-:-:.:::-:.:::::-:+::::;.;.;:;: ::':::'::':'::':':::-: :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:: :;:; :;:;:;:;:;:;:;:;:;:;:;;<::;:;~~:::::;:;:;:;:;:;:;: ;:;:: :;:;:;:;:;:;:::::::::::: :;:;:;:;:;:;;;:;:;.; :;:;:; .;:;:;:;:;:;::::::: ;:;:::::::::::~~:-::;:;:; 

Related SWis 

OS_ Word 15 (SWJ &07) 

Related vectors 

WordV 

1-413 



OS_Wot"d 14,3 (SW/ &07) 

·:·:·:·:·:·:·:·:·:·:·:·:-!·:·:·;;:.;.;.;:;.;:;.;.;. :·:·:·:·:·:·:·:;;.;:;;;;;;;;;;;:;:;;;;;:;:;~;:·:•:•:•:•::;;;;;;;;z:$;::::::w.;.:-;:::;;;:;~;:;:;:;.:;:;:;:;:; :;:;:;:;:;:;:;:;:; :;:;:;:;.;.;.;. :: ·.·.·=· ;.:-:·:·:·:·:·:·:···:·:···:·:·:·:·::::;.;.;.;-;.;.;;:o:::;:.»:::·:•:««>::;:;;;:;:;::~"& 

1-414 

Read real-time in 5-byte format 

OS_Word 14,3 
(SWI &07) 

On entry 

RO = 14 
Rl =pointer to parameter block 

Rl+<l = 3 (reason code) 

On exit 

RO preserved 
R I preserved: 

R H·O = LSB of time 
Rl+l =. 
Rl+2 = . 
Rl+3 = ... 
Rl+4 = MSBoftime 

Interrupts 

Interrupt status Is not altered 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrsncy 

Use 

Not defined 

On exit the parameter block contains the 5-byte real time read directly from the 
soft copy of the real -time dock. This number Qives the elapsed number of 
centiseconds since 00:00:00 on January I 1900. Under RJSC OS 2.0 the real-time 
clock is assumed to be set to local time: under later versions the real-time clock is 
assumed to be set to UTC. 

This 5-byte real-time is used for time/date stampins by the filins system. It is also 
useful for utilities which are used for build ins consistent systems. es 'Make'. 

T111111 andOatfl 
;:::::::::•:•:=::r.::;:;:;:;:::;:;:;:;:;.;::;:;;:;:;:: :;:;:;:;;::;:;~;:;:;:;:;:;:;:;:;:;:;:;:;:;:;: ;:;:;:;:;:;:;:;:;:;:;;;;$;:;;;:;:;:;:;:;:;:;:::;:;:;:;:;::::~:=::: :;:;:;:;:;.;:;:;:;··: ••. ·.·.·.·.·.·.·.·.·.:::;:;:;:;:;:;:;:;:;:; :;:;:;:; :;:;:;:;:;:;:;:;:;:;:;:;~:= ;:;:;:;:; :;:;.;:;:;.;.;.;.;:;:;:;.;.; .;.;:;.;.;:;:;;;::;;;:-

RelatedSWis 

OS_ Word 15 (S\VI &07) 

Related vectors 

WordV 

1-415 



OS_ Worct 15,8 (SWI &07) 

;.;:;:;:;:;:;. ;:;:;:;:::;:;;:;.;;;;;;;;;:;;;;;;:;.;:;.;.;.;;;:;.::;:;:;:;:;.;:;:;:;.;;;.;.;.;.;:;.;:;:;:;:;: ;.;.;.~;.;«-:.:·:-::;.;:;.;.;.;.;.;.;-;:;.;:;.;:;:;:;:;:;:: ·:·:-::;.;:; .;:;:;:;:;.;:;:;.;-:-:-:.:·:·:>:·::-'N:::::::;.:;;:;:;:;:;:;:;:;:;:;:;.;:;.;;;:;.;.;.;.;-;.:..;y;.;-:·:·:·:·:-:•:.:·:·:·:·:·:·:·:•:«·X~:·: 

1-416 

OS .Word 15,8 
(SWI &07) 

Writes the time or day to both the CMOS clod and its soft copy 

On entry 

RO•I5 
R I • pointer to parameter block 

RI+O = 8 (reason code) 
Rl+l . = stnnssivlns time ol day (in locallansuase) 

On exit 

RO. R I preserved 

The C nas will be set on exit. If the parameter block contained a fonnat error. 

Interrupts 

Interrupt status Is not altered 
Fast Interrupts are enabled 

Proc•sor Mode 

Processor Is In SVC mode 

R .. ntr•ncy 

u .. 

Not defined 

This call writes the time of day to both the CMOS dock and its soft copy. 

On entry. the parameter block contains the local time of day as a strins. the format 
this strin& must have depends on the tenitOI'Y whi<:h the computer is set to use (It 
Is fixed In RISC OS 2 0. which does not support territories.) 

Rel•ted SWis 

OS_Won:t 14 (SWI &07) 

Rel•ted vectors 

WordV 

Time tllld D•t• 
·:·:·:·:::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::~:•:•:•:<:•:4:::::: ·:::·:::::::::::::x•:-:;;:;:;:;;;;;;;:~::::m;:•:~:;:;:;:;.;::~:·:·:·:·:·:-:·:·xY».x..:-..,::::::;:.:-:-:.:::::::::::::::.:::::: ::::::::::;.·: ·.;:;:;:;.;.;.;:;:;:;:;:;:;:;:;:;:;:;:;: 

OS_Word 15,15 
(SWI &07) 

Writes the date to both the CMOS dod: and Its soft copy 

On entry 

RO= 15 
Rl =pointer to parameter block 

RI+O = 15 (reason code) 
Rl+l. .. • strinc alvin& date (In locallanauase) 

On exit 

RO. Rl preserved 

The C nas will be set on exit. If the parameter blodt contained a format error. 

Interrupts 

Interrupt status Is not altered 
Fast Interrupts are enabled 

Processor Mode 

Processor is in SYC mode 

R .. ntr•ncy 

Not defined 

Use 

This call writes the date to both the CMOS clock and Its soft copy. 

On entry, the parameter blod: contains the local date as a strin&; the format this 
strins must have depends on the tenitOI'Y whkh the computer is set to use. (It is 
fixed in RISC OS 2.0. whJch does not support territories.) 

Rei• ted SWI.s 

OS_ Word 14 (SWI &07) 

Re .. ted vectors 

WordY 

1-417 



OS_Wad 15,24 (SW/ &07} 

·:·:·:·:·:·:·:·:·:·:·:·:-:-:·:·:·:·:·:·:·:·:·:···:·:·:·:·:·:·:·:·:·:·:·:···:·:·:·:·:·:·:·:;.:-:·:·:·:·:.:•:•:•:•:•:;;:::.::w..:;:•::;•::::::::::::::::::::::::::::.->::x:::::::::::.::::::::::::::::::::::::::::::::::::::::: ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::::::;:;:;:;.;:·:· 

1-418 

OS_Word 15,24 
(SWI &07) 

Writes the time of day and date to both the CMOS dock and its soft copy 

On entry 

RO= 15 
Rl =pointer to parameter block 

RI+O = 24 (reason code) 
Rl+l ... =string giving time of day and date (in local language) 

On exit 

RO. Rl preserved 

The C Oag will be set on exit. if the parameter block contained a format error. 

Interrupts 

Interrupt status is not altered 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

u .. 
Not defined 

This call writes the time or day and date to both the CMOS clock and its soft copy. 

On entry, the parameter block contains the local time or day and date as a string: 
the format this string must have depends on the territory which the computer is set 
to use. (It is fixed in RISC OS 2.0. which does not support territories.) 

Related SWis 

OS_ Word 14 (SWI &07) 

Related vectors 

WordV 

Tim• and Dst• 
.;.;.;.;:;.;.;.;.;.; .·.·.·.·.·.·.·.·.;.;.;:;.;.;.;.;.;-;.;.;.:-; .;.·.;.;.;.;;,:;.;. :·:·:·:·:·:·:· ;.;.;.;.;.;.;;;:;:;.;.;:; :;.;.;:;:; :;:;:;.;.:.;.;:;:;.:,.;:;:;.;.; :;.;.;:;:; .;.;.;.;:;.;.;.;.;:; .;.;:;.;::: :;.;.;-:!:·:·:·:·: .;:; .,.;::.:·x·:· :·:·:-:·:-;.;o;.,:.;.;.;.;.; .;.;.·.;.;.;.;-;.;;;.;;;:;.;-:¢-:·:-:;:>; 

Call a specified address after a delay 

On entry 

RO =time in centl-se<:onds 
R I = address to call 
R2 = valueofR12 to call code with 

On exit 

RO • R2 preserved 

Interrupts 

Interrupts are disabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrsncy 

SWI is re-entrant 

Use 

OS_ CaiiAfter 
(SWI &38) 

OS_CaiiAftercalls the code pointed to by Rl after the delay specified in RO. The 
code should regard itself as an interrupt routine, and behave accordingly. 

OS_RelllOVe'nckerEvent can be used to cancel a pending OS_CallAfter 

In RJSC OS 2.0 this call may retum incorrect error pointers. An invalid value or RO 
now generates the error message 1nvalid time interval'. rather than the null string 
generated by RISC OS 2.0. 

Related SWis 

OS_CaiiEvery (SWI &3C), OS_RelllOVeTickerEvent (SWI &30) 

Related vectors 

None 

1-419 



OS_ Cs/IEV6f)' (SWI &3C) 

;:;:;:::::;: ;:;::::::::::<:=::::.::::;::::::::;:;:::::::::;:;:;:;:::::;.::;:;:;:;:;:;:;:;:;:;:; :;:;:;:;:;:;:;:;:;.·· :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;::::::::::=:::.;.::;:;:;:;:;:;:;:·:· :;:;:;:;:;:;:;:;:;:;:;:; :;:;:;:;:~:=~::;:;:;~;:;:::<:=~~::;:;:;:::::::::;:;:; 

1-420 

can a sped fled address every time a delay elapses 

OS_ CaiiEvery 
(SWI &3C) 

On entry 

RO = (delay in centi-seconds)- I 
Rl =address to call 
R2 =value of R 12 to call code with 

On exit 

RO • R2 preserved 

Interrupts 

Interrupts are disabled 
Fast interrupts are enabled 

Processor Mode 
Processor is in SVC mode 

Re-entrancy 

u .. 

SWI is re-entrant 

OS_CaiiEvery calls the code pointed to by Rl every (RO+ I )centiseconds. until 
OS_Remove'llckerEvent Is executed or Break is pressed. The code should feiard 
itself as an interrupt routine. and behave accordingly. The minimum value for RO is 
I. which means the minimum possible delay is 2 centiseconds. If you wish to be 
called every centisecond, you must instead claim 11ckerV. 

In RJSC OS 2 this call may return Incorrect error pointers. An Invalid value of RO 
now generates the error message 'Invalid time interval' . rather than the null string 
generated by RJSC OS 2. 

Related SWis 

OS_CallAfter (SWI &JB), OS_Remove'llckerEvent (SWI &30) 

Tuns and Dsts 
;:;:;:~::::»"%:*-~~~«;:·>: .;.;.;:;:;:;:;:;:: =:·:·:·:·:·:·:· ;:; :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;;;:;:;:;:;:; :;:;:;:;:;:;:::::-:::::::::::::::::;:;:;:-;:;::;-~;:::;:;:;:%::-fi§::::::::::;:;:::;:;:;:;:;::::::;::;:;:::::::::~;:;:;:;:;:;:%~:-:;;;;;;.;.;::--:·:·::;.;.-;.;:;.·.· · 

Related vectors 

None 

1-421 



OS_RemoveTICI!erEvtN!I (SWI &3D) 

·>%·N»;•;•M·~·hY:•:•:·:·:·:·:·:•:•:•:•:•:•:•:•:•:•:•:•:·:·:·:·:·:·:..:·:·»;•..:•:-M.·:·:· ;.;.;.;.;.;:;;;:;:;.;:;.;.;.;. ·.·.·:·:·:·:·: ·:·:·:·:·:•:·:·:·:•:·:·;;;.;:;;::;;;;:;;.;:;;;.;:;;;:;:;:;:;;;;;:};:;:;:;:;:; ·:·:·:·:·:·:·:·:·:·:· ;.;.;.;.;:;.:•:•x-:•:•:::?:·!·:.:!®::~:;.;.;*'-"t 

1-422 

OS _Remove TickerEvent 
(SWI &30) 

Remove a given call address and Rl2 value from the ticker event list 

On entry 

RO "all address 
Rl =value of Rl2 used in OS_CaiiEvery orOS_CaiiAfter 

On exit 

RO. R I preserved 

Interrupt• 

Interrupts are disabled 
Fast Interrupts are enabled 

Proceaaor Mode 

Processor is in SVC mode 

Re-entrency 

u .. 

SWJ is re-entrant 

OS_Remove'llckerEvent takes RO as the address and R I as the R 12 value of the 
event to find and remove from its list. 

It Is used to stop an event set up by a call to OS_CaiiAfter or OS_CaiiEvery The 
parameters passed must match those originally passed to OS_CaiiEvery or 
OS_CaiiAfter for It to remoYe the correct event. 

RelatedSWia 

OIS_CaiiAfter (SWI &JB), OS_CaiiEvery (SWI &3C) 

Related vectors 

None 

Tme sndDate 

~.;.;.:•w.o:.-:o::::::::::~::::~:::::::::: . ..._-.. .. :•:•:•:=:•:•:«·:•x•»x;;~.:•:•:•:·:·:•:o::;.o;;~-:•x·:•:·:·:·:•:·:·:·:·:·:-W..;.:•:=:.:·:·:-:«-:-::::::: ·:·:·x·:·:-:·:·:=:-::::::;.;::::·:·:·:· :.:=:·:=:-:::::·:·:·:·:·:·:· :·:·:·:·:·:··=.·.·:·. ::::::::::: 

OS _ReadMonotoniclime 
(SWI &42) 

Number of ~nll~ds since the last hard reset 

On entry 

On exit 

RO =time in ~nll-seconds 

Interrupt a 

Interrupt status Is not altered 
Fast interrupts are ena~ 

Proceaaor Mode 

Processor is in S-..c mode 

Re-entrancy 

SWI is re-entrant 

Uae 

OS_ReadMonotonlc11me returns the number of ~nti-seconds since the last hard 
reset, or switch ina on of the machine. 'Monotonic' refers to the fact that this timer 
is auaranteed to Increase with time. It Is used. for 6ample. to time-stamp mouse 
events. 

Related SWis 

None 

Related vector• 

None 

1-423 



OS_ConvenStandardOateAn<tnmll (SWI &CO) 

:;;«-:;:::;:o::::::::::::::;;.:;;»>:::;:•:;;•:•:<:;:o.~:;.;;:•:•:•:•:·:•:::::;:;.;;::·:•:«-:::«v:::•x;;.i».»:::::.:·>:-X·::::~:;:~·>>:•~*-<·::;:;.;.o<:~.:;-:::::::::::::::::::::::::::::=:::::::::::::::::::::::::::::~:.««-r.:::::•:•:•:•:•:•:·:·:·:·: ·:·:·:·:·:·:·: ·=·=~·:·:«-= 

1-424 

OS_ ConvertStandardDateAndTime 
(SWI &CO) 

Converts a 5-byte time Into a strina 

On entry 

RO: pointer to 5-byte time blodt 
R I "' pointer to buffer lor resultina strina 
R2 • s~e of buffer 

On exit 

RO • pointer to buffer (R I on entry) 
R I • pointer to termlnatina zero in buffer 
R2 • number ol free bytes in buller 

Interrupt• 

Interrupt status Is not altered 
Fast Interrupts are enabled 

Proc:e .. or Mode 

Processor Is In SVC mode 

R ... ntrenc:y 

u .. 

SWIIs re-entrant 

OS_ConvertStandarciDateAnd'Jlme converts a five-byte value represenuna the 
number or centi-seconds since 00:00:00 on January 1st 1900 into a strfna. It 
converts It uslna a standard format strina stored In the system variable 
'SysSDateFormat' and places It in a buffer (which should be at least 20 bytes) 

For details of the format field names see the section entitled Fonut fi.W ,..,_on 
paae 1-391 

Rei• ted SWia 

OS_ConvertDateAnd'Jlme (SWI &CI) 

Time IJIId Date 
:-:•:·:•:•:•:::::::::~-w.::::•:::•::::::::::::::::::::::::::::::::::=--::::::§:::::::::::::•:•:<»:;;::::::::•:::;:;:-»:>-»:•::w:•:•:•:«<>:•:•:·>:'X«>:•:-:·:·:•:·:·:•:-:;;;.-.:::.:.:..:.;.:..-..<::;.;;;.:::•:::::: :·:•:·::::~:-:-»:·:·:-:-:::·:·:·:~:-:·:.::-:·:·~-:::::::--:::::::•:::::~==·> 

Related vector• 
None 

1-425 



OS_ Conv811Dat8AndTunB (SWI &C1) 

*"*;;;;o::::;::;.;::;:;.:;:;.:.x;:.:«·:·:·»:·:·:·:·:·:.::·:·:·:-:·:•:•!•!·!·!<!•!•:::-:·:·:-:·:o~;;:.»:?$:-:·:·:.::-;;.;-:•:·:-9.<-: .... :.;·:·:;;. ;.;;:·:·:·:·:·:·:;:·:·:-!·!•!·!·!·!• !·!·!·!·!·!·!·>:··· ·.·.·.•.·.;.;.;.;.;.:::•:·:•:·:·:·:•:•:•:-:;;;.:-:·:•;.::;;;.;;;;;;:•;.;.;:.;.:·:·:·:·:·:·:;;.;.;.:·:·:·:-:·:.:·: 

1-426 

OS_ ConvertDateAndTime 
(SWI &C1) 

Convert 5-byte time into a string using a supplied fonnat string 

On entry 

RO = pointer to 5-byte time block 
Rl =pointer to buffer for resu lting string 
R2 = size of buffer 
R3 = pointer to format st ring (null terminated) 

On exit 
RO = pointer to buffer (R I on entry) 
Rl =pointer to terminating zero in buffer 
R2 = number offree bytes in buffer 
R3 preserved 

Interrupts 
Interrupt status is not altered 
Fast interrupts are enabled 

Processor Mode 
Processor is in SVC mode 

Re-entrancy 

Use 

SWI is re-entrant 

OS_ConvertDateAnd1lme converts a five byte value representing the number of 
centi-seconds since 00:00:00 on January 1st 1900 into a string. It converts it using 
the fonnat string supplied. 

Apart from the following exception. the format string is copied directly into the 
result buffer. However. whenever '%' appears in the format string, the next two 
characters are treated as a special field name which is replaced by a component or 
the current time. 

For details of the format field names see the section entitled Fonut fit/J. Mille! on 
page 1·393. 

TmBanc/DatB 

!•}!•!· .;:;:;.;:;;;:;;;:;.;.;:;:; :;:;:;:;:;:;:;:;:;;;:;:;:;:;:;:·: .·.··:·:;:;:;*;;:;:;:;:;:;:;:;:;::::::::::<:~=::m-=:::--!=:~~~:::::::::~..::;;:::.;::::.:·:;~:·:;;.:.::;.:.:·:·:·:·:·:·:·:·:·: .;.;::·:·:·:· :·:·:-:::·:·:·:·:·:.::;:;:;:::;:·:···· 

Related SWis 
OS_ConvertStandardDateAnd'llme (SWI &CO) 

Related vectors 

None 

1-427 



•eommands 
·:;:;:;:::;:;:;:;:;:;;;:;;;:;;;:;:;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:!=;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::::~::>,;;:;;;:;:;::~=?.:~::::::::;:; :;:;:;:;:;:;:;:;:;.;:;:;:;;;:;;;:;:;:;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:; :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.;:;;;:·.· 

*Commands 

1-428 

Displays the day, date and time or day 

Syntax 

*Time 

P•r•meters 

None 

Use 

*Time 

•nme displays the day. date and time or day. It Is displayed in the same format as 
OS_Word 14,0. 

Ex•mple 
*Time 

Ret•ted comm•nds 

None 

Ret• ted SWis 

OS_ Word 14,0 (SWI &07). OS_ Word 15 (SWI &07). 
OS_ConvertStandardDateAnd11me (SW1 &CO). 
OS_ConvertDateAnd11me (SWI &<:I) 

Ret•ted vectors 

WordV. WrchV 



:;:;:;:::::;:;:;:;:;:;~:;:;:;:;.;:;:;:: .;.:::;:·:·:·:·:·:·:·:·:·:·:·:·:··:·:-::.:::::::::::;.;:::::::::::;.::::;.;.;.;::::::::::·:·:·:·:.:-:.:::::::::.;-:::·:·:-:.:.:--:-:.:.:·:·:·:::.:· .·.·.·.·.·.·.·.·.·:·:·:·:=: ·:·::::: :::;.;:::;.;.;;;.;.;.:.:-:.:.:.:-::::::::::::::.>::.~:::::::::::::::::: 

18 Conversions 
r.:::::::::::m:,:,,:,:,:,:,:,:, :,:,:,:,,:;,,:,:,:,:,:,:,:,:,:·· · :;:;:::::::;:;:;:;:::;;:;:;:;:;:;:;: ;:;:;:;:;:;:;:;:x:;:;:;:;:;::~=::.-:::::::::;:;;:;:;::::::.:;:;:;:;;;:;;;:;:;:;:;:;: ;:;:;:;:;:;: ;:;:;:;:;:;:;:;:;:;:;;;:;:::::;:;:;:;:;:;;;;;:;:-;:::::.:.;:::::::::-.. ::::::::~:::::::::::::: 

Introduction 
This chapter is a collection o( SWis that con~~ert from one form to another. Here Is 
a summary of the conversions that can be done: 

• Convert a number to a strina in binary, decimal Of hex, with some fotmat 
control. You can specify that the source number in a variety o( sizes: I. 2. 3 or 4 
bytes In lenilh In most cases. 

• Convert a strilli contain ina a number In any base from 2 to 36 to a number. 

• Process a strina with control codes and other special characters. This allows a 
string with any control codes to be created by passing a strina with only 
printable characters In it. 

• Substitute a string containing arguments with the gl~~en values. Used with 
command line arguments to an application. 

• Evaluate an expression with loaical, arithmetic, bit and strilli operations. 
givina a loalcal, numeric or strina result. 

• Extract options from a command line usina a aiven key. 

• Convert a SWJ number to a string wi th its full name and vice versa. 

• Convert a network station pair of numbers number into a strlna. 

• Convert a file size into a string, for example '12 Kbytes' 

1-429 



CJwnotew end TfiChniaJI Details 

.;.;;:.;:;:;::;:-;~:;.;:: ,•:•:·:O:·::::;:;.;:;.:·:·:·:·: .·:·:·.·.·.·:·:·:·:·:·:·:;:;:;:;:;:;:;:;:;:;:;:;:;:;.;:;•:·:·:· :·:·:·:·:·:·::;.;:;.;.;.:~ ... :-:·::;.;.;:;.;:;:;:;:;.;:;.::;:;:;:;:;:;:;:;:;:;:;::;..;;;;::;:;.x;:;;-.. .,;.;.;.;-: .;:;:;.;:;.;.:-:':·Z:~~:·:=::;:;::::•::x 

Overview and Technical Details 
This section leads through the deu.ils of the differing oonverslon calls Whilst most 
are mutually Independent. some SWls may use others within this chapter to give a 
multi-layered functionality 

Numbers to strings 
The simplest option to oonvert a si11ned 32-bit integer into a string. the mast 
common operation. Is to use OS_BinaryToOecimal (SWl &-28) 

For a far greater functionality, there Is a set of 24 SWis with a oommon calling 
oonvention that allow a wide ranging list of conversions. Generically. these SWls 
are called OS_ConvertN11111Nu111Hr (SWl &00 • Ell). The ~ttllll refers to the 
destination fonnat of the string. It can be hex. signed and unsigned Integer 
(optionally with spaces between the thousands. millions and soon). or binary. The 
otttlllhcr is the number of bytes to use on input. For all apart from hex. this Is I. 2. 3. 
or 4 bytes. Hex can be I . 2. 4. or II nibbles long. See the description of these SWls 

lor detail. 

Note that OS_BinaryToDecimalls equivalent to OS_Convertlnteaer4 (SWI &DC) 
from these SWls. 

Strings to numbers 
OS_ReadUnslgned (SWl &21) will read a number in an ASCII string and convert It 
Into an unsigned Integer. The number In the string can be sped fled to be In any 
base from 2 to 36. Base 36 has 0 • 9. A· Z as numbers. No prefix means that the 
number is decimal by default, while the oonventlonal '&'Is used to Indicate hex. All 
bases can be specified by the hau_llulllhcr form: eg 2_1100 Is 12in binary. 

GS string operations 

1-430 

The CS operations are a way of putting any characters from 0- 255 Into a string 
usin11 only the printable character set. OS_GSinit (SWI &25) and OS_CSRead 
(SWI &26) won together to scan a string on a character at a time basis 
OS_GSTrans (SWl &27) performs both these functions and scans the string. Unless 
you need character by character oontrol. os_csrrans is easler to use 

ConVBtSions 

x;:::;,::;.;:;:;:;:;:;:;:;:;:;:: :;.;:;::-:·:·:·:·:·:·:·:·:·::;.;.;.;:: :;:;:; :;:;:;:;:;:;:;:;.:.;.-.:•:-»:::~:·7.=~~::0}~:~:·:· ;.;.;.;.;:;:;:;:;:;:;:;:;:;<:::~::;:;~;:;:;:;:;::·:·:-:•:-:-:-:v:..-.:·»~-'.Y:·:·:·:·:·:·:;:.:;.w..:.e::.::;.; :;:;.;.;:;:;:;:;:· 

I character 
The 1' character Is used by OS_GSRead and OS_Gsnans as a Oag for a special 
character. It affects how the character following it Is Interpreted Here is a list of Its 
effects: 

ASOi code 

0 
I· 26 
27 
28 
29 
30 
31 
32- 126 

< 
127 
128-255 

S,.bol••• ,. 
I ~~cUr eg lA (or Ia) =ASCII I.IM (or lm) • ASCII 13 
I( or I( 
1\ 
I] otl} 
fA orl
l_orl' 
i~fi cMnKt.r, except for: ,. 
II 
I< 
I? 
I!~ s-.uol eg ASCII I 28 = l!r. ASCII 129 = I !lA 

Note that 1!' means set the top bit of the following character. even If It Is set by 
another 1' character. 

To indude leading spaces In a definition. the strin8 must be In quotation marks.·-. 
which are not included in the definition. To indude a single· character in the 
string, use I" or··. 

Substitute argumenta 

The reason why'< must be preceded by a 1' Is that you can put values and 
variables Inside angle bradtets. 

You can use the form < ..... Hr.>. where the number bet~n the angle brackets will 
be Interpreted as If It was a parameter to OS _Read Unsigned that is. a number in 
any base from 2 to 36. The value returned from this SWl will be placed as a 
character In the output stream; any values above bit 1 wtll be ignored. 

A string with a name enclosed in'<>' characters will be used to look up a system 
variable. You must have used •Set. •SetMacro or •SetEval to set the variable. The 
value of the variable will be substituted for the name and the an11le brackets using 
OS_ReadVarVal: eg If the variable 'hisname' had ~n set to 'Fred'. then the string 
'My friend's name Is <hisname>' would be translated to 'My friend's name is Fred' . 
System variables and the calls that operate on them are described in the chapter 
entitled Progra111 Eotvinlotllll lll on page 1·271. 

1-431 



Evaluation opMJIDrs 

-:~;~:-:~;;;.;. :-:-:.:·:·:·:-:-;-; ~"»> ;-;·;-;·;· •• ,.... ;>:.-:::;:.;.;.;.;.;.;.; •• ·:·:·:·:·;·:.:·:·: ·:·:·:·: .;.;.;.:·:·:·:·:.;.;.; :;;;:;:;:;:;;;;;:;:;:;:; :;:;:;:;:;:;:;:;:;.;:;:;:;:;.;:;.;.;.;.;.;:;.; ·:·:·:·:·:·:·:-:·:·:·:-:-:·:·:·:·:·:.:.; .;.;.;-;.;.;. • • .:?:'w:·.:-:v':·.-.. : · 

Flag• 

"Echo 

There are options which can be used to detennine the way In which the strina Is 
Interpreted. This Is done bysettins the top three bits in R2 passed toOS_CSinltor 
OS_CSTtans. as follows: 

Itt Me~~al•• 

29 If set then a space is treated as a strins terminator 

)0 If set control codes are not converted (ie r syntax is iBnored) 

31 Double quotation marts- are not to be treated specially. 1e they are 
not stripped around strin115. 

The •Echo command will pass astrins throush os_csnans and then send 1t to the 
display 

Evaluation operators 

1·432 

A strins containins an expression can be evaluated. An expression consists of any 
of the operators listed below, and strinss. and numbers. It can return a result that 
is a number ora sttins. OS_EvaluateExpression (SWI &20) is the core roullne here. 
It is in tum called by •Eval. This allows you to perform evaluations from the 
command hne. 

The •If command also uses this call to petfonn a losical decision about which 
• Command to petfonn. 

Any sttinss In the evaluation string are passed to OS_CSTtans. so all its operators 
will be used. This of course means that OS_ReadUnsisned and OS_ReadVarVal will 
In tum be called If you use a strins that requires them. Note. however. that vertical 
bar escape sequences (es1C' for ASCII7) are not recosnised . 

As well as passins <U,.I> operators in strinss to OS_ReadVarVal . any Item which 
cannot Immediately be treated as a strins or a number is also looked up as a 
system variable. For example. in the expression FRED+ I . FRED will be looked up 
as a variable 

Convsrsions 

,·, ·, ·,•, ·,•, ·,.·.·::; .... ·.·.·.·.·.·.·.·.·.·.·.·.·.·.·:·.·· :;::::::::::::::;;;;:.;;;:;.;;;.;;;;;.;.;.;;;;;{.:;;;~»:;;..;:;:~:::;:-:«-:;x.~»..:v;.;.;..:·:·:·:·:·:·:·:·:·:·:·:·:·:«·:«.;·:·:·:·:-:·:·:· :·:·:·:·:·:·:·:. :-:·:·:·:·:·:·:·:·:·:-:.:-:-:-:·:·:·:····· 

The operators te<:oenised by the expression evaluator are as follows: 

Artlhmetlc operator. 

+ 

I 
MOO 

logical operators 

<> 
>= 
<= 
< 
> 

Bit operator• 
>> 
>>> 
<< 
AND 
OR 
EOR 
NOT 

String operator• 

+ 
RICHlN 

LEFT" 

U:N 

Conver•lon• 
STR 
VAL 

Add two lntqers 
Subtract two lntqers 
Multiply two lntqers 
lnteeer part of division 
Remainder of a d1vision 

Equal -I Is 11WE 
Not equal 0 Is FALSE 
C~er than or equal 
Less than or equal 
Less than 
C~erthan 

Arithmetic shift nsht 
Loclcal shift naht 
Loclcal shift left 
AND 
OR 
Elrduslve OR 
NOT 

Concatenate two strln115 eB 'Hr + 'LO' = "HILO" 
Take 11 characters from the nsht 

q "HELLO" RICHl2 = "LO" 
Take 11 characters from the left 

q "HELLO" LEfT 3 • "HEL" 
Return the lenath of a strina ea U:N "HELLO"= 5 

Conven a number Into a strins q STR 24 = "24" 
Take the value of a stnna es VAL "12dl" = 12 

1-433 



SWI numbiN to slrlng 
.;::::.:::::::::::·:·:·:·:·:-:-:•:·:·::;>;;.:::·:·:·:·:-:-;·;o;o:·:-=·~:·:·:·:·:·:·::;:,:..;m:-:-::;.;.;.; .. ,.;:-:·:-::;.;.;::.:·:·:·:::::•:·:::·:·:•:·:;,..~:•:•:=:=::s:;~::::::::::::::::::::::::•~::::: .. .::>:>>:::::::::::;:;:::•:•:::•:•m-:::::::::::::;:;:;.:;;::::::::::::::::::::~::::;: 

Where appropriate. type conversions are perfonned automatically. FOf example. If 
an Integer Is subtracted from a string. then the string is evaluated and an Integer 
result Is produced (T-1 atves the result 1). The null string·· is convened to 0 by 
both the lmplldt and explidt (VAL) conversions. 

Similarly. Integers will be convened to strings if necessary: th~ ~xpresslon 1234 
LEFT 2 will yield " 12". 

The operators have the same relative priorities as thei r equivalents In SOC BASIC. 
ea • Is higher than + whkh is hiaher than >. etc. 

P•r•meter •ub•tltutlon 
C•~n a list of space separated arauments. OS_SubstituteArgs (SWI &41) will 
replace referenoes to those parameters in a string: 'roO refers to the first string In the 
araument list and so on This is generally used when pi'OOeSSi ng command lines 

For a more powerful handling of command lines. use OS_ReadArgs (SWI &49) This 
Is passed a ltst of parameter definitions and an input strina. The parameters can be 
described as bei ng In any order Of In a fixed order. They can handleonloll' S'lllitches 
(le presence Is Indicated). or values. The values can also be automatically passed 
through OS_CST!ans or OS_EvaluateExpression if required . 

SWI number to string 
1\lio calls can be used to translate a SWI number to and from its full name as a 
string OS_SW!NumberToString (SWI &38) will convert from a SWI number to a 
string. and OS_SWJNumberFromString (SWI &39) will conven from a string to a 
SWI number. 

Note that having bH 17 set will result in the string being prefixed with an ·x·. and 
vice versa. 

Econet numbers 

1-434 

The pair of numbers that refer to the network number and station number can be 
convened into a string by OS_ConvertFixedNetStation (SWI &E9) This will pad the 
stnng with leadi ng zeros wh~re requ ired . If you don' t want this padding. use 
OS_ConvenNetStatlon (SWI &EA). 

Conv9t'Sions 

;:;:;:;:;:;:;>;:;:;:;:;:;:;:::;:;::::=::::::;:;:~;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;~~)::::::;:;.;:;.;.;~.;~:.$»$;.:·'>:·:--.. ;.:-:·:·:•:·:·:·:·: ·:=:·:·: :;.;.;..;o}..'(~:::«;;.;:;. .. :.:-:.;..~-:-:•:·:·:•:·:•:·:-:->>>$:~·:·:·:·:·:·:·:-:®:·:·:·:· :·:·:·: .;.;:;:;.;:;:~:-':·:•:•:~ 

File size 
There are two SW!s that will con~rt a file size fr<:lfn an Integer into a string. They 
can decide whether to display as bytes. Kbytes Of Mbytes. OS_ConvenF11eSize 
(SWI &EC) will conven an Integer Into a number up to 4 dlelts followed by an 
optional 'K' if it Is In kilobytes or 'M' If In megabytes. followed by the word 'bytes' 
and a null to terminate. 

OS_ConvenFixedFileSize (SWI &EB) Is euctly the same. except that it will always 
print the numeric field as four characters. padding with spaces if necessary. 

1-435 



SW/Csl/s 

... -«~ m:·:·:· :-:·:;:;:.:::-:~:~:~:•:::::::::::::::::•:•:;;;:=:•;;:•:::•:•::::;;:•~:?m.~....,..:;.;.:-:·:*-=:•:-:.:-:::.;-: -:·:·:·:·:·:·:·:-:-:-:-:.:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:-:·:·:·:~:-~:::-:•:•:-:;:-:.w.-:-:-:-:·:· :-:-:-:-:::::•:-:•:•:•:-·:· 

SWI Calls 

1-436 

convert a strins to an unslsned number 

OS_ReadUnsigned 
(SWI &21) 

On entry 

RO = base In the range 2- 36 (else 10 assumed). and fl<lis In top) bits 
R I = polnterto string 
R2 =maximum value If RO bit 29 set 

On exi t 

RO preserved 
R I =pointer to terminator character 
R2 =value 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Proces10r Mode 

Processor is in SVC mode 

R...ntrancy 

u .. 

SWI is re-entrant 

OS_ReadUnsicned takes a pointer to a string and tries to oonvert it into an integer 
value which Is returned In R2 

Valid strinss may start with a digit (where 'digits' may also be letters. depending on 
the base) or one ofthe followmg: 

& The number is in hexadecimal notation 

NSl_ The number is in a given base. where N!l is in the range 2 to 
36. For example. 2_1010 is a base two (binary) number. 

ConvflfSions 
-:-:-:•:::::::::::::::::::::::::::::::::::•:•:~::~:::::::·:·:·:·:-::.=:·>~:·:·~:-:.•:·:•:•:•:~:•::»;::...~~-:·:·:·:•:·:·:·:·:·:·x-»:.:·;;::,:,::::.:•:·:·:·:·:·:·:·:·:·:-:-:.;o;;:•: :;:;:;:;:;:;:;:;:;:;:;:;:;.;. 

These ovenide any base specified In RO. (If RO contains an illegal base. 10 is 
assumed ) Characters followillll them are read until a character is reached which is 
not consistent with the base In use. for ezample. assumlna RO=IO on entry. the 
terminator or 4lAZ Is A. whereas the terminator or &4lAZ is Z. 

In addition. RO contains three flats which cause cheds to be performed on the 
tennlnator and the ranae of the number obtained. 

Bit 

ll 
)0 

29 

M• .. IIMt 
Ched. terminator is a oontrol character or space 

Restrict value ranae to 0- 25S 

Restrict ralllle to 0- R2 inclusive: a 'Number too bill' error is given 
otherwise 

If either of these checks fail. a 'Bad number' error Is atven. This error also occurs If 
the first character is not a valid digit. If a base Is alven at the start of the number 
and Isn't in the ranae 2- 16, a 'Bad base' error Is alven. 

RelaledSWis 

None 

Related vectors 

None 

1-437 



OS_ GSinlt (SW/ &25) 

.. ..-...:-;;:-:-:·.. ·X.:--»:·:·:·:-. .. ~-:-:·:·:·:·:·:·:·: .;;:;:::::::::::::::::::::::::::::::::-;~.y;: .... w .. ""»>:«·:·:·:·:=~:::::::;:::::: :·:·:·:· ;.;;;.;;::::;.;;;;::x-;;:"'b::::. .. :::::::::-:::::::.::;-;:-:-x.:.:·:·:·:·:::.;.::::;:.· •. :.:.:«;:.-Nm:-:·:·:·:·:•:::::.:·:·:·:·:·::·.·· 

1·438 

Initialises registers for use by OS_GSRead 

OS_GSinit 
(SWI &25) 

On entry 

RO = pointer to strina to translate 
R2 = naas 

On exit 

RO =value to pass back In to OS_CSRead 
Rl =first non-blank character 
R2 =value to pass back In to OS_CSRead 

lnterrupta 

Interrupt state is not alte~ 
Fast interrupts are enabled 

Proceaaor Mode 

Processor is In SVC mode 

R.entrancy 

Uae 

SWI is not re~ntrant 

OS_CSinit Is one of the strina routines which are used by the operatina system 
command line interpreter to process the strinas sent to It One of the advantaaes 
of these routines Is that they enable you to use the character 'I' to Introduce control 
characters which would otherwise be difficult to enter directly from the kryboard. 

See the section entitled CS slrillf CIIM'alioou on paae 1--430 for a list of the 
conversions that are performed by the routines. and of the naas passed in R2. 

OS_GSinit also returns the first non-blank character in the strina However. this is 
not necessarily the same as the output from the first OS_GSRead, since OS_GSinit 
doesn't perfonn any expansion. 

Related Swta 

OS_GSRead (SWI &26), OS_GSTtans (SWI &27) 

""'*~":·: 

ConviKSionB 

.;:;:;:;:;:;.;:;:;:;:;:;;;:;:;:;:;:: :;:;:;:;:;:;:;;,:;:;.;..;«.~:-.:-::;.;:::;:;:;:;:· ·:;:;.;•::::::;:;:;:::;:;;;:~;;,:;,.;:..~:$.:~:;;.;.;.:·:·:.:.:·:·:·}:-:·:.:·:;:w:::·:~;.:;;;;;;;;;;;;;;;;;;;;;:;:~:;:;;;;; ;;;;;:;.;;;:;:;:;:;:;;;;;.;;:.>: 

Related vector• 

None 

1·439 



OS_ GSRead (SW/ &26) 

··:·:·:·:·:·:·:·:- :·:···:·:·:·:·:·:·:·:·:·:·:·:·:;X·:·:~:·:<:·:•:=:·:•:•:-:::•:•:•:·:•:·:·:;:•:•:-:;:v.vm.~•:::•:•:•:•:•:·:•:::;::::;;;:::::::::::::x;.;;.;:::: :;:: :;:::;:;.;:::•:•:• :·:·:;;:·· :·:·:·:·:=:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·>:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:····· 

1-440 

OS_GSRead 
(SWI &26) 

Returns a character from a string which has been initialised by OS_CSinit 

On entry 

RO from last OS_CSReadiOS_CSinit 
R2 from last OS_CSReadiOS_CSinit 

On exit 

RO updated for next call to OS_CSRead 
RI =next translated character 
R2 updated for next call to OS_CSRead 
C nag is set if end of string reached 

Interrupts 

Interrupt state is not altered 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

u .. 

SWJ is not re-entrant 

OS_CSRead reads a character from a string, using registers initialised by a 
OS_CSinit immediately prior to this call. The next expanded character is returned 
in RI. The values in RO and R2 are updated so they are set up for the next call to 
OS_CSRead. 

The interpretation of characters which pass through OS_CSRead is described in 
the section entitled CS string optr«tio"s on page 1-430. Note that this call does not 
correctly handle quoted termination in RISC OS 2.0. 

Aro error is returned for a bad string- for example. mismatched quotation marks. 

Related SWis 

OS_CSinit (SWJ &25). OS_CSTrans (SWJ &27) 

ConvStSions 

:·:·:·:·:·:·:·:·:·:·:<:.:·:·:·:.;:;;;.;-:-:-:.:·':·:·:•:;;.;-:.:-:: ;.;.;.;.;.,:,;;;xv:;:;.:.>:•:::o:::-:<:~<:·:·X·~:·:·:<:<:·:.::~-::;-;;o::::;:-;~.;:;:,.-:;:.:;.s:-:;:y;;z::::;;:~;;:;;::::::;:...-..;::;.;;:;x;:;:.;~»' .. :>:'«·:::.;·:·:.:-:.:-.-.::.:·:·:·:·:·:.: ·:·:···:·:·:·:·:·:·:· ;:;:;:;:;.;.;:;.;.," 

Related vectors 

None 

1-441 



OS_ GSTrans (SWI &27) 

~~~:}~':;:;:::;:;:;:::::.;:::;;;:;.;:;;:-':~:.::-:-:~:.;::::::;;;:::;:<:;:::::.:;::::::::::::;:;:::;:::::::;:;>:::~:>::::;:;:·:·: ·:;:;:;=!::~;:;:;:;:;:;:;:;:;:;:;:;:;:;:···:;:·;:;: ••• ·.·.·.·.·.·.·.·.·:·:·:·:·:·:·:·. ·:·: .;;;:;.;. ·>:·:·:·:·:·:-:·:·:=:·:-:-:·:~:-:-"'!-:·:-: 

1-442 

OS_GSTrans 
(SWI &27) 

Equivalent to a call to OS_GSinit and repeated calls to OS_GSRead 

On entry 

RO = pointer to string, terminated by ASCII 10 (LF) or 13 (CR) or 0 (NUL) 
Rl =buffer pointer 
R2 = buffer size (JWaxlt") and nags in top 3 bits 

On exit 

RO = pointer to character after terminator 
R I = pointer to buffer. or 0 
R2 = number of characters in buffer. or JWult"+ I if the buffer overflowed 
C nag is set If buffer overflowed 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor Is in SVC mode 

R ... ntrancy 

u .. 
SWI is not re-entrant 

OS_GSTrans Is equivalent to a call to OS_GSinit followed by repeated calls to 
OS_GSRead until the end of the source string is reached. Each time It obtains a 
character and translates it, OS_GSnans then places it in a buffer. 

The nags in R2, on entry, are the same as those supplied to OS_GSinit. On exit. RO 
points to the character after the terminator of the source string, and RI+R2 points 
to the terminator of the translated string. If the C nag is set on exit the buffer was 
too small for the translated string: R2 is set to the length of the buffer plus one. 

The nags and interpretation ol characters which pass through OS_GSI\'ans are 
described in the section entitled GS stri"g Dpft'&tio"s on page 1-430. Note that this 
call does not correctly handle quoted termination in RISC OS 2.0. 

:·:·:·:···:·:·:-:::-:-:-:·:·:·:.:::;;.•. 

Conviii'Sions 

·:·:-:·:·:.:·:·:·:·:=:·:·:-:-: .;:;.;:;:;:;:;::·::· .·.·.·.·.:.:;:;:;:;.;:;:;.;:; :;;:;.;:;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::::::::::::::.·•:•:'::::;:;:;:::;::::::::::::~::::::-::.-::::::.:: :;:;:;:;:;: :·: .;.;:;:;.;::·:·:·:·:·:·:·:·:·:·:;:-~~: ..... ~ ... -:::;.'*'"}:.":; 

An error is returned for a bad string- for example. mismatched quotation marts. 

Related SWia 

OS_GSinlt (SWI &25), OS_GSRead (SWI &26) 

Related vectors 

None 

1-443 



OS_BinaryToD«imal (SWI &28) 

<·:·:·:·:·:·:·:.-:; ·:« ..... 'll'o.-:•.:•.•,,•,•:·:·:·:·.·:·:·:·:·:·:;:>:·:·:·::;.;,.:;.; ...... ~:,;;;:;;;:;:;:;:;.;:;:;:;:;:;.;.;.;.;.;.;:;.;.;.;.;.:-:·:·:·:·:·:·:-:-;.;.•.;.;.;.;.;.;.;-:-:-:.::-:·:·:·:·:·:·:·:·:·:·:·:·:·:«~:~..o;..~~;;.;:;:,:;:;;~;:;:;:;.;:;:::::;.;.;.;:; 

1-444 

Convert a sfaned number to a strin& 

On entry 

RO "' slaned 32-bit integer 
R I "' potnter to buffer 
R2 " max1mum lenath 

On exit 

RO. R I preserved 
R2 ,. number of characters &iven 

Interrupts 

Interrupt state Is not altered 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

R .. ntrancy 

SWIIs re-entrant 

u .. 

OS_BinaryToDecimal 
(SWI &28) 

OS_BinaJyToDecimal takes a si&ned 32-bit inteaer in RO and converts it to a strina. 
placin&lt In the buffer. Rl points to the buffer and R2 contains Its maximum 
lent~th. Lead in& ttros are suppressed and the strina will start with a minus slsn. ·-·. 
If RO was neaative. The number cl characters &iven is returned in R2. 

The error 'Buffer overlloYI is &iven if the converted stri na is too Ions to lit m the 
buffer 

Related SWia 

None 

Related vectors 

None 

;.;:;::·:· :·:·:·:·:·:·:·:·:·:·:·: ·.·.·.:.:.:.:;: ... ·:·:·:·· 
ConvStSions 

:;:;:;:;;:.o;~:;:;«~o;t.::;.:-;;:.;:x.:.:v:>;·>:>x·::-.. :-:·:·:·:·:·:·:·:.;·:·:·:·:·:v:·:->:·:::·: ·:·:·:·:·:·:·:·:· :·:·:·:·:·:·:·:·:·:·:=:·:·:· :-:=:=:-:.:·:·:·:.:·: ·:·:-;.;.:-:·:·:·:····· 

OS _EvaluateExpression 
(SWI &20) 

Evaluate a strinc ei.pl'eSSfon and return an fnteaer or strin& result 

On entry 

RO = pointer to strint 
R I = pointer to butler 
R2 = re011th of buffer 

On exit 

ROpn=rved 
Rl = o if an lnteaer returned. else~ 
R2 = inteaer result. or lenath of strin& ln buffer 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor Is In SYC mode 

R .. ntrancy 

u •• 

SWI is not re-entrant 

OS_EvaluateupteSsfon takes a strin& pointed to by RO. evaluates it. and places 
the result in the buffer wh1ch Is pointed to by R I Its maximum len&th is R2. The 
type of the result is &iven by R I as follows: 

v .... 
0 
NotO 

........ 
lntqer result returned In R2 
Srnnc Is returned In buffer, lencth returned in R2. RO and Rl 
preserved 

See the section entitled E ... l••llioM oporaiDn on paee 1-412 for a description of the 
operators that you can use Note that monadic pluslminus operators are not 

oorre<tly handled In R1SC OS 2 0 (q •Eval so·-Jaives a 'Missina operand' error). 

1-445 



OS_ Eva/uateExpr9SSion (SWI &20) 

:;:;:;:;:;:;:;:;:;: ;:;:;:::: :;:;:;:: :;:;:;:;:;:;:;:;:;:::::::::::::::::::::::::::::~:::::r;:wA:~::::::::::::::::::::::::::.:-::::;:;:;:;:::;:;:::::;~::;:.;::x:;~w.::::::::::::::::::::::::::: ;:;:;:;::::::::: ;:;:;:;;;:;::::~::;:;:;:;:;:;:;:;:;;::;:;~;:;:;:;:;:;:;:;:;;x:::;:;:;:::: :;:;:;:;:;:;:;:: 

1·446 

lrthe buffer is not largeenoush to hold the resultin& strins. then a 'Buffer overflow' 
error is senerated. 

Related SWis 

None 

Related vectors 

None 

Convfii'Sions 
YA~:::;:::;;;:::::m::;:::::;:~::.:'~::;:;:;:;:;:: :;:;:;:;:;:;:;:;:;:;.;.;:; :;:;:;:;:: :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;;;:;:;.;;;.;.;.;.;;;.;;;:;;;.;;;:;.;:;:;:;:;:;:;:;:;:: :;:;:;:;:;:;:· .:.:.:.:;:::::::;:;:;:;:;:;:;:;.;.;.;: ;:;:;:;:;;;:;:;:;.;:;:; ;;:;.;.;:;.;.:.;!:: .;.;.;:;;;;;.;.;.;:;:;:;.·.··· 

OS_SWINumberToString 
(SWI &38) 

Convert a SWI number to a strfns contalnlns Its name 

On entry 

RO = SWI number 
Rl =pointer to buffer 
R2 = buffer lensth 

On exit 
RO. R I preserved 
R2 = lensth of strinsln buffer 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is re-entrant 

OS_SWINumber'l'oString converts a SWJ number to a SWJ name. 

The returned strin& Is null-tenninated. and starts with an X if the SWI number has 
bit 17 set. 

SWI numbers < &200 have an ·os_· prefix to the main part, and a SWI-dependent 
end section (which is 'Undefined' for unknown OS SWJs). 

SWI numbers in the ranse &100 to &IFF are converted in the fonn OS_Writel+"A". 
or OS_Write1+23 if the character Is not a printable one. 

SWI numbers &200 are looked for In modules. If a suitable name Is found. it is 
&iven in the fonn lll~wfl_,..llltor lll~wlt_""*bcr. eg. Wimp_lnitialise. Wimp_32. If no 
name is found in the modules. the strins 'User' is returned. 

Note that this call does not correctly handle nesative SWJ numbers In RISC OS 2.0. 

1·447 



OS_SW/NumberToString (SWJ &38) 

=w.::::::::.:::::.:-:::.:·:·:····· ·.·.;.;-:-:.::::-:-:.:-~:·:·:·:·:·:.:·:·:·:·:·:.:·:·:·:·:·:·:·:·:·:·::;:;:;.;-;-: ·:·:·:·:·:·:::·:·:·:·:~:.:-:::·:·:·:~:-:·: .;.;.;.;.;.;,;;.;.;.;.;.; . . ·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.· ·.·.·.·.·.•.·:·:·:· :-:-:·:·:·:·:·::;:;:;:;:;.;:;:;:;:;.;:·:····. 

RelatedSWis 
OS_SWINumberFromString (SWI &39) 

Related vectors 
None 

1·448 

Conversions 
::::::;:;:;:;:;:;::<:'!2:~~-:=--~:::::;::;:.~:::::~::(.:..~•:o:;:;:m;:•:·:·:.:·:·:.S:·»:·:«::.»:::-: -:-:-:::::::::::::.::: :;:;::::::~::::::::::::::::::::::::::::::::::::::::>:=.::::::::::.::...-::::::::::::x:::-:::-::::::::::<:-~;:<:<:'*~:;,;:.;. :-:·:·:-::::;:;:;.;:::::::::::: 

OS_SWINumberFromString 
(SWI &39) 

Convert a string to a SWI number if valid 

On entry 

R I = pointer to name (whkh is terminated by a characters 32) 

On exit 
RO = SWI number 
R I preserved 

Interrupts 
Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 
Processor is in SVC mode 

Re-entrency 

u .. 
SWI is re-entrant 

OS_SWINumberFromStrina converts a SWI name to a SWI number. An error is 
given if the SWI name is not recognized. 

The conversion is as follows: 

• A leading X is checked for and stripped. If present. &20000 is added to the 
number returned (ie bit 17 will be set). 

• System names are checked for. Note that the conversion of SWis is not quite 
bidirectional: the name OS_Writel+" ·can be produced. but only OS_Writel is 
recognized . 

• Modules are S<:anned. lf the module preful matches the one given. and the 
suffix to the name is a number. then that number is added to the module's SWI 
'chunk' base, and the sum returned. For example, Wimp_&23 returns &400E3, 
as the Wimp's chunk number is &400CO. 

1-449 



OS_SW/NumbiKFromStrlng (SWI &39) 

;:;.; :;:;:; :;:;:;.;.;:;: ;:;:;:;:;.;:;:;:;:;.;-:-:-:-:-:-::;.;.;.;:;(«Y}: .. .««io:w»::;:;:;:;:::::::;:;;;::;;::;;:;;;.;:;:;.;:; ••••••••••••••• :::;:; •••• ·.·.·.·.·.·.·:·:·:·:·: ·:-:•:=:-:=:·:·:·:·:·:· ;:;.;:;:;:;.;:;:;: ;.;:;.;.;:;:;.;.; :;.;:;:;.;-;.;:;:;:;:;:;.;.;:>X•>: 

1-450 

• If the suffix is a name. and this can be matched by the module. the appropriate 
number Is returned. For example, Wimp_Poll returns &400C7. 

See the chapter entitled M~uln on page 1-191 for more information on how 
modules provide the conversion. 

Note that SWI names are case sensitive, so you must spell them exactly as 
returned by OS_SWINumberToStrins. 

RefatedSWis 

OS_SWINumberToStrins (SWI &38) 

Refated vecto rs 

None 

Conversions 

:;;;;:;:;.;.;.;. ;:;:;:::};:;.:::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;::;::.:."»-:;:..?.;:>:O:o:->:-:·;.:-: ·:·:·:·:·:·:·:·:·:·:·:·:·:-:«<-:-::;. ·X-»X{•:•::;::::.;:;.;::.:·:·:·::;.;:;«;»»;.»::;:::;:::;::;:::««:;.;:;:;:;:; :;:;:;:;:; ·:·:·:·:·:·:·:·: ·:·:·:·:·:·:-::;:;.;.;.;::,;:.}S~~;:;:;: 

Substitute command line arauments 

OS_ SubstituteArgs 
(SWI &43) 

On entry 

RO = pointer to arsument list. and Oaa In top bit 
R I = pointer to buffer ror result strlna 
R2 = lell8th of bu~r 
RJ = pointer to template strtna 
R4 = lell8th of template strfna 

On exit 
RO, R1 preseiVed 
R2 = number of c:Mracters In result strtna (includina the terminator) 
R3, R4 preseNed 

Interrupts 

Interrupts are enabled 
Fast interrupts a~ enabled 

Processor Mode 

Processor is in SVC mode 

R ... ntrancy 

Use 

SWI is not re-entrant 

This call performs the hard ..-orlt lnYOived In substltutlna a list of arsuments into a 
'template' strtns. 1ts main use Is In the processlna of command AliasS ... variables 
by the system As it is also useful in other situations, it has been made available to 
users. For example. FileSwitch uses It In the process ins of AliasSiitLoadl\'pe_ TIT 
variables. 

The arsument list is a strtna conslstlna of space-separated Items which will be 
substituted Into the template strtns Spaces withm double quotation marts are not 
counted as argument separators "''fplcally, the arsument string will just be the tail 
of a • Command It is control-character terminated 

1-451 



OS_SubslituteAtgs (SW/ &43) 

·:·:·:·:·:·:·:·:·:·:·:<·:··· 

1-452 

·:·:·:·:·:·:·:·:·:-:.: ·:·:·:·:·:·:;;;;.;;;.;;;o;;»;:;::;;~;.;:;:;.;:;.;;::;.;.;:;;:;.":':':':';;:-;.:-:·:·:·:·:·:·:·~·:·:·:·:·~--?,>::;:;:;:;:;:;:;:;:;:;:;:;.;.;:;.;:;.;.;.;.;:;:;.:.;::.:«-.-.;.c.c.~;:;:;.; .;.;:;:;.;.;:;.;.;.;.;:;:;:;.;.;.;::·:·:·:·:·:····· 

The n5ult of substltutlna the arauments into the template strfna Is placed in the 
buffer. The lenath of the buffer is aiven so that the call can check for buffer overflow. 

The template strinals copied into the result buffer character for charactet 
However. when a,. appears In the template strina (even within quotation marks), 
it marks where an araument should be placed into the output buffer The,. is 
followed by a slnale dlalt from 0 to 9. 'l.O stands for the first araument In the 
araument hst, and so on cr. •" means all of the arauments from the "th one 
onwards. 'r.'r. means a sinale •r•. Anythina else followinathe ·cr.· Is not treated 
specially, ie both the ·cr.· and the character are copied over. 

The template strlna does not have a terminator: instead its lenath Is aiven. At the 
end of the substitution. any arQuments after the hiahest one mentioned in the 
template strina are appended to the result strina. This can be stopped by sellina 
the top bit or RO on entry 

If a non-existent arQument is specified in the template strina. then the substitution 
process 1s terminated No error is aiven. 

Related SWis 

None 

Related vectors 

None 

Conv9fSions 
·:·:·:·:-;.;.:-:·:·:·:·::;:;.; ·>:·:·:·:·:·:·:·:·:·:·:·:·:·:;.:-:·:·:·:·:·:·:·:·. :·:·,·:·:;;*»:·:-:·:·::::-:·::~;:;:;.;:;:;~:;:;:;:;:;:;:;:;:;:;:;:; :;:;.;:;:;.;-:-:·:·:·:· :-:·:·:·:·:·:-:·:·:·:·=·:·:·:·:·:·:=:·:·:;: .. '«'«<':·:.»:-:·:.:·:-:-»»::»».,~:::::::; ·:·:·:·:·:·:·:·:·:·:·:·:-:-:·:·: 

Gwen a keywofd definition, scan a command strina 

On entry 

RO = pointer to keyword definition 
Rl =pointer to Input strina 
R2 = pointer to output buffer 
RJ = size ol out put buffer 

On exit 

RO·R2preserved 
RJ ,. bytes left In output buffer 

Interrupts 

Interrupts are enabled 
Fast Interrupts are enabled 

Processor Mode 

ProcesSOf Is In SIA: mode 

Re-entr•ncy 

SWI is ~ntrant 

Use 

OS _ReadArgs 
(SWI &49) 

Th1s SWI processes a command strina usfna a keyword definition for syntax. The 
results are wnllen out to the output buffer usfna a specialised format for this 
command 

Keyword deflnltJon 

The keyword definition defines the parameters that can be In the command strina. 
It is composed of a sequence of keywords. separated by commas. Each of these Is 
made up of one or two names, followed by a sequence ol qualifiers. The syntax of a 
keyword Is: 

[keyword_ namef-allas _name I)(/ quallf 1 ec ... ) 

1-453 



OS_R88dArgs (SWI &49) 

;.;.;.;.;.;.;:: 

1·454 

.·.·.·.·.·.·.··:···:·:·:·:·:;;;;.;;:·:·:;»:• -~:;:·:-:·:·;-.'";·:·:·:;:·:·:·: .;;:.:·:·:·:;:·:·:;:;;.;;;;;;,:;:~.-:~n:;::::x;::::::::: ::::::::::~:::::::::: ::::::=:·:=:·:·:·:·:·:···:·:·:·:·:·:·:·: ;;.·-:···:·:-:-:·:·:·:-:···:·:·:·:.:·:·:-:·:·:-:--..:-:·:.;;.-««·:·:;: 

The iqiO'OI'.t_,..lll, Is what you want users to Identify the parameter with . This can be 
any strlna composed of alphanumerics and the ·~ character. The alias name Is an 
optional alternative name for the same keyword. You can have a lteyword with no 
name. See the command strlnadescription below of how to set it. 

The qualifier describes what kind of a parameter It is. There can be as many 
qualifiers as you lilte with one parameter. but some are mutually exclusive The 
qualifiers can be any one of the followina characters In upper or lower case· 

/A keyword must always be aiven a value 

JK keyword must always precede its value 

IS the option Is a switch ie presence only Is reported 
IE OS_EvaluateE.xpression will be called to transform the value This can 

return a number or a string. Note that numerk evaluations only can 
be performed. 

Note that In RISC OS 2.0 a 'Suffer fult error is aenerated if this 
araument evaluates to a strlna 

10 OS_CSTrans will be called to transform the value 

Commend etrlng 

The command strlna contains a sequence of commands usina the syntax defined 
by the keyword definition. A command string Is made of definitions or the 
followina syntax: 

[- keyword_name) value 

If the keyword name Is used. then the value will be attached to the named keyword. 
These can appear In any arbitrary order in the command strina. The name after the 
·-·can be the full name of the keyword or its alias. or the first letter of either. For 
example. If the keyword definition contains ·name=title·. then all of the followlna 
are valid In the command strina: 

·-name fred·, •-title fred·. ·-n fred·. ·-t fred• 

Note that If more than one lteyword has the same first letter. then the single letter 
form will be used by the first occu~nce of a aiven letter in the keyword definition 

Also note that case Is lanored. so ·-fll..E. and ·-file· are identical. 

If a definition has no-«~_,.."" precedina it. then the first unused lteyword that 
Is not a switch in the definition strinawill be aiven that value Thi.s Is how nameless 
lteywords are set For example. if the definition strina is · infile/a.outflle· and the 
command strlnals • -lnfile one -outfile two three·. then the first and nameless 
~yword will be set to three. because It was the first undefined lteyword in the 
definition 

ConvMSions 
;.;.;:;:;.;;;.;.;:;:;.;;:·:·:·:·:·:·:·:·:·:-:.:-:-:.:-:-:-:-:.:::;:-.;.;;:->:..~-:;:.:-:;:-;.;.;.;::·:·:·:·:·:.:@~};;;;;;;;m;:-;::;;.;.;~;;.:,;.;.;.;.;.:·!·::::-:·:·:·::;:;:;.;-:.:·:·:·:·:·:·:·:·:;;:;:;:;:;:;:;:;.;.;.;.;.;.;.·.·.·.·=··:-:-:-·.:;:;.;:;.;:;.;-;- :-:-::;.;.;:;.;:;.;.: 

Keywords are marlted by a precedlna ·-· character. but this does not disallow these 
characters from appearlnaln values anywhere but at the start. For example. if the 
keyword definition Is •tormulale·. then •-formula ~3· will set It to the value of3. If 
the command Is •-formula -3+6·. then this will cause an error. 

Whilst some evaluated upm;slons can be done without spaces ( 1+2 for example). 
there are many that cannot. You can evaluate an expression In quotes. whkh allow 
spaces. as in this example: 

"'3F AND '17" 

With CSTrans'd strinas. if you want to put a quoted string Inside quotes then you 
must use double quotes. as follows 

"This is ""tT••• 

Output buffer 

The output buffer contains the results for all of the po&Sible keywords. For" 
keywords in the lteyword definition. the first 11 words of the output buffer contain 
the results of the parslna of the command line. If the lteyword was a switch (with IS 
qualifier). then a non-u:ro value Indicates that the switch was used. For all other 
ltinds of result. then It Is a pointer; a pointer ofJJero Indicates that the parameter 
was not present. These results are appended sequentially to the output buffer. 

The followina example uses a keyword definition of ·ax,bx.onls.ot" and a command 
string of ·one two three -on·. The output buffer loots like this : 

8X bll on ex 

I fl f I mw I 1-r-· ! -· I-: I 
The results of CSTransed strinas and evaluated expressions are stored d ifferently. 
In aCSTransed strlna. the result pointer points to a blocltofthe following format: 

llrtg!M two byte lenath 
slrirtg llllfU bytes of string 

In an evaluated expression. the pointer points to a block. like the followina : 

IWJC one byte result type (which at present can only be zero or an integer) 
.. 11u four byte lnteaer 

1-455 



OS_ReadArgs (SWI &49) 

.;.;.;.;.;.;.;.;.;:;:;.;.;.;.;.;:;.;;;.;.;.;:;~;.;:· .:.:; .;:;.;.;.;:;;;. ;.;:;.;:;:;:;. ;.;.;.;.;.:-:·:·:·:·:·:·:=:·:·:·:·:·:·:·:> .;.;.;:;.;.;.;:;.;.;.;.;.;-:-:·:·:·: :·:·:·:-:.:·:·:·:·:·:·:·:-:-:·:·:·:.:-:-:·:·:·: ·:·:·:···:·:·:·:·:·:·:·:·:·:.:·:·:·:·:·:·:·:·:·:;;.;.;.;.;.;.;.·.··· 

1·456 

For an example showing/e and /g switches, if the keyword definition was 
·rormulale.time/g" and the command string was ·-f 6+6-1 -t ""'Jlme is 
<Sys$11me>···. then the result looks like this: 

formula strtngstulf rype value length 

I t I l ! · I " ! .. I ~~·,,.~ I 

Examples 

Keyword definition: 

number=times/e,file/k/a,expandtabs/s 

can be matched by any of: 

- n 10 -file jeff 
-times 1+7 -file jeff -expandtabs 
-file thingy -e 

but not by either of: 

thingy -number 4 
-number 20 -times 4 -file jeff 

Related SWis 

None 

Related vectors 

None 

ConVMS/ons 
:·:·:·:·:·: ·:·:·:·:·>:·:·>:·:=:·:·:·:·:·:·:·:·:·:·:·:=:·:· ;.;.;.;:;.;.;.;.;:;;;.;:;;;.;.;.;:;;;:;;;.;.;.;:; .;:;:;:;:;:;.;:;:;:;:;:~:=:'::-::;:;:;:;:;:;:;:;:;:;:;:;:;::.:::;::<;:}~~:m::;:;;x:;:;;:;::::;:;.;~..;;:;:~;:::;:;:;:~;,;;::;;:;:;:;:;;;.,:~;;;:;;-;:::;.:v;-:.x;.;. ;.;-;.;.;.;.;.;._ 

OS_ ConvertNameNumber 
(SWis &DO - E8) 

These calls convert a number Into a string 

On entry 

RO =value to be converted 
Rl =pointer to buffer for resulting string 
R2 = site o( buffer 

Onexh 

RO =pointer to buffer (RI on entry) 
Rl =pointer to terminating null in buffer 
R2 "' number offrce bvtes in buffer 

Interrupts 

Interrupt status is not altered 
Fast interrupts are enabled 

Proc.ssor Mode 

Processor is in S\'C mode 

Re-entrancy 

Use 

SWis are re~ntrant 

This range of SW!s use a common form and can convert a number into a string in a 
variety of ways. 

RO returns pointing to the start of the buffer. This Is convenient for calling 
OS_ WriteO. Rl points to the null at the end of the buffer. This is convenient for 
adding further text after it. 

The ,..,., part of the SWI name can be any of the following groups: 

1-457 



OS_Conv911NameNumber (SW/s &DO· £8) 

~;:;::x.-;;-~~~;:;:~::::::::::::•9' .. ":~:::-.:~..;:..~~:::::::::;:~.;.;.;.;:.;.;.:-:-:-::.:-:::·:·:-:::·:·:·:·: ·:·:·:·:·:·:<< ... '!<«·:>%::::.:·:=:·:·:·:·:·:.::::;:-:-:-:-:-:.:·:·::::;.;.;!:-:.:-:-~;;:::~:;.;.;.;;;:;;x.:;;;;;:;;.-: 

1·458 

Hex 

Coavert to a llelUidecJmal .trfa1 

The """'""is the number of ASCII digits In the output string. either I, 2, 4, 6 or 8. 
Only enough significant bits to perfonn the conversion are used. The string does 
not indude an ampersand('&' ) but is padded with leading zeros. so is of fixed 
length. The SWis in this group are: 

SWI SWI Outpllt for ... 
a a me a amber zero l•f'leet yaJae 
OS_ConvertHexl &DO ·cr 'F 
OS_ConvertHex2 &DI '()()' 'FF 
OS_ConvertHex4 &02 '0000' 'FFFF 
OS_ConvertHex6 &03 '000000' 'FFFFFF 
OS_ConvertHex8 &04 '()()()()()()()0 'FFFF'FFFF 

Cardinal 

eo .. ert to •• aa.Jped dedmal umber 

The """'" ' is the number of bytes to be used from the Input value. The string is not 
padded with zeros. so is of va riable length. The SWis In this group are: 

SWI SWI Oatput for ... 
••me .. mber zero laf'lal Yalae 
OS_ConvertCa rdinall &05 ·cr '255' 
OS_ConvertCardinal2 &06 ·cr '65535' 
OS_ConvertCardinal3 &07 ·cr '16777215' 
OS_ConvertCardinal4 &08 ·cr '4294967295' 

Integer 

Coa.ert to a .Jped cledmal umber 

The '"'"'""is the number of bytes to be used from the input value. If the most 
significant bit is set (of the"""'"" bytes used). the number is taken to be negative. 
and a leading·-· is produced. The string is not padded with zeros. so is of variable 
length. The SWis In this group are: 

SWI SWI 

••me 
OS_Convertlntegerl 
OS_Convert1nteger2 
os_convertlnteger3 
OS_Convertlnteger4 

a amber 
&09 
&DA 
&DB 
&OC 

Oatpat for ... 
larseet - •e lar1ett +.e •alae 
'-128' '127' 
'-32768' 
'-8388608' 
'-214748364a-

'32767' 
'8388607' 
'2147483647' 

ConvBrSions 
.;:;.;::·:·:·:·:·:;:-:·: .;.;:;:;:;;;:;:;:;:;:::::::: :·:·:·:;:·:;:;:;:;:;:;:;:::;:::;;:o~:::•::::~;:::;:;:;:;:;:;:;:;:;:::;::::::r*.~:t:t:::--9-W:::-:::::::::=::::;.;-:.:;.:::::=:;;.;::::::.;:;:;::::::::o:::::::::::*;:.."W:::::.:*;:~::::::~:::;::;:~;:}:::::.,"...::::::::o::::::;: 

Binary 

eo .. ert to • blaaiJ u .. ber 

The """'"r is the number of bytes to be used from the input value. The string is 
padded with leading zeros. so is of fixed length ( lhtlllhfr x 8). The SWis used in this 
group are: 

SWI 
••me 
OS_ConvertBinary1 
OS_ConvertBinary2 
OS_ConvertBinary3 
OS_ConvertBinary4 

SWI 
umber 

&DO 
&DE 
&OF 
&£0 

Oatpllt for 
larp~t..Jae 

'11111111' 
'1111111111111111' 
'llllllllllllllllllllllll' 
' ll lllll lllll l ll lllllllllllllllll' 

SpacedCardlnal 

Co•Yert to •• ...... ed decbul •••bet. wltll .-_, tllree dtcft. 

The IIIAII!Nr is the number of bytes to be used from the Input value. The string is not 
padded with zeros. so Is of varia ble length .1n addition. every three digits from the 
right. a space Is Inserted. The SWis used In this group are : 

SWI SWI Olltpllt for ... 
aame umber zero larp«WII•e 
OS_ConvertSpacedCardlnall &£1 ·cr '255' 
OS_ConvertSpacedCardlnal2 &£2 '(Y '65 535' 
OS_ConvertSpacedCardinal3 &E3 '(Y '16 777 215' 
os_convertSpacedCardinal4 &£4 ·cr '4 294 967 295' 

Specedlnteger 

Coa.ert to • .Jped cledmal umber, 'Wftll apacee eveiJ tllree dJ,tt. 

The llw~~twr Is the number of bytes to be used from the input value. If the most 
significant bit is set (of the """'"" bytes used). the number Is taken to be negative. 
and a leading ·-'Is produced. The string is not padded with zeros. so Is of variable 
length. In addition. every three digits from the right. a space is inserted. The SW!s 
in this group are: 

SWI SWI Oatpat for ••• 
• • me ao. larplt-ft ··~ +ftfti. 
OS_ConvertSpacedlntegerl &09 '-12a- '127' 
OS_ConvertSpacedlnteger2 &DA ·-n 768' '32 767' 
OS_ConvertSpacedlnteger3 &DB '-8 388 608' '8 388 t~JT 
OS_ConvertSpacedlnteger4 &OC '- 2 147 483 648' '2 147 483 647' 

1-459 



OS_ ConvertNam9Numb8r (SW/s &DO · EB) 

;:~":•>:~:·:·:·:·:·:·:::::;;;;::;;;:.>hX'~J'!J .. :•:•:·:·:•:•:·:·:·:·:·:·· ·:·:·:·:·:·:·:·:·:-:-:-:-:•:.:·:·:o:«-:=:::::::•:::::::::::::::•:.::•:«<}X:~:=:=:::::::=:•:::::::::;::::::::::::: :::::::::::::::::::::::::::: ::::::=:~::.:::: ::::::: ::::::::::x«-x:::e::~:::::· 

RelatedSWis 
OS_BinaryToDedmal (SWI &28) 

Related vectors 
None 

1-460 

ConvMSions 

:=:~·:<:«-:.:-:.;;-:-»:·:.:·:-:·:·:·:·:=:·:·::;.;.;.:-:·:::.;::;, .. }.~:~:-:;:::.:·:•::;:;.;. ;.:::-:-:.::;:;:;:::::::: :;:;:;:;:;:;:;:;::::::-: :;:;:;: .·.·::;:;:;:;:··::::. :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;::::::::::--:>::;:;::;~-:;:;;;;;;;:;.;;;:.;...:;.;;:.~~"':;:.:.»:•:·:·:·:·:· ;.;.;.;:;::::=:;.::; 

OS_ ConvertFixedNetStation 
(SWI &E9) 

Convert from an Econet station/network number pair to a string 

On entry 
RO = pointer to two word bloclt (value to be converted) 
R I = pointer to buffer for resulting string 
R2 = size of buffer 

On exit 
RO =pointer to buffer (RI on entry) 
R I = pointer to termlnatine null zero in buffer 
R2 = number of ftec ~es In buffer 

Interrupts 
Interrupt status Is not altered 
Fast interrupts are enabled 

Processor Mode 
Processor is in SVC mode 

Re-entrancy 

Use 

SWI is re-entrant 

RO points to two words in memory. The first word contains the station number and 
the second word contains the networlt number. 

This call always converts into a form uM.m , where " "" Is the networlt number and 
sss the station number. If the network number is zero. the first four characters are 
spaces: if it is non-zero. leading zeros are converted to spaces. If the network 
number was zero, leading zeros in the station number are converted to spaces: 
otherwise they are left as zeros. 

RO retums pointing to the start of the buffer. This is convenient for calling 
OS_WriteO. Rl points to the null at the end of the buffer. This Is convenient for 
adding further text after it. 

1-461 



OS_Conv9ftFix9dN91Stalion (SWI &E9) 

~s:;:.:.o:-:::-:::-:<:·:·:·:::::-:·:·:;;:;;;.;.;.;:;;;:;:·; ·········::·:·:··: ••. ·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·:·:·:·:·:·:·:·:-:·:· ·>:·:·:·:···:·:-:.::·:·:·:·:·: ·:·:•:::;;:::};:;:;.;;.'*;:=:•:-:-:•;;;.; :;:;;;.;:;.;.;.;.;.;;;.;.;;;.;.;;;.;:.;:: 

Related SWia 

OS_ConvertNetStation (SWI &EA) 

Related vectors 

None 

1-462 

ConviNSions 
;;;;;:;;;.;.;;:.;:;.;.;•:·:•:•:•:·:·:·:=:•:·~=-o):-;;;:::;::•::::;:;::•::::;::;:&:X{-:·: ·:-:- .;.;;;.;.;:;:;:;.;:;;;.;. ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:; :;:;:;:;:;:;:;:;:;:;:;:;:; :;:;.;::=::::;:;:;:; ·:·:·:·:·:·:~:-:.:-: .;.;.;.;:;:;:;:;:;:;:;:;::;-;;:;:;;::;:;:;:; 

OS_ ConvertNetStation 
(SWI &EA) 

Convert from an Econet station/network number pair to a string 

On entry 

RO = pointer to two word block (value to be converted) 
Rl =pointer to buffer for resulting string 
R2 = size of buffer 

On exit 
RO =pointer to buffer (RI on entry) 
Rl =pointer to terminating null in buffer 
R2 = number of free bytes In buffer 

Interrupts 

Interrupt status Is not altered 
Fast Interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is re-entrant 

RO points to two words in memory. The first word contains the station number and 
the second word contains the network number. 

This call performs the same conversion as OS_ConvertFixedNetStatlon, but 
suppresses zeros and spaces whe~r possible, to yield the shortest possible 
string. 

RO returns pointing to the start of the buffer. This Is convenient for calling 
OS_ WriteO. Rl points to the null at the end of the buffer. This Is convenient for 
adding further text after it. 

Related SWia 

OS_Convertf'ixedNetStation (SWI &E9) 

1-463 



OS_ ConviKINiltStslion (SWI &EA) 

:;:;.;.;. :-:·:·:·:·:·:-:-:·:·:·:·:· :-:·:·:·.:-:·:-:-;·:·;·~-:-;.;.;.;.,:-;.:·:·:·:·:·:·:·:·:.:·:·:-:·:·;..;.;.;.:-:·:·:·:·:·:·:·:·:·: ·:·:·:· :·:·:·:·:·:·:·:·: ·:·:-:·:·:·:· .;:;.;.::;.;.;:;:;.;:;:;.;:::::::;;;.;.;.;:;:;:;:;.;.;.;· .......... ;.;.;;:·:·:·:·:·:·:-:-:-;.:-;.:-M:-:~:-:·:·:·:·:·:·:·:·:·:·:·: 

Related vector• 

None 

1-464 

ConvStSions 

·:·:·:·:·:·:=: :::::::::::::: :::: :;::::: :::::::::::::::::>;;::::::::::::;.:-~:-:-:-:;. .. ;.;-:-..,...;:..:.:..:Y.'Y»»»>:·:.:·:·:·:::.:.:.;.<;:;:;:;:;:;:;:···· x·:·QiQ:~~-~·::·:··r··~: .. x;.:•:•:•:•:·:«O:O:'X«·>.':v:·:·: -:-::;:;:;:;:;:;:;::::::::;.;:;:;:, 

OS_ ConvertFixedFileSize 
(SWI &EB) 

Convert an lnteaer Into a flleslze strfn1 or a fixed lensth 

On entry 

RO = filesiz.e in bytes 
R I = pointer to buffer 
R2 = lensth or butJer In bytes 

Onexh 

RO =pointer to buffer (RI on entry) 
Rl =pointer to termlnatlnc null In buffer 
R2 =number or free tJvtes In buffer 

Interrupts 
Interrupt status ls not alten:d 
Fast interrupts are enabled 

Proce.aor Mode 

Processor is in S'VC mode 

Re-entrancy 

Uae 

SWI is re-entrant 

This SWI Will convert an lnteaer Into a flleslze strin& ol a fixed lenath. The format or 
the stri na is: 

4_dJgJt_ numbec HIKisp•cebyteanull 

The 4_41;,it_IUI,.W at the start Is padded with spaces iritis less than four di&its in 
lenath: speu and •d are the ASCII characters 12 and 0 respectively. 

RO returns pointlns to the start or the buller This is convenient for catlin& 
OS_WriteO. Rl points to the null at the end or the buffer. Th is Is convenient for 
addin& rurther text arter It 

1-465 



OS_ ConvertFixsdF/195/zs (SWI &EB) 

~::::::::::::::;::::::x::::;.«~-<~::~'-~:::::::::::::::::::::::::::~::::~~~:::::::::~:;~:r-:::;:;:::::.:::::·:~:::::::::::::::::::w...~.:::x::::::: :::::::::::::::::::::::::x~::::~::;::::::::::::::::::::::::t::::=:::::::::::-:::: ::::::::::=:~== 

Related SWis 
OS_ConvertFileSiz.e (SWI &EC) 

Related vectors 

None 

1-466 

Conv9t'S/ons 
:-:·:·:·:::;:::~m:::-::::;.;.;;:;;.;;;.;;;::.·.?.·.:=:=·· -.-.·:·:-:=:·:·:·:· ··::;:;: ••• ·.·.·.·.·.·.·.·.·.-.:;:;:;:: :;:;:;:;:;:;:;:::::::;::::::::~~::::::;:;::::<:"~..:>:>::::;:;:;:;:;:;:;:%;:::::;:;:;:;:;:;:;:;:;:;:;:;:::::5::::;.;:;:;:;:.;:::.~:::::;:;:;::::::;:;:; 

Convert an Integer Into a fileslz.e string 

OS_ ConvertFileSize 
(SWI &EC) 

On entry 

RO = filesize in bytes 
Rl =pointer to buffer 
R2 = length of buffer in bytes 

On extt 
RO =pointer to buffer (RI on entry) 
Rl =pointer to terminating null in buffer 
R2 =number of free bytes In buffer 

Interrupts 

Interrupt status Is not altered 
Fast interrupts are enabled 

Processor Mode 

Processor Is In SVC mode 

Re-et1trancy 

Use 

SWI is re-entrant 

This SWI will convert an Integer Into a fileslz.e string. The format of the string Is: 

number M1K ispacebytesnu11 

The """'hrr at the start is up to four digits in lenQth: sptu and """are the ASCII 
characters 32 and 0 respectively. 

RO returns pointing to the start of the buffer. This Is convenient for calling 
OS_WriteQ. Rl points to the null at the end of the buffer. This is convenient for 
adding further text after it. 

Related SWis 
OS_ConvertFixedFileSize (SWI &ED) 

1-467 



OS_ ConvertFi/8S/zs (SWI &EC) 

···:·:·.;:;:;:;:;::::::-:.:-:-;:;:;.;.;.;:;:;.;.;.;.;.;.;;;.;.;.;.;.;.;:;.;.;.;:;:;:;;;:;:;.:-:·:·:·:·:·:·:·:=:·:·:·:=:·:·:·:-:-·.·.·.·.·.·.·.·.·.·.·.·.··:·:·:·:·:;;;;.;;;.;;;:;.;-:-:·:·:·:·:·:·:·:·:·:·:·:·::;:;.;:;.;.;:;;:;:,;:.;.~~·::::::::;.;:;:;.;:;;:.;.~:·:«>:·:~:;::;:;;.;:;:;:;::::.:::-:-:·F. 

Related vectors 
None 

1-468 

Conv9fSions 

:-::.:-:-:. :·:·:·:·:·:·:·:.:.:·:·: ·:·:;;;;.:;;:;.;:;.;.;.;:;.;.;--::::::::::::;:;:;.;:;.;-:-:-:·:·:·:·:·:·:·;.::;:;:; :·:·:·:;:,;:;:;:;:;:;:;:;:;.;:;:;:;:;.;-:-:·:· ••• ·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·::;.;.;:;:;.;.;:;:;:;:;:;:;.;.;:;.;.;:;.;.;.;.:-:·:·:-:·:·:.:-:::-:·:·::;.;.;::::::::·:•:o:-:-::;.;;; 

*Commands 
*Echo 

Displays a string on the screen (after translating it using OS_GS'Ihlns) 

Syntax 

* Echo string 

Parameters 
string string to display 

Use 
'Echo takes the string following it. translates It using OS_CSThans. and then 
displays it on the screen. 

The main use for 'Echo Is In command scripts, where the command provides a 
useful way of checlting the progress of a script. especially when debugging a faulty 
script. or when monitorfll8 the progress of a series or operations. 

Example 
*Echo JGError! IM 

Related commands 
None 

Related SWis 
None 

Related vectors 
None 

1-469 



·Eva/ 
·:; :;:;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:; :;:;:;.;:;:;.;:;:;:;. ;.;:;:;:;:;:;;;:;.;:;.;.;;;.;.;.;.;:;. ;:;.;.;.; :;:;: ;:;:;:;:;:;:::::::; :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.;:;:; :;:;:;:;.;.;:;:;.;.;:;:;:;.;.;;;:;.;:;.;:;:;.~;;:::::::;.;:::x.;:::~Z!~.$:;:;::::::;:;;:::.;$:;:;::;:;:;:: 

1-470 

*Eva I 

Evaluates an integer, logical. bit or string expression 

Syntu 

*Eval expressi on 

Parameters 

u .. 

expression any combination of the operators listed earlier 

• Eval evaluates an integer. logical, bit or string expression, carrying out type 
conversions where necessary. in a similar way to the BASIC EVAL command. It will 
not handle floating point numbers. You can use •Eval to do simple arithmetic 
(although the desktop Calculator Is easier to use for four-function arithmetic). or to 
evaluate more complex expressions. Programmers may find the command useful 
for doing 'off-line' calculations (checking on remaining space. for example). 

See the section entitled E1111luatit'" DI'WI'•Ion on page 1-432 for a description of the 
operators that you can use. Note that monadic plus/minus operators are not 
correctly handled in RISC OS 2.0 (eg •Evalso·-3 gives a 'Missing operand' error) . 

Example 

*Rval 1 27 • 23 >> 2 
Result is an integer, value 

Related commands 

•If, •SetEval 

Related SWia 

OS_EvaluateExpression (SWI &20) 

Related vectors 

None 

730 

Conv8fSions 

::::::::: ::::::::::::::::::.:::::;:::::::=:·: ::::::::::::::::::;::::::::: :::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::: =:=:=:=:=:=:=:=:=:=:=:=:·:=:.:-x::.:«=:=:=:=::::::::::::::::::::~;-.. -x-.:::.-:;:-~:=:=:·:=:=:=::x~·:=:=:·:=:=:=::::::::::~ 

*If 

Conditionally executes a • Command, depending on the value of an expression 

Syntax 

*I f expression Then command (El se command) 

Parameters 

Uae 

expression 
command 

an integer expression 
any valid • Command 

•If conditionally executes a • Command, depending on the value of an expression. 
The expression can be any Integer expression. Including (If necessary) variable 
names enclosed In angled brackets. 

The expression is evaluated by the operating system's expression evaluation. If the 
If-expression evaluates to a non-zero value, the 'nlen-d ause Is executed. If the 
If-expression evaluates to zero, and there Is an Else-dause, the Else-dause is 
evaluated. 

If you wish to compare a variable to a string both must be enclosed In double 
quotes to ensure a string comparison is performed; see the first example. 

See the section entitled E..-l,..tioM opmtors on page 1·432 for a description of the 
operators that you can use. 

Example 

*If .. <nama>"' a "'Michae l"' Then ech-o Hi Ml ke ! 11M &eho Go tway <narro> ! 

If <Sys$Year>• l 911 The n kun Cal endar 

Related commands 

•Eval 

Related SWia 

None 

Related vectors 

None 

1-471 



(\1
 

~ .,.... 



x~x:::::::::::::::::::;:::::x;::::~:-::::::::::::::::::::::::::::::::::::::::;.~::!>:;:;:":::~~;:~:~:::::::::::::::.:::::-:::::::~::::::::.:::::::::=:::+%:::::::::::::;:;:.."'<"'"..:::;:'-:;:.::::::::::::::::::::;;:;;~~-=·:+-:·:=:::::*o:o:::::::~ 

19 Extension ROMs 
~::::::..:~~"*«="~::::::::::::..::::-'::::.~~=~:!::::::::::::::;;::::::r.::: ::::::::::::::::::=::~~:::::::::::>>.::--:"-:::::r~:::::::::::::::::::::=:::::::::::::::::::::::::::=:::::::::::::::::::::~::: :::::::::::::=~:=:=:::::: :=:::::=~:::::::-.::::X$.-::;::::::::::;; ::::::::::~x:::::::~:::--::s 

Extension ROMs are ROMs fitted In addition to the main ROM set. which provide 
sortware modules which are automatically loaded by RISC OS on a reset. Note that 
RISC OS 2.0 doe. 11ot tlppolt exte11-'oa ROMe. 

Using extension ROMs. you can add extra modules to RISC OS. or provide 
replacement modules for those already In RISC OS. 

It is the Expansion Card Manager's responsibility to re<::Otnise extension ROMs. 
For it to do so, your extension ROMs need to ha~~e headers. which are detailed In 
the chapter entitled E.,.NsioN Canis artll EmNsioft ROMS on page 6-85. This chapter 
also gives details of the software that RISC OS provides to manage and 
communicate with extension ROMs (and. of course. expansion cards). Expansion 
cards and extension ROMs are covered together because both use substantially 
the same layout of code and data. and the same SWis. 

It is the kernel's responsibility to load any relocatable modules from any extension 
ROMs- once the Expansion Card Manager has recosnised them. The chapter 
entitled M~wlts on page 1· 191 gives details of how the modules are loaded on a 
reset. It also tells you how to write the relocatable modules held in extension 
ROMs. 

1-473 



:111 

·Ill Ill 

I t 


