
~
 e) 0 ~ ~ ~ tT

1
~
 -

(f
)

G

~

~
~

(f
)

c a
()

(D

~

0
~

tT
1

~

~
(f

)
~

n tT
1 ~

f.~

~
~~

c
i

t::;

~~
~

>

~

RISC OS

PROGRAMMER'S REFERENCE MANUAL
Volume III

ii

Copyright© Acorn Computers Limited 1989

Neither the whole nor any part of the information contained in, or the product
described in this manual m::~y be adapted or reproduced in any material form
except with the prior written npproval of Acorn Computers Limited.

The product described in this manual and products for use with it are subject
to continuous development and improvement. All information of a technical
nature and particulars of the products and their u--c (including the information
and particulars in this manual) arc given by Acorn Computers Limited in
good faith. However, Acorn Computers Limited c:~nnot accept any liability for
any loss or damage arising from the use of any information or particulars in
this manual.

All correspondence should be addressed to:

Customer Service
Acorn Computers Limited
Fulbourn Road
Cambridge CB 1 4)N

Information can also be obtained from the Acorn Support Information
Database (SID). This is a direct dial viewdata system available to registered
SID users. Initially, access SID on Cambridge (0223) 243642: this will allow
you to inspect the system and usc a response frame for registration.

Within this publication, the rerm 'BBC' is used as an abbreviation for 'British
Broadcasting Corporation'.

ACORN, ACORNSOFf, ACORN DESKTOP PUBLISHER, ARCHIMEDES,
ARM, ARTHUR, ECONET, MASTER, MASTER COMPACT, THE TUBE,
VIEW and VIEWSHEET arc trademarks of Acorn Computers Limited.

DBASE is a trademark of A~hton Tate Ltd
EPSON is a trademark of Epson Corporation
ETHERNET is a trademark of Xerox C'-Orporation
LASERJET is a trademark of Hewlett-Packard Company
LASER WRITER is a trademark of Apple C'.-omputer Inc
LOTUS 123 is a trademark of The Lotus Corporation
MULTISYNC is a trademark ofNEC Limited
POSTSCRIPT is a trademark of Adobe Systems Inc
SUPER CALC is a trademark of C'-amputer Associates
UNIX is a trademark of AT&T
1ST WORD PLUS is a trademark of GST Holdings Ltd

Edition I
Published 1989: Issue I
ISBN I 85250 062 X
Published by Acorn Computers Limited
Part number 0483,022

Contents

About this manual

Part 1: Introduction An introduction to RISC OS 3
ARM Hardware 7
An introduction to SWis 21
* Commands and the CLI 31
Generating and handling errors 37
OS_Byte 43
OS_ Word 51
Software vectors 55
Hardware vectors 85
Interrupts and handling them 91
Events 113
Buffers 125
Communications within RISC OS 135

Part 2: The kernel Character output 149
VDU drivers 207
Sprites 379
Character input 461
Time and date 549
Conversions 579
The CLI 613
Modules 621
Program Environment 729
Memory Management 773
The rest of the kernel 815

Contents iii

Part 3: Filing systems

Part 4: The Window
manager

Part 5: System
extensions

Appendices

Tables

iv

Econet
Hourglass
NetStatus
Colour Trans
The Font Manager
Draw module
Printer Drivers
The Sound system
WaveSynth
Expansion Cards
International module
Debugger
Floating point emulator
SheiiCLI
Command scripts

ARM assembler
Linker
Procedure Call standard
ARM Object Format
File formats

YOU codes
Modes
File types
Character sets

831 .
100'7 .

.. 1051 . . . ·.

1067
1015
1105 ·.· ..
1117
1119

1125 .

1333
1389
1397
1399
1425
1487
1513
1571
1633
1635
1665
1679
1695
1709
1713

1723
1743
1749
1771
1787

1815
1817
1819
1823

. :·:.; .. .

m
. this
vOlUme'

Contents

Part 3 ,. Filing systems

829

830

FileSwitch

Introduction

FileSwitch: Introduction

RISC OS uses filing systems to organise and access data held on external
storage media. Several complete filing systems are provided as standard:

• Advanced Disc Filing System (ADFS) for use with both floppy and hard
disc drives.

• Network Filing System (NetFS) for controlling your access to Econet file
servers

• RAM Filing System (RamFS), for making memory appear to be a disc

• NetPrint, for controlling Econet printer servers.

Other modules provide extra filing systems:

• the Desktop filing system contains resource files needed by the Window
manager and ROM-resident Desktop utilities

• the SystemDevices module provides various device drivers.

FileSwitch provides services common to all filing systems. It communicates
with the filing systems using a defined interface; it uses this to tell the filing
systems when they must do things. It also switches between the different filing
systems, keeping track of the state of each of them.

831

Overview

Switching between filing
systems

Accessing hardware

Adding fil ing systems

Data format

FileCore

832

FileSwitch is a module that provides a common core of functions used by all
filing systems. It only provides the parts of these services that are device
independent.

One of the main tasks that FilcSwitch handles is keeping track of what filing
systems are active, and switching between them as neccss-.1ry. Much of the
housekeeping part of the task is done for you; you just have to tell FileSwitch
what to do.

Obviously, FileSwitch cannot know how to control every single piece of
hardware that gets added to the system. The hardware is instead controlled
by filing system modules that get added to the system. When these modules
are initialised, they tell FileSwitch their name, where to find their routines
for controlling the hardware, and any special actions they are capable of.

Some calls you make to FileSwitch don't need to access hardware, and it
deals with these itself. Other calls do need to access hardware; FileSwirch
docs the portion of the work that is independent of this, and calls a filing
system module to access the hardware.

You can add filing system modules to the system, just as you can add any
other module. They have to conform to the standards for modules, set out in
the chapter entitled Modules; they also have to meet certain other standards to
function correctly with FileSwitch as a filing system.

Because FileSwitch is already doing a lot of the work for you, you will have
less work to do when you add a filing system than would otherwise be the
case. Full details of how to add a filing system ro FileSwitch are set out in
the Appliauion notes at the end of this chapter.

FileSwitch does not .ay down the format in which <bta must be laid out on a
filing system, but it docs specify what the user interf:-~ce should look like.

One of the filing system modules that RISC OS provides is FilcCore. lr rakes
the normal calls that FileSwitch sends to a filing system module, and converts
them to a simpler set of c<llls to modules that control the hardware. So, like

FileSwitch: Overview

How filing systems are
related

FileSwitch: Overview

FilcSwitch, it provides a common core of functions that arc device
independent, and it communicates with secondary modules that access the
hardware.

Using FilcCore to build part of your filing sysrcm imposes a more rigid
structure on it, as more of the filing system is predefined. The filing system
will appear very similar to ADFS or RamFS, both of which usc FilcCorc. Of
course, if you use FilcCore to write a filing sysrcm it will be even less work
for you, as even more of the system is already written.

For full details of using FilcCorc to implement a filing system, sec the next
chapter entitled FileCore.

The diagram below shows how filing system modules arc related in RISC OS:

NelFS

Ale Switch

.;;:''•'•'

Your .,
filng ..
system

. I

··---· I

' ' ' '
'

Your
FileCore

. ~ystem

833

Technical Details

Terminology

Filenames

834

The following terms are used in the rest of this chapter:

• a file is used to store data; it is distinct from a directory

• a directory is used to contain files

• an object may be either a file or a directory

• a pathname gives the location of an object, and may include a filing
system name, a special field, a media name (eg a disc name), directory
name{s), and the name of the object it~clf; each of these parts of a
pathname is known as an element of the pathname

• a full pathname is a path name that includes all relevant elements

• a leafname is the last element of a full path name.

Filename elements may be up to ten charncters in length on FileCore-bascd
filing systems (such as ADFS) and on NeeFS. These characters may be digits
or letters. FileSwitch makes no distinction between upper and lower case,
although filing systems can do so. As a general rule, you should not usc top
bit-set characters in filenames, although some filing systems (such as FileCore
based ones) support them. You may use other characters provided they do not
have a special significance. Those that do are listed below:

Separates directory specifications, eg $.fred
Introduces a drive or disc specification, eg :0, :welcome

It also marks the end of a filing system name, eg adfs:
Acts as a 'wildcard' to match zero or more charncters, cg prog*
Acts as a 'wildcard' to match any single character, eg $.ch##

$ is the name of the root directory of the disc

*

& is the user root directory (URD)
@ is the currently-selected directory (CSD)
" is the 'parent' directory
% is the currently-selected library directory (CSL)
\ is the previously-selected directory (PSD - available on FilcC'...ore

based filing systems, and any others that choo~e to do so)

FileSwitch: Technical Details

Directories

Filing systems

Special fields

FileSwitch: Technical Details

You may group files together into directories; this is particularly useful for
grouping together all files of a particular type. Files in the directory
currently selected may be accessed without reference to the directory name.
Filenames must be unique within a given directory. Directories may cont:Jin
other directories, leading to a hierarchical file stmcture.

The root directory, $, forms the top of the hierarchy of the media which
contains the CSD. Through it you can access all files on that media. $ docs not
have a parent directory. Trying to access its parent will just access $. Note
also that files have access permissions associated with them, which mt~y
restrict whether you can actually read or write to them.

Files in directories other than the current directory may be accessed either by
making the desired directory the current directory, or by prefixing the
filename by an appropriate directory specification. This is a sequence of
directory names starting from one of the single-character directory names
listed above, or from the current directory if none is given.

Each directory name is separated by a'.' character. For example:

$.Documents.Memos
BASIC.Games.Adventures

%. BCPL

File Memos in dir Documents in$
File Adventures in dir Gt~mes in dir
@.BASIC
File 13CPL in the current library

Files may also be t~cccsscd on filing systems other rht~n the current one by
prefixing the filcnt~me with a filing system specification. A filing system
name may appear between'- ' characters, or suffixed by a':'. For cx<~mplc:

-net-$.SystemMesg
adfs:%.AAsm

You are strongly advised to usc the latter, as the character '- ' can also be
used to introduce a parameter on a command line, or as part of a file name.

Special fields arc used to supply more information to the filing system than
you can using standard path names; for example NetFS and NctPrint use
them them to specify server addresses or names. They are introduced by a #

character; a variety of syntaxes <~rc possible:

835

Current selections

File attributes

836

netfMJHardy::discl.mike
fMJHardy::discl.mike

-netfMJHardy-:discl.mike
-#MJHardy-:discl.mike

The special fields here are all MJHardy, and give the name of the fileserver
to usc.

Special fields may use any character except for control ch:1racrers, double
quote '."', solidus 'I' and space. If a special field contains a hyphen you may
only usc the first two syntaxes given above.

Special fields are passed to the filing system as null-terminated strings, with
the '#' and trailing ':' or '-' stripped off. If no special field is specified in a
pathname, the appropriate register in the FS routine is set to zero. See below
for details of which calls may take special fields.

FileSwitch keeps track of which filing system is currently selected. If you
don't explicitly tell FileSwitch which filing system to use, it will usc the
current selection. Each filing system keeps an independent record of its own
current selections, such as its CSI\ CSL, PSD and URD.

The top 24 bits of the file attributes are filing system dependent, eg NetFS
returns the file server date of creation/modific:Jtion of the object. The low
byte has the following interpretation:

Bit

0
1
2
3
4
5
6
7

Mcanin~ if set

Object has read access for you
Object has write access for you
Undefined
Object is locked against deletion
Object has read access for others
Object has write access for others
Undefined
Undefined

FileSwitch: Technical Details

Addresses I File types
and date stamps

Load and execution
addresses

File types and date
stamps

FileSwitch : Technical Details

ADFS and RamFS ignore the settings of bits 4 and 5, but you can still set
these attributes independently of bits 0, 1 and 3. This is so that you can freely
move files between ADFS, RamFS and NetFS without losing information on
their public read and write access.

You should clear bits 2, 6 and 7 when you create file attributes for a file.
They may be used in the future forexpansion, so any routines that update the
attributes must not alter these bits, and any routines that read the attributes
must not assume these bits arc clear.

All files have (in addition to their name, length and attributes) two 32-bit
fields describing them. These are set up when the file is created and have two
possible meanings:

In the case of a simple machine code program these are the load and
execution addresses of the program:

Load address
Execution address

XXXLLLLL
GGGGGGGG

When a program is *Run, it is loaded at address &XXXLLLLL and
execution commences at address &GGGGGGGG. Note that the execution
address must be within the program or an error is given. That is:

XXXLLLLL ~ GGGGGGGG < XXXLLLLL + Length of file

Also note that if the top twelve bits of the load address are all set (ie 'XXX'
is FFF), then the file is assumed to be date-stamped. This is reasonable
because such a load address is outside the addressing range ci the ARM
processor.

In this case the top 12 bits of the load address are all set. The remaining bits
hold the date/time stamp indicating when the file was created or last
modified, and the file type.

The date/time stamp is a five byte unsigned number which is the number of
centi-seconds since 00:00:00 on 1st Jan 1900. The lower four bytes arc stored in
the execution address and the most-significant byte is stored in the least
significant byte of the load address.

837

Additional information

Load-time and run
time system variables

An example of LoadType

838

The remaining 12 bits in the load address arc u~d to store information about
the file type. Hence the format of the two addresses is as follows:

Load address
Execution address

FFFtttdd
dddddddd

where'd' is part of the date and 't' is part of the type.

The file typeS are split into three categories:

Value Meaning

Reserved for Acorn use &EOO • &FFF
&800 · &OFF
&000 . &7FF

For allocation to software houses
Free for the user

For a list of the file typeS currently defined, sec the T:~hlc cntided File types.

If you type:

Show File$~ype_

you will get a list of the file types your computer currently knows about.

Some filing systems may store additional information with each file. This is
dependent on the implementation of the filint: system.

When a date stamped file of type ttt is *LOADed or *RUN, FileSwitch
looks for the variables Alias$@LoadType_m or Alias$@RunType_ttt
respectively. If a variable of string or macro type exists, then it is copied
(after macro expansion), and the full pathname is used to find the file either
on File$Path or Run$Path . Any parameters passed are also appended for
*Run commands. The whole string is then passed to the operating system
command line interpreter using XOS_CLI.

For example, suppose you type

*LOAD mySprites

where the type of the file mySprites is &FF9. FilcSwitch will issue:

*@LoadType_FF9 mySprites

FileSwitch: Technical Details

An example of RunType

Default settings

Flle$Path and Run$Path

FileSwitch: Technical Details

The value of the variable Alias$@LoadType_FF9 is SLoad %*0 by
default, so the CLI converts the command via the alias mechanism to:

*SLoad mySprites

Similarly, if you typed:

*Run BasicProg parm1 parrn2

where BasicProg is in the library, and its file type is &FFB. FileSwitch
would issue:

*@RunType_FFB %.BasicProg parm1 parm2

The variable Alias$@LoadType_FFB is Basic -quit I " %0 I " %*1 by
default, so the CLI converts the command via the alias mechanism to:

*Basic -quit " %.BasProg" parml parm2

The filing system manager sets several of these variables up on initialisation,
which you may override by setting new ones.

In the case of BASIC programs the settings are made as follows:

*SET Alias$@LoadType_FFB Basic -load 1"%01" %*1
*SET Alias$@RunType_ FFB Basic -quit 1" %0 1" %*1

You can set up new aliases for any new types of file. For example, you could
assign type &123 to files created by your own wordprocessor. The variables
coold then take be set up like this:

*SET Alias$@LoadType_ 123 WordProc %*0
*SET Alias$@RunType_123 WordProc %*0

There are two more important variables used by FileSwitch. These control
exactly where a file will be looked for, according to the operation being
performed on it. The variables arc:

File$ Path
Run$ Path

for read operations
for execute operations

839

Default values

Specifying filing system
names

Resulting filenames

840

The contents of each variable should expand to a list of prefixes, separated
by commas.

When FilcSwitch performs a read operation (eg load a file, open a file for
input or update), then the prefixes in File$Parh ;~rc used in the order in which
they are listed. The first object that matches is u~d. whether it be a file or
directory.

Similarly, when FilcSwitch tries to execute a file ("'RUN or "'<filename> for
example), the prefixes listed in Run$Path arc u~d in order. If a matching
object is a directory then it is ignored, unless it contains a !Run file. The first
file, or directory.!Run file that matches is used.

Note that the search paths in these two variables are only ever used when the
pathname passed to FilcSwitch does not contain an explicit filing system
reference. For example, "'RUN file would usc Run$Path, bur "'RUN adfs:file
wouldn't.

By default, Filc$Path is set to the null string, and only the current directory is
searched. Run$Path is set ro ',%.', so the current directory is searched first,
followed by the library.

You can specify filing system names in the ~arch paths. For example, if
FileSwitch can't locate a file on the ADFS you could make it look on the
fileserver using:

SET File$Path , %. ,NET:LIB.,NET:MODULES .

This would look for:

@.file, %.fi le, NET:Lll3"'.filc and NET:MODULES.file.

If after expansion you get an illegal filename it is not searched for. So if you
had set Run$ Path like this:

*Set Run$Path adfs:,,net:, %.,!

then:

*Run $.mike

FileSwitch: Technical Details

Avoiding using File$Path
and Run$Path

Using other path
variables

System devices

FileSwitch: Technical Details

would search in tum for adfs: $.mike, $.mike and net:$. mike, but not
for%.$. mike or ! $.mike as they are illegal.

Path variables may expand to have leading and trailing spaces around
elements of the path, so:

*Set Run$Path adfs:$. net:%.

is perfectly legal. If you attempt to parse path variables, you must be aware
of this and cope with it.

Certain SWI calls also allow you to specify alternative path strings, and to
perform the operation with no path look-up at all.

You can set up other path variables and use them as pseudo filing systems.
For example if you typed:

*Set Basic$Path adfs:S . basic,net:$.basic

you could then refer to the pseudo filing system as Basic: or (less
preferable) as -Basic-.

These path variables work in the same way as File$Path and Run$ Path.

In addition to the filing systems already mentioned, the module
SystemDevices provides some device-oriented 'filing systems' . These can be
used in redirection specifications in * Commands, and anywhere else where
byte-oriented file operations are possible. The devices provided are:

kbd: & rawkbd: the keyboard
null: the 'null device'
printer: the printer
serial: the serial port
vdu: & rawvdu: the screen

The NetPrint module also provides a system device:

netprint: the network printer

For full details, see the chapters entitled System devices and NetPrint.

841

Re-entrancy

lnperrupt code

FlleSwltch and the
kernel

Further calls

842

FileSwitch can cope fully with recursive calls made to different streams -
whether through the same or different entry points. For example:

• Handle 254 is an output file on a disc that's been removed.

• Handle 255 is a spool file .

You call OS_BPut to put a byte to 254; this fills the buffer and causes a
flush to the filing system.

2 The filing system generates an UpCall to inform that the media is
missing.

3 An UpCall handler prints a message asking the user to supply the media.

4 This goes through OS_BPut to 255, filling the buffer and causing a flush
to the filing system.

If the filing systems arc different then both calls to OS_BPut will work as
expected. If they are the same, then it is dependent on the filing system
whether it handles it. FilcCore based systems, for example, do not.

You must not call the filing systems from interrupt code; ADFS in particular
gives an error if you try to do so.

FileSwitch is assembled with the kernel, and may effectively be considered
as part of it. Some of the *Commands and SWI calls listed below are
provided by the kernel, and some by the FilcSwitch module; they are
grouped together here for ease of reference.

As well as the kernel and FileSwitch, the appropriate filing system module
must be present for these commands to work, as it will carry out the low
level parts of each of the calls you make.

In addition to the calls in this section, there arc OS_Bytes to read/write the
*Spool and *Exec file handles. See the chapters Character outtyu.t and
Character intmt respectively for derails.

FileSwitch: Technical Details

SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

FileSwitch: SWI calls

OS_Byte 127
(SWI &06)

Tells you whether the end of an open file has been reached

RO = 127
Rl =file handle

RO preserved
R I indicates if end of file has been reached
R2 undefined

Interrupts are disabled
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

This call tells you whether the end of an open file has been reached, by
checking whether the sequential pointer is equal to the file extent. It uses
OS_Args 5 to do this; you should do so too in preference to using this call,
which has been kept for compatibility only. See OS_Find below for details
of opening a file. The values returned in Rl are as follows:

Value Meaning

0 End of file has nor been reached
Not 0 End of file has been reached

OS_Args 5 (SWI &09), OS_Find (SWI &00)

ByteY

843

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

844

Selects file options (as used by •Opt)

RO = 139
Rl =option number (first •orr argument)
R2 = option value (second *OPT argument)

RO preserved
Rl, R2 undefined

Interrupts are disabled
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

OS_Byte 139
(SWI &06)

This call selects file options. It uses OS_FSC'-nntrol 10 to do this. It is
equivalent to •OPT which is documented in dctt~il in the next section on
•commands .

OS_FSControl 10 (SWl &29)

ByteY

FileSwitch: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

~elated vectors

-=ileSwitch: SWI calls

OS_Byte 255
(SWI &06)

Reads the current auto-boot flag setting, or temporarily changes it

RO = 255
RI = 0 or new value
R2 = &FF orO

RO preserved
R I = previous value
R2 corrupted

Interrupts are disabled
Fast interrupts arc enabled

Processor is in SVC mode

SWI is not re-entrant

This call reads the current auto-boot flag set~, or changes it until the next
hard reset or hard break. The auto-boot flag de'lltults to the value configured
in the Boot/NoBoot option. If NoBoot is set, then, when the machine is reset, no
auto-boot action will occur (ie no attempt will be made to access the boot file
on the filing system). If Boot is the configured option, then the boot file will
be accessed on reset. Either way, holding down the Shift key while
releasing Reset will have the opposite effect to usual.

With this OS_Byte you can read the current state. On exit, if bit 3 of R I is
clear, then the action is Boot. If it is set, then the action is Nol3oot.

The effect can be changed by writing to bit 3 of the flag, but this only lasts
until the next hard reset or hard break. You should preserve the other bits of
the flag.

None

ByteV

845

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

846

OS File
(SWI &08)

Acts on whole files, either loading a file into memory, saving a file from
memory, or reading or writing a file's attributes

RO = reason code
Other registers depend on reason code

RO corrupted
Other registers depend on reason code

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

OS_File acts on whole files, either loading a file into memory, saving a file
from memory, or reading or writing a file's attributes. The call indirects
through FileV.

The particular action of OS_Filc is given by the low byte of the reason code
in RO as follows:

RO

0
1
2
3
4
5
6
7
8
9
10
11

Action

Saves a block of memory as a file
Writes catalogue information for a named object
Writes load address only for a named object
Writes execution address only for a named object
Writes attributes only for a named object
Reads catalogue information for a named object, using File$Path
Deletes a named object
Creates an empty file
Creates a directory
Writes date/time stamp of a named file
Saves a block of memory as a file, and date/time stamps it
Creates an empty file, and time/date stamps it

FileSwitch: SWI calls

Related SWis

Related vectors

FileSwitch: SWI calls

12 Loads a named file, using specified path string
13 Reads catalogue information for a named object, using specified path

string
14 Loads a named file, using specified path variable
15 Reads catalogue information for a named object, using specified path

variable
16 Loads a named file, using no path
17 Reads catalogue information for a named object, using no path
18 Sets file type of a named file
19 Generates an error message
255 Loads a named file, using File$Path

For details of each of these reason codes, see below.

FileSwitch will check the lcafname for wildcard characters (* and #) before
some of these operations. These are the ones which have a 'destnJctive' effect,
eg deleting a file or saving a file (which might overwrite a file which already
exists). If there are wildcards in the lcafname, it returns an error without
calling the filing system.

Non-destructive operations, such as loading a file and reading and wntmg
attributes may have wildcards in the leafname. However, only the first file
found (in ASCII order of file name) will be accessed by the operation.

None

FileV

847

On entry

On exit

Use

848

Save a block of memory as a file

RO = Oor 10
R1 =pointer to non-wild-leaffilename
!fRO = 0

R2 = load address
R3 = execution address

!fRO = 10
R2 = file type (bits 0 - 11)

R4 = start address in memory of data
RS =end address in memory of data

Registers preserved

OS File 0 and 10
(SWI &08)

These calls save a block of memory as a file, setting eirher its reload and
execution addresses (RO = 0), or its date/time stamp and file type (RO = 10).

An error is returned if the object is locked against deletion, or is already
open, or is a directory.

Sec also OS_File 7 and 11 (which are documented together); these create an
empty file, ready to receive data.

FileSwitch: SWI calls

On entry

On exit

Use

FileSwitch: SWI calls

OS_File 1, 2, 3, 4, 9, and 18
(SWI &08)

Write catalogue information for a named object

RO = 1, 2, 3, 4, 9, or 18
Rl =pointer to (wildcarded) object name
lfRO = 1 or 2

R2 = load address
Else ifRO = 18

R2 = file type (bits 0 - 11)
lfRO = 1 or 3

R3 = execution address
lfRO = 1 or 4

RS = object attributes

Registers preserved

These calls write catalogue information for a named object to its catalogue
entry, as shown below:

RO Information written

1 Load address, execution address, object attributes
2 Load address
3 Execution address
4 Object attributes
9 Date/time stamp; file type is set to ~FFD if not set already
18 File type, and date/time stamp if not set already

If the object name contains wildcards, only the first object matching the
wildcard specification is altered.

ADFS (and other FileCore filing systems) can write a directory's attributes;
they do not generate an error if the object doesn't exist.

NetFS generates an error if you try to write a directory's attributes, or if the
object doesn't exist.

849

On entry

On exit

Use

850

OS_File 5, 13, 15 and 17
(SWI &08)

Read catalogue information for a named object

RO = 5, 13, 15 or 17
Rl =pointer to (wildcarded) object name
lfRO = 13

R4 = pointer to control-character terminated path string
!fRO= 15

R4 = pointer to path variable, containing control-character terminated
path string

RO = object type
Rl preserved
R2 = load address
RJ = execution address
R4 = object length
R5 = object attributes
(R2 - R5 corrupted if object not found)

The load address, execution address, length and object attributes from the
named object's catalogue entry are read into registers R2, R3, R4 and R5. The
value ofRO on entry determines what path is used to search for the object:

RO Path used

5 File$Path system variable
13 string pointed to by R4
15 variable poinred to by R4
17 none

On exit, RO contains the object type:

RO

0
1
2

Type

Not found
File found
Directory found

FileSwitch: SWI calls

FileSwitch: SWI calls

If the object name contains wildcards, only the first object matching the
wildcard specification i:. read.

851

On entry

On exit

Use

Deletes a named object

RO = 6
R I = pointer to non-wildcardcd object name

RO =object type
R 1 preserved
R2 = load address
R3 = execution address
R4 = object length
RS = object attributes

OS File 6
(SWI &08)

The information in the named object's catalogue entry is transferred to the
registers and the object is then deleted from the structure. It is not an error if
the object does not exist.

An error is generated if the object is locked against deletion, or if it is a
directory which is not empty, or is already open.

NeeFS behaves unusually in two ways:

• it always sets bit 3 ofRS on return (the object is 'locked')

• it returns the object's type as 2 (a directory) if it is successfully deleted.

852 FileSwitch: SWI calls

On entry

On exit

Use

FileSwitch: SWI calls

Creates an empty file

RO = 7 or 11
Rl =pointer to non-wild-leaf file name
!fRO= 7

R2 = reload address
R3 = execution address

!fRO= 11
R2 = file type (bits 0 - 11)

R4 =start address (normally set to 0)

OS_File 7 and 11
(SWI &08)

R5 = end address (normally set to length of file)

Registers preserved

Creates an empty file, setting either its reload and execution addresses (RO =
7), or its date/time stamp and file type (RO = 11).

Note: No data is transferred. The file does not necessarily contain zeros; the
contents may be completely random. Some security-minded systems (such as
NetFS/FileStore) will deliberately overwrite any existing data in the file.
Other filing systems (such as ADFS) do not, so you can recover data after
accidental deletion by creating small empty files that fill the rest of the disc.
These will between them contain the lost data.

An error is returned if the object is locked against deletion, or is already
open, or is a directory.

See also OS_File 0 and 10 (which are documented together); these save a
block of memory as a file.

853

On entry

On exit

Use

854

Creates a directory

RO == 8
Rl ==pointer to non-wild-leaf object name
R4 = number of entries (0 for default)

Registers preserved

OS File 8
(SWI &08)

R4 indicates a minimum suggested number d entries that the created
directory should contain without having to be extended. Zero is used to set the
default number of entries.

Note: ADFS and other Filc\...ore-based fi ling systems ignore the number of
entries parameter, as this is predetermined by the disc format.

An error is returned if the object is a file which is locked against deletion. It
is not an error if it refers to a directory that already exists, in which case the
operation is ignored.

FileSwitch: SWI calls

On entry

On exit

Use

FileSwitch: SWI calls

OS_File 12, 14, 16 and 255
(SWI &08)

Load a named file

RO = 12, 14, 16 or 255
Rl =pointer to (wildcarded) object name
If bottom byte of RJ is zero

R2 =address to load file at
R3 = 0 to load file at address given in R2, else bottom byte must be non-zero
IfRO = 12

R4 = pointer to control-character terminated path string
IfRO = 14

R4 = pointer to path variable, containing control-character terminated
path string

RO = object type. (always 1, since object is a file)
R 1 preserved
R2 = load address
R3 = execution address
R4 =file length
R5 = file attributes

These calls load a named file into memory. The value of RO on entry
determines what path is used to search for the file:

RO Path used

12 string pointed to by R4
14 variable pointed to by R4
16 none
255 Filc$Path system variable

If the object name contains wildcards, only the first object matching the
wildcard specification is loaded.

You must set the bottom byte of RJ to zero for a file that is date-stamped,
and supply a load address in R2.

855

I :•,•

::··

856

An error is generated if the object does not exist, or is a directory, or does not
have read access, or ir is a date-stamped file for which a load address was
not correctly specified.

FileSwitch: SWI calls

On entry

On exit

Use

FileSwitch: SWI calls

Generates an error message

RO = 19
Rl =pointer to object name to report error for
R2 = object type

RO = pointer to error block
V flag set

OS File 19
(SWI &08)

This call is used to generate a friendlier error message for the specified
object, such as:

"File 'xyz' not found"
"'xyz' is a file"
"'xyz' is a directory"

An example of its use would be:

MOV
SWI
BVS
TEO
MOVNE
MOVNE
SWINE
BVS

ro , tOS r1 le_Readinfo
XOS _F'1le
flurg
RO, tobject_fi l e
r2, ro
r o, tOSF1le_Ma xeError
XOS _rile
flurg

return error if not a file

857

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

858

OS_Args
(SWI &09)

Reads or writes an open file's arguments, or returns the filing system type in
use

RO = reason code
R I = file handle, or 0
R2 = attribute to write, or not used

RO = filing system number, or preserved
R I preserved
R2 = attribute that was read, or preserved

Interrupts are enabled
Fast intemJpts are enabled

Processor is in SYC mode

SWl is re-entrant

This call indirects through ArgV. The particul:u action of OS_Args is
specified by RO as follows:

Value

0
I
2
3
4
5
6
254
255

None

ArgV

Action

Read pointcr/FS number
Write pointer
Read extent
Write Extent
Read allocated size
Read EOF status
Reserve space
Read information on file handle
Ensure file/files

FileSwitch: SWI calls

On entry

On exit

Use

FileSwitch: SWI calls

OS_Args 0
(SWI &09)

Reads the temporary filing system number, or a file's sequential file pointer

RO = 0
R 1 = 0 or file handle

RO = temporary filing system number (ifRl = 0 on entry), or preserved
R 1 preserved

R2 = sequential file pointer (if R 1 * 0 on entry), or preserved

This call reads the temporary filing system number (if Rl = 0 on entry), or a
file's sequential file pointer (if Rl * 0 on entry, in which case it is treated as
a file handle).

This call indirccts through ArgV.

859

On entry

On exit

Use

860

Writes an open file's sequential file pointer

RO =I
Rl =file handle
R2 = new sequential file pointer

RO - R2 preserved

This call writes an open file's sequential file pointer.

OS_Args 1
(SWI &09)

If the new sequential pointer is greater than the current extent, then more
space is reserved for the file; this is filled with zeros. Writing the sequential
pointer clears the file's EOF-error-on-next-read flag.

This call indirects through ArgV.

FileSwitch: SWI calls

On entry

On exit

Use

FileSwitch: SWI calls

Reads an open file's extent

RO = 2
RI =file handle

RO, Rl preserved
RZ = extent of file

OS_Args 2
(SWI &09)

This call reads an open file's extent. It indirects through ArgV.

861

On entry

On exit

Use

862

Writes an open file's extent

RO = 3
R 1 = file handle
R2 = new extent

RO - R2 preserved

This call writes an open file's extent.

OS_Args 3
(SWI &09)

If the new extent is greater than the current extent, then more space is
reserved for the file; this is filled with zeros. If the new extent is less than the
current sequential pointer, then the sequential pointer is set back to the new
extent. Writing the extent clears the file's EOF-error-on-next-read flag.

This call indirects through ArgV.

FileSwitch: SWI calls

On entry

On exit

Use

FileSwitch: SWI calls

Reads an open file's allocated size

R0 = 4
Rl = file handle

RO, Rl preserved
R2 = allocated size of file

This call reads an open file's allocated size.

OS_Args 4
(SWI &09)

The size allocated to a file will be at least as big as the current file extent; in
many cases it will be larger. This call determines how many more bytes can
be written to the file before the filing system has to be called to extend it.
This happens automatically.

This call indirects through ArgV.

863

On entry

On exit

Use

864

Reads an open file's end-of-file (EOF) status

RO = 5
Rl =file handle

RO, R 1 preserved
R2 = 0 if not EOF, else at EOF

This call reads an open file's end-of-file (EOF) st:uus.

OS_Args 5
(SWI &09)

If the sequential pointer is equal to the extent of the given file, then an end-of
file indication is given, with R2 set to non-zero on exit. Otherwise R2 is set to
zero on exit.

This call indirects through ArgV.

FileSwitch: SWI calls

On entry

On exit

Use

FileSwitch: SWI calls

Ensures an open file's size

RO = 6
Rl = file handle
R2 = size to ensure

RO - R2 preserved

This call ensures on open file's size.

OS_Args 6
(SWI &09)

The filing system is instructed to ensure that the size allocated for the given
file is at least that requested. Note that this space thus allocated is not yet
part of the file, so the extent is unaltered, and no data is written. R2 on exit
indicates how much space the filing system actually allocated.

This call indirects through ArgV.

865

On entry

On exit

Use

866

Reads information on a file handle

RO = 254 (&FE)
R1 =file handle (not necessarily allocated)

RO = stream status word
R 1 preserved
R2 =filing system information word

OS_Args 254
(SWI &09)

This call returns information on a file handle, which need not necessarily be
allocated.

The stream status word is returned in RO, the bits of which have the following
meaning:

Bit Meaning when set

13 Data lost on this stream
12 Stream is critical (see below)
11 Stream is unallocated (sec below)
10 Stream is unbuffered
9 Already read at EOF (EOF-error-on-next-read flag)
8 Object written to
7 Have write access to object
6 Have read access to object
5 Object is a directory
4 Unbuffered stream directly supports GIWB
3 Stream is interactive

If bit 11 is set then no other bits in the stream status word have any
significance, and the value of the filing system information word returned in
R2 is udefined.

Any bits not in the above table are undefined, but you must not presume that
they are zero.

FiteSwitch: SWI calls

FileSwitch: SWI calls

Bit 12 shows when the stream is critical - in other words, when FileSwitch has
made a call to a filing system to handle an open file, and the filing system
has not yet returned. This is used to protect against accidental recursion on
the same file handle only.

For a full definition of the filing system information word returned in R2, see
the application notes at the end of this chapter on adding your own filing
system.

This call indirects through ArgV.

867

On entry

On exit

Use

868

OS_Args 255
(SWI &09)

Ensure a file, or all files on the temporary filing system

RO = 255
R 1 =file handle, or 0 to ensure all files on the tempornry filing system

RO - R2 preserved

This call ensures that any buffered data has been written to either all files
open on the temporary filing system (Rl = 0), or to the specified file (Rl ~ 0,
in which case it is treated as a file handle).

This call indirccts through ArgV .

FileSwitch: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

.:ileSwitch: SWI calls

Reads a byte from an open file

R l = file handle

RO = byte read if C clear, undefined if C set
R 1 preserved

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

OS BGet
(SWI &OA)

OS_BGet returns the byte at the current sequential file pointer position. The
call indirects through BGetV.

If the sequential pointer is equal to the file extent (ie trying to read at end-of
file) then the EOF-error-on-next read flag is set, and the call returns with the
carry flag set, RO being undefined. If the EOF-error-on-next-read flag is set on
entry, then an End of file error is given. Otherwise, the sequential file
pointer is incremented and the call returns with the carry flag clear.

This mechanism allows one attempt to read past the end of the fi le before an
error is generated. Note that various other calls (such as OS_I3Put) clear the
EOF-error-on-next-read flag.

An error is generated if the file handle is invalid; also if the file docs not
have read access.

OS_BPut (SWI &OB), OS_GBPB (SWl &OC)

BGetV

869

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

870

Writes a byte to an open file

RO = byte to be written
R 1 = file handle

Registers preserved

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

OS BPut
(SWI &OB)

OS_BPut writes the byte given in RO to the specified file at the current
sequential file pointer. The sequential pointer is then incremented, and the
EOF-error-on-next-read flag is cleared. The call indirccts through 13PutV.

An error is generated if the file handle is invalid; also if the file is a
directory, or is locked against deletion, or does not have write access.

OS_BGet (SWI &OA), OS_GBPB (SWI &OC)

BPutV

FileSwitch: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

FileSwitch: SWI calls

OS GBPB
(SWI &OC)

Reads or writes a group of bytes from or to an open file

RO = reason code
Other registers depend on reason code

RO preserved
Other registers depend on reason code

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call reads or writes a group of bytes from or to an open file. It indirects
through GBPBV.

The particular action of OS_GBPB is given by the reason code in RO as
follows:

RO Action

1 W rites bytes to an open file using a specified file pointer
2 W ri tes bytes to an open file using the current file pointer
3 Reads bytes from an open file using a specified file pointer
4 Reads bytes from an open file using the current file pointer
5 Reads name and boot (*Opt 4) option of disc
6 Reads current directory name and privilege byte
7 Reads library directory name and privilege byte
8 Reads entries from the current directory
9 Reads entries from a specified directory
10 Reads entries and file information from a directory
11 Reads entries and full file information from a directory

OS_BGet (SWI &OA), OS_BPut (SWI &OB)

GBPBV

871

On entry

On exit

Use

872

OS GBPB 1 and 2
(SWI &OC)

Write bytes co an open fi le

RO = 1 or 2
Rl = file handle
R2 = start address of buffer in memory
RJ =number of bytes to write
IfRO = 1

R4 = sequential file pointer to use for start of block

RO, Rl preserved
R2 = address of byte after the last one transferred from buffer
R3 "'0 (number of bytes not transferred)
R4 = initial file pointer+ number of bytes transferred
C flag is cleared

Data is transferred from memory to the file at either the specified file
pointer (RO = 1) or the current one (RO = 2). If the specified pointer is
beyond the end of the file, then the file is filled with z.eros between the
current file extent and the specified pointer before the byres are transferred.

The memory pointer is incremented for each byte written, and the final value
is returned in RZ. RJ is decremented for each byte written, and is returned as
zero. The sequential pointer ci the file is incremented for each byte written,
and the final value is returned in R4.

The EOF-error-on-next-read flag is cleared.

An error is generated if the file handle is invalid; also if the file is a
directory, or is locked against deletion, or does not have write access.

FileSwitch: SWI calls

On entry

On exit

Use

Read bytes from an open file

RO = 3 or4
Rl = file handle
R2 =start address of buffer in memory
R3 = number of bytes to read
lfRO = 3

OS_GBPB 3 and 4
(SWI &OC)

R4 = sequential file pointer to use for start of block

RO, R 1 preserved
R2 = address of byte after the last one transferred to buffer
R3 = number of bytes not transferred
R4 =initial file pointer+ number of bytes transferred
C flag is clear if R3 = 0, else it is set

Data is transferred from the given file to memory using either the specified
file pointer (RO = 3) or the current one (RO = 4). If the specified pointer is
greater than the current file extent then no bytes arc read, and the sequential
file pointer is not updated. Otherwise the sequential file pointer is set to the
specified file location.

The memory pointer is incremented for each byte read, and the final value is
returned in R2. R3 is decremented for each byte written. If it is zero on exit
(all the bytes were read), the carry flag will be clear, otherwise it is set. The
sequential pointer of the file is incremented for each byte read, and the final
value is returned in R4.

The EOF-error-on-next-read flag is cleared.

An error is generated if the file handle is invalid; also if the file is a
directory, or does not have read access.

FileSwitch: SWI calls 873

On entry

On exit

Use

874

OS_GBPB 5, 6 and 7
(SWI &OC)

Read information on a filing system

RO = 5, 6 or 7
R2 = start address of buffer in memory

RO, R2 preserved
C flag corrupted

These calls read information on the temporary filing system (normally the
current one) to the buffer pointed to by R2. The value you pass in RO
determines the nature and format of the data, which is always byte-oriented:

• If RO = 5, the call reads the name of the disc which contains the current
directory, and its boot option. It is returned as:

<name length byte><disc name><boot option byte>

The boot option byte may contain values other than 0- 3.

• If RO = 6, the call reads the name of the currently selected directory, and
privilege status in relation to that directory. It is ren1rned as:

<zero byte><name length byte><current directory name><privilege byte>

The privilege byte is &00 if you have 'owner' status (ie can create and
delete objects in the directory) or &FF if you have 'public' status {ie arc
prevented from creating and deleting objects in rhc directory). On ADFS
and other FileCore-based filing systems you always have owner status.

• If RO = 7, the call reads the name of the library directory, and privilege
status in relation to that directory. It is returned as:

<zero byte><name length byrc><library directory n;Jme><privilege byte>

NetFS pads disc and directory names to the right with spaces; other filing
systems do not. None of the names have termin<~tm!'; so if the disc name were
Mike, the name length byte would be 4.

FileSwitch: SWl calls

On entry

On exit

Use

FileSwitch: SWI calls

Reads entries from the current directory

RO = 8
R2 = start address of data in memory

OS GBPB8
(SWI &OC)

RJ = number of object names to read from directory
R4 = offset of first item to read in directory (0 for start)

RO, R2 preserved
R3 = number of objects not read
R4 = next offset in directory
C flag is clear if R3 =0, else set

This call reads entries from the current directory on the temporary filing
system (normally the current one). You can also do this using OS_GBPB 9.

R3 contains the number of object names to read. R4 is the offset in the
directory to start reading (ie if it is zero, the first item read will be the first
file). Filenames are returned in the area of memory specified in R2. The
format of the returned data is:

length of first object name
first object name in ASCII

... repeated as specified by R3 ...

length of last object name
last object name in ASCII

(one byte}
(length as specified)

(one byte)
(length as specified)

If R3 is zero on exit, the carry flag will be cleared, otherwise it will be set. If
R3 has the same value on exit as on entry then no more entries can be read
and you must not call OS_GBPI3 8 again.

On exit, R4 contains the value which should be used on the next call (to read
more names), or -1 if there are no more names after the ones read by this
call. There is no guarantee that the number of objects you asked for will be

875

876

read. This is because of the external consmints some filing systems may
impose. To ensure reading all the entries you w:Jnt to, this call should be
repeated until R4 = -1.

This call is only provided for compatibility with older programs.

FileSwitch: SWI calls

On entry

On exit

Use

File Switch: SWI calls

OS_GBPB 9, 10 and 11
(SWI &OC)

Read entries and file information from a specified directory

RO = 9, lOor 11
Rl =pointer to directory name (control-character or null terminated)
R2 =start address of clara in memory (word aligned ifRO = 10 or 11)
R3 = number of object names to read from directory
R4 =offset of first item to read in directory (0 for start)
R5 = buffer length
R6 = pointer to (wildcarded) name to match

RO - R2 preserved
R3 = number of objects read
R4 =offset of next item to read (-1 if finished)
R5, R6 preserved
C flag is clear if R3 =0, else set

These calls read entries from a specified directory. If RO = 10 or 11 on entry
the call also reads file information. If the directory name (which may contain
wildcards) is null (ie R 1 points to a zero byte), then the currently-selected
directory is read.

The names which match the wildcard name pointed to by R6 are returned in
the buffer. If R6 is zero or points to a null string then '*' is used, and all files
will be matched. R3 indicates how many were read. R4 contains the value
which should be used on the next call (to read more names), or - 1 if there arc
no more names after the ones read by this call.

There is no guarantee that the number of objects you asked for will be read.
This is because of the external constraints some filing systems may impose. To
ensure reading all the entries you want to, this call should be repeated until
R4 = -1.

If RO = 9 on entry, the buffer is filled with a list of null-terminated strings
consisting of the matched names.

877

878

IfRO = 10 on entry, the buffer is filled with records:

Offset

0
4
8
12
16
20

Contents

Load address
Execution address
Length
File attributes
Object type
Object name (null terminated)

Each record is word-aligned.

IfRO = 11 on entry, the buffer is filled with records:

Offset

0
4
8
12
16

Contents

Load address
Execution address
Length
File attributes
Object type

20
24
29

System internal name - for internal use only
Time/Date (cs since 1/1/1900) - 0 if not stamped
Object name (null terminated)

Each record is word-aligned.

Note that even if R3 returns with 0, the buffer area may still have been
overwritten: for instance, it may contain filenames which did not match the
wildcard name pointed to by R6.

An error is generated if the directory could not be found.

FileSwitch: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

9elated SWis

Related vectors

FileSwitch: SWI calls

Opens and closes files

RO = reason code
Other registers depend on reason code

Depends on reason code

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call opens and closes files.

OS Find
(SWI &OD)

If the low byte of RO = 0 on entry, then you can either close a single file, or
all files on the current filing system.

If the low byte of RO ~ 0 on entry then a file is opened for byte access. You
can open files in the following ways: · ·

• open an existing file with read access only

• create a new file with read/write access

• open an existing file with read/write access

When you open a file a unique file handle is returned to you. You need this
for any calls you make to OS_Args (SWl &09), OS_BGet (SWI &OA),
OS_BPut (SWl &OB) and OS_GBPB (SWl &OC), and to eventually close
the file using OS_Fi nd 0.

For full details of the different reason codes, sec the following pages.

None

FindV

879

On entry

On exit

Use

880

Closes files

RO=O

OS Find 0
(SWI &OD)

Rl =file handle, or zero to close all files on current filing system

Registers preserved

This call closes files. Any modified data held in RAM buffers is first written
to the file(s).

If Rl = 0 on entry, then all files on the current filing system are closed. You
should not use this facility within a program th:lt runs in a multi-tasking
environment such as the desktop, as it may close files bcin~ used by other
programs.

Otherwise Rl must contt~in a file handle, that was returned by the earlier ct~ll
of OS_Find that opened the file.

FileSwitch: SWI calls

On entry

On exit

Use

FileSwitch: SWI calls

OS_Find 64 to 255
(SWI &OD)

Open files

RO = reason code
Rl =pointer to object name
R2 =optional pointer to path string or path variable

RO =file handle, or 0 if obect doesn't exist
R 1 and R2 preserved

These calls open files. The way the file is opened is determined by bits 6
and 7 ofRO:

RO Action

&4X open an existing file with read access only
&8X create a new file with read/write access
&CX open an existing file with read/write access

In fact there is no guarantee that you will get the access that you arc seeking,
and if you don't no error is returned at open time. The exact details depend
on the filing system being used, but as a guide this is what any new filing
system should do if the object is an existing file:

RO Action

&4X Return a handle if it has read access. Generate an error if it
has not got read access.

&8X Generate an error if it is locked, or has neither read nor
write access. O therwise return a handle, and open the file
with its existing access, and with its extent set to zero.

&CX Generate an error if it is locked and has no read access, or
has neither read nor write access. Otherwise return a handle,
and open the file with its existing access.

The access granted is cached with the stream, and so you cannot change the
access permission on an open file.

Bits 4 and 5 ofRO currently have no effect, and should be cleared.

881

882

Bit 3 ci RO determines what happens if you try to open an existing file (ic RO
= &4X or &CX), but it doesn't exist:

Bit 3 Action

0 RO is set to zero on exit
1 an error is generated

Bit 2 ci RO determines what happens if you try to open an existing file (ie
RO = &4X or &CX) but it is a directory:

Bit 2 Action

0 you can open the directory but cannot do any operations on it
an error is generated

If you are creating a new file (ie RO = &8X) then an error is always
generated if the object is a directory.

Bits 0 and 1 ofRO determine what path is used to search for the file:

Bit 0 Bit 1 Path used

0 0 File$Path system variable
0 1 string pointed to by R2
1 0 variable pointed to by R2
1 none

In all cases the file pointer is set to zero. If you arc creating a file, then the
extent is also set to zero.

Note that you need the file handle returned in RO for any calls you make to
OS_Args (SWI &09), OS_AGet (SWI &OA), OS_BPut (SWI &OB) and
OS_GBPB (SWI &OC), and to eventually close the file using OS_Find 0.

FileSwitch: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

FileSwitch: SWI calls

OS FSControl
(SWI &29)

Controls the filing system manager and filing systems

RO = reason code
Other registers depend on reason code

RO preserved
Other registers depend on reason code

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call controls the filing system manager and filing systems. It is
indirected through FSControiV.

The particular action of OS_FSControl is given by the reason code in RO as
follows:

RO

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Action

Set the current directory
Set the library directory
Inform of start of new application
Reserved for internal usc
Run a file
Catalogue a directory
Examine the current directory
Catalogue the library directory
Examine the library directory
Examine objects
Set filing system options
Set the temporary filing system from a named prefix
Add a filing system
Check for the presence of a filing l'ystem
Filing system selection

883

Related SWis

Related "ectors

884

15 Boot from a filing system
16 Filing system removal
17 Add a secondary module
18 Decode file type into text
19 Restore the current filing system
20 Read location of temporary filing sy~rem
21 Return a filing ~~tern file handle
22 Close all open files
23 Shutdown filing systems
24 Set the attributes of objects
25 Rename objects
26 Copy objects
21 Wipe objects
28 Count objects
29 Reserved for internal use
30 Reserved for internal usc
31 Convert a string giving a file type to a number
32 Output a list of object names and information
33 Convert a file system number to a file system name

For details of each of these reason codes (except those reserved for internal
usc), see below.

None

FSControlY

FileSwitch: SWI calls

On entry

On exit

Use

FileSwitch: SWI calls

OS FSControl 0
(SWI &29)

Set the current directory and (optionally) filing system

RO=O
Rl =pointer to (wildcarded) directory name

Registers preserved

This call sets the current directory to the named one. If the name specifies a
different filing system, it also selects that as the current filing system. If the
name pointed to is null, the directory is set to the user root directory.

885

On entry

On exit

Use

886

Set the library directory

RO = 1

OS FSControl 1
(SWI &29)

Rl =pointer to (wildcarded) directory name

Registers preserved

This call sets the current library directory to the m1med one, which may be on
a filing system other than the currently selected one. If the name pointed to is
null, the library directory is set to the filing system default (typically
$.Library, if present).

If a library is not set on FilcCorc-based filing systems they search in order
&.Library, $.Libr-<.~ry and@, inl'tc:~d of%.

FileSwitch: SWI calls

On entry

On exit

Use

FileSwitch : SWI calls

OS FSControl 2
(SWI &29)

Informs RISC OS and the current application that a new application is starting

RO = 2
Rl =pointer to command tail to set
R2 =currently active object pointer to write
R3 = pointer to command name to set

Registers preserved - may not return

This call enables you to start up an application by hand, setting its
environment string to a particular value; and allows FileSwitch and the kernel
to free resources related to the current thread.

First of all, FileSwitch calls XOS_UpCall 255, with R2 set to the currently
active object pointer that may be written.

If the UpCall is claimed, this means that someone is refusing to let your new
application be started, so the error 'Unable to start application' is returned.

FileSwitch then calls XOS_ServiceCall &2A, with R2 set to the currently
active object pointer that may be written.

If the Service is claimed, this means that some module is refusing to let your
new application be started; however an error cannot be returned as your
calling task has just been killed, and FileSwitch would be returning to it. So
FileSwitch generates the 'Unable to start application' error using
OS_GenerateError - this will be sent to the error handler of your calling
task's parent (since your calling task will have restored its parent's handlers
on receiving the UpCaii_NewApplication).

Next, unless the Exit handler is below MemoryLimit, all handlers that are
still set below MemoryLimit are reset to the default handlers (see
OS_ReadDefaultHandler).

The currently active object pointer is then set to the value given and the
environment string set up to be that desired. The current time is read into the
environment time variable (see OS_GetEnv).

887

888

FileSwitch frees any temporary strings and tran~ient blocks it has allocated
and sets the temporary filing systc. to the current filing system

If the call returns with V clear, all is set for your task to start up the
application:

MOV RO, f rSControl_StartAppli ca~io~

LD R Rl, command_tall pt. r
LDR
BIC

R2, execu:lo~_address

R2 , R2 , f&FCOOOJOJ
!.DR R3 , comma~d_name_ptr

swi xos_rscontro l
BVS return_error

Addrc~~ w' t ~ ~o flags, USR mode

if in supervisor mode here, need to flatten svc stack
LDR Rl3, I nitSVCStack

TEOP PC, JO USR mode, interrupts enabled
MOV Rl2, 1&80000000 Ensure called app l 'n doesn' t
MOV Rl3, 1&80000000 assume a stack or wo r kspace
MOV Rl4, PC rorm return address
MOV PC, R2 En~er appl ' n: assumes CAO = exec

SWI OS Exit In case it returns

FileSwitch: SWI cans

On entry

On exit

Use

FileSwitch: SWI calls

Run a file

RO = 4
Rl =pointer to (wildcarded) filename

Registers preserved

OS_FSControl 4
(SWI &29)

This call runs a file. If a matching object is a directory then it is ignored,
unless it contains a !Run file. The first file, or directory.!Run file that matches
is used:

• A file with no type is run as an absolute application, provided its ICYJd
address is not below &8000. The environment string is set to the command
line, and the current time is read into the environment time variable - see
OS_GetEnv (SWI &10).

• A file of type &FF8 (Absolute code) is run as an absolute application,
loaded and entered at &8000. The environment string is set to the
command line, and the current time is read into the environment time
variable- see OS_GetEnv (SWI &10).

• A file of type &FFC (Transient code modules) is loaded into the RMA
and executed there. The environment string is set to the command line,
and the current time is read into the environment time variable - sec
OS_GetEnv (SWI &10). Transient calls are nestable; when a transient
returns to the filing system manager the RMA space is freed. The RMA
space is also freed (on the reset service or filing system manager death)
if the transient execution stopped abnormally, eg an exception occurred
or RESET was pressed. See the chapter entitled Program Environment for
details on writing transient utilities.

• Otherwise, the corresponding Alias$@RunType system variable is looked
up to determine how the file is run.

This call may never return. If it is starting up a new application then the
UpCall handler is notified, so any existing application has a chance to tidy
up or to forbid the new application to start. It is only after this that the new
application might be loaded.

889

890

The file is searched for using the variable Run$Parh . If this does not exist, a
path string of ',%.' is used (ie the current directory is searched first, followed
by the library directory).

You cannot kill FileSwitch while it is threaded; so if you had an Obey file
with the line:

RMKill FileSwitch

this will not work if the file is *Run, but would if you were to usc *Obey.

An error is generated if the file is not matched, or docs not have read access,
or is a date/time stamped file without a corresponding Alias$@RunT ype
variable.

FileSwitch: SWI calls

On entry

On exit

Use

FileSwitch: SWI calls

Catalogue a directory

RO = 5

OS FSControl 5
(SWI &29)

Rl =pointer to (wildcarded) directory name

Registers preserved

This call outputs a catalogue of the named subdirectory, relative to the current
directory. If the name pointed to is null, the current directory is catalogued.

An error is returned if the directory does not exist, or the object is a file.

891

On entry

On exit

Use

892

Examine a directory

RO = 6

OS FSControl 6
(SWI &29)

Rl =pointer to (wildcarded) directory name

Registers preserved

This call outputs information on all the objects in the named subdirectory,
relative to the current one. If the name pointed to is null, the current directory
is examined.

An error is returned if the directory docs not exist, or the object is a file.

File Switch: SWI calls

On entry

On exit

Use

FileSwitch : SWI calls

Catalogue the library directory

RO = 7

OS_FSControl 7
(SWI &29)

Rl = pointer to (wildcarded) directory name

Registers preserved

This call outputs a catalogue of the named subdirectory, relative to the current
library directory. If the name pointed to is null, the current library directory
is catalogued.

An error is returned if the directory docs not exist, or the object is a file.

893

On entry

On exit

Use

894

Examine the library directory

RO = 8

OS_FSControl 8
(SWI &29)

Rl =pointer to (wildcardcd) directory name

Registers preserved

This call outputs information on all the objects in the named subdirectory,
relative to the current library directory. If the name pointed to is null, the
current library directory is examined.

An error is returned if the directory docs not exist, or the object is a file.

FileSwitch: SWI calls

On entry

On exit

Use

FileSwitch: SWI calls

Examine objects

RO = 9
Rl =pointer to (wildcarded) pathname

RO preserved

OS FSControl 9
(SWI &29)

This call outputs information on all objects in the specified directory
matching the wild-leaf-name given.

An error is returned if the pathname pointed to is null.

895

On entry

On exit

Use

896

Sets filing system options

RO = 10
RI =option (0, 1 or 4)
R2 = parameter

Registers preserved

OS FSControllO
(SWI &29)

This call sets filing system options on the tcmp0rnry filing system (normally
the current one). An option of 0 means reset all filing system options to their
default values. See the *OPT command for full details.

FileSwitch: SWI calls

On entry

On exit

Use

FileSwitch: SWI calls

OS FSControl 11
(SWI &29)

Set the temporary filing system from a named prefix

RO = 11
Rl = pointer to string

RO preserved
R 1 = pointer to part of name past the filing system specifier if present
R2 = -1 :no filing system was specified (call has no effect)
R2 0 : old filing system to be reselected
R3 = pointer to special field, or 0 if none present

This call sets the temporary filing system from a filing system prefix at the
start of the string, if one is present. It is used by OS_CLI (SWI &05) to set
temporary filing systems for the duration of a command.

You can restore the temporary filing system to be the current one by calling
OS_FSControll9.

897

On entry

On exit

Use

898

Add a filing system

RO = 12
Rl = module base address

OS FSControll2
(SWI &29)

R2 = offset of the filing system information block from the module base
R3 =private word pointer

Registers preserved

This call informs FileSwitch that a module is a new filing system, to be
added to the list of those it knows about. The module should make this call
when it initialises.

Rl and R2 give the location of a filing system information block, which is
used by FileSwitch to communicate with the filing system module. It contains
both information about the filing system, and the location of entry points to
the module's code.

The private word pointer passed in R3 is stored by FilcSwitch. When it
makes a call to the filing system module, the private word is passed in Rl2.
Normally, this private word is the workspace pointer for the module.

For full information on writing a filing system module, see the section
entitled Application Notes at the end of this chapter.

FileSwitch: SWI calls

On entry

On exit

Use

FileSwitch: SWI calls

Check for the presence of a filing system

RO = 13
Rl =filing system number or name
R2 = depends on R I

RO preserved
R 1 = filing system number

OS FSControl13
(SWI &29)

R2 = pointer to filing system control block or 0 if not found

This call checks for the presence of a filing system.

If Rl < &100 then it points to the filing system number; if, however,
Rl &100 then it points to the filing system name. The filing system name
match is case-insensitive. If R2 is 0, the filing system name is taken to be
terminated with any control character or the characters: '#!, ':' or '-'. If R2 is
not 0, then the filing system name is terminated by any control character.

The filing system control block that is pointed to by R2 on exit is for the
internal use of FileSwitch, and you should not use or alter it. You should only
test the value ofR2 for equality (or not) with zero.

An error is returned if the filing system name contains bad characters or is
badly terminated.

899

On entry

On exit

Use

900

Filing system selection

RO = 14

OS_FSControl 14
(SWI &29)

RI =pointer to filing system name, or FS number

Registers preserved

This call switches the current and tempor-t~ry filing systems to the one
specified by R I.

If R I = 0 then no filing system is selected as the current or temporary one
(the settings are cleared). If Rl is < &100 it is <~~~umed to be a filing system
number. Otherwise, it must be a pointer to a fi ling system name, tcrmin<~ted
by a control-character or one of the char;1cters '#', ':' or '-'. The filing system
name match is case-insensitive.

This call is issued by filing system modules when they arc selected by a
*Command, such as *Net or* ADFS.

An error is returned if the filing system is specified by name and is not
present.

FiteSwitch: SWt calls

On entry

On exit

Use

FileSwitch: SWI calls

Boot from a fil ing system

RO = 15

RO preserved

OS FSControll5
(SWI &29)

This call boots off the currently selected filing system. It is called by the
RISC OS kernel before entering the configured language module when the
machine is reset using the Break key or reset switch, depending on the state of
other keys, and on how the computer is configured.

This call may not return if boot runs an application.

For more details, see *Configure Boot and NoBoot, and the *Opt commands.

901

On entry

On exit

Use

902

Filing system removal

RO = 16
Rl = pointer to filing system name

Registers preserved

OS FSControl16
(SWI &29)

This call removes the filing system from the list held by FileSwitch. It does
not call the filing system to close open files, flush buffers, and so on. You
should use it in the finalise entry of a filing system module

Filing systems must be removed on any type of finalisation call, and added
(including any relevant secondary modules) on any kind of initialisation.The
reason for this is that FileSwitch keeps pointers into the filing system module
code, which may be moved as a result of tidying the module area or other
such operations.

If the filing system is the current one, then both the current and temporary
filing systems are set to 0 (none currently selected), and the old filing system
number is stored. If it is added again before a new current filing system is
selected then it will be reselcctcd (see OS_FSControl 12).

If the filing system is the temporary one (but nor the current one) then the
temporary filing system is set to the current filing system.

Rl must be a pointer to a control-character terminated name - you cannot
remove a filing system by number, and if you try to do so an error is returned

Modules must not complain about errors in filing system removal. Otherwise,
it would be impossible to reinitialise the module after reinitialising the filing
system manager.

FileSwitch: SWI calls

On entry

')n exit

Use

FileSwitch: SWI calls

Add a secondary module

RO = 17
Rl =filing system name
R2 =secondary system name

OS FSControl 17
(SWI &29)

R3 = secondary module workspace pointer

Registers preserved

This call is used to add secondary modules, so that extra filing system
commands are recognised in addition to those provided by the primary filing
system module. It is mainly used by FileCore (a primary module) to add its
secondary modules such as ADFS.

903

On entry

On exit

Use

904

OS FSControll8
(SWI &29)

Decode file type into text

RO = 18
R2 = file type (bits 0 - II)

RO preserved
R2 = first four characters of textual file type
R3 = second four characters of textual file type

This call issues OS_ScrviceCall 66 (SWI &30). If the service is unclaimed,
then it builds a default file type. For example if the file type is:

Command

the call packs the four bytes representing the characters::

Comrn inR2

and the four bytes:

and inR3

The string is padded on the right with spaces to a maximum of 8.

This BASIC code convens the file type in filetype % to a string in
filetype$, terminated by a carriage return:

DIM S eC\ 8
SYS "OS f' SConcrol ", 18,, t 11 e t ype \ TO .. r 2 \, r3 \
str\! 0 • r2\
scr\!4 • c3 \
str\?8 • 13
fll e t ype $ • Sstc\

OS_FSControl31 docs the opposite conversion - a textual file type to a file
type number.

FileSwitch: SWI calls

On entry

On exit

Use

FileSwitch: SWI calls

Restore the current filing system

RO = 19

RO preserved

OS FSControl19
(SWI &29)

This call sets the temporary filing system back to the current filing system.

OS_CLI uses OS_FSControlll to set a temporary filing system before a
command; it uses this call to restore the current filing system afterwards. This
command is also called by the kernel before it calls the error handler.

905

On entry

On exit

Use

906

Read location of temporary filing system

RO = 20

RO presetved

OS FSControl 20
(SWI &29)

R I = primary module base address of temporary filing ~ystem
R2 = pointer to private word of temporary filing system

This call reads the location of the temporary fi ling system, and its private
word. If no temporary filing system is set, then it reads the values for the
current filing system insread. If there is no current filing system either, then
RJ will be zero on exit, and R2 undefined.

FileSwitch: SWI calls

On entry

On exit

Use

FileSwitch: SWI calls

Return a filing system file handle

RO = 21
Rl =file handle

RO preserved
Rl =filing system file handle
R2 =filing system information word

OS FSControl21
(SWI &29)

This call takes a file handle used by FileSwitch, and returns the internal file
handle used by the filing system which it belongs to. It also returns a filing
system information word. For a full definition of this, see the section entitled
Application Notes at the end of this chapter on adding your own filing system.

The call returns a filing system file handle of 0 if the FileSwitch file handle
is invalid.

You should only use this call to implement a filing system.

907

On entry

On exit

Use

908

Close all open files

RO = 22

RO preserved

OS FSControl 22
(SWI &29)

This call closes all open files on all filing systems. It first ensures that any
modified buffered data remaining in RAM (either in FileSwitch or in filing
system buffers) is written to the appropriate files.

The call does not stop if an error is encountered, but goes on to close all open
files. An error is returned if any individual close failed.

FileSwitch: SWI calls

On entry

On exit

Use

FileSwitch: SWI calls

Shutdown filing systems

RO = 23

RO preserved

OS FSControl23
(SWI &29)

This call closes all open files on all filing systems. It first ensures that any
modified buffered data remaining in RAM (either in FileSwitch or in filing
system buffers) is written to the appropriate files.

It informs all filing systems of the shutdown; most importantly this implies
that it:

• logs off from all NetFS file servers

• unmounts all discs on FilcCore-based filing systems

• parks the hard disc heads.

The call does not stop if an error is encountered, but goes on to close all open
files. An error is returned if any individual close failed.

909

On entry

On exit

Use

9~ 0

Set the attributes of objects

RO = 24
Rl =pointer to (wildc~rded) pathname
R2 =pointer to attribute string

Registers preserved

OS_FSControl 24
(SWI &29)

This call gives the requested access to all objects in the specified directory
whose names match the specified wild-leaf pattern.

If any of the characters in R2 are valid but inappropriate they are not faulted,
but if they are invalid an error is returned. An error is also returned if the
pathname pointed to is null, or if the pathname is not matched.

FileSwitch: SWI calls

On entry

On exit

Use

FileSwitch: SWI cans

Rename objects

RO = 25
Rl =pointer to current pathname
R2 = pointer to desired path name

Registers preserved

OS FSControl 25
(SWI &29)

This call renames an object. It is a 'simple' rename, implying that the source
and destination are single objects which must reside on the same physical
device, and hence on the same filing system.

An error is returned if the two objects are on different filing systems
(checked by FileSwitch) or on different devices (checked by the filing system).

An error is also returned if the object is locked or is open, or if an object of
the desired pathname exists, or if the directory referenced by the pathname
does not already exist.

911

On entry

On exit

Use

912

OS FSControl 26
(SWI &29)

Copy objects

RO = 26
Rl =pointer to source (wildcarded) pathname
R2 =pointer to destination (wildcarded) pathname
RJ = mask describing the action
R4 =optional inclusive start time (low 4 bytes)
RS =optional inclusive start time (high byte, in bits 0 • 7)
R6 = optional inclusive end time (low 4 bytes)
R7 = optional inclusive end time (high byte, in bits 0 • 7)
R8 = optional pointer to extra information descriptor:

[R8] + 0 = information address
[R8] + 4 = information length

Registers preserved

This call copies an object, optionally recursing.

The source leafname may be wildcarded. The only wildcarded destination
lcafname allowed is '*', which means to make the lcafname the same as the
source leafname.

The bits of the action mask have the following meaning when set:

Bit Meaning when set

14 Reads destination object information and applies tests before
loading any of the source object.

13 Uses extra buffer specified using R8.

12 Copies only if source is newer than destination.

ll Copies directory structurc(s) recursively, but not files

lO Restamps datesramped objects - files are given the time at the start
of this SWI, directories the time of their creation.

9 Doesn't copy over file attributes.

FileSwitch: SWI calls

FileSwitch: SWI calls

8

7

6

5
4

3

2

0

Allows pnntmg during copy; pnntmg is otherwise disabled. This
option also disables any options that may cause characters to be
written (bits 6, 4 and 3 arc treated as cleared), and prevents
FileSwitch from installing an UpCall handler to prompt for media
changes.

Deletes the source after a successful copy (for renaming files across
media).

Prompts you every time you might have to change media during the
copy operation. In practise you are unlikely to need to use this option,
as this SWl normally intercepts the UpCall vector and prompts you
every time you do have to change media. Ot only prompts if no earlier
claimant of the vector has already tried to handle the UpCall.)

Uses application workspace as we11 as the rclocatable module area.

Prints maximum information during copy.

Displays a prompt of the form 'Copy <object type> <source name>
as <destination name> (Yes/No?Quiet/Abandon) ? ' for each object
to be copied, and uses OS_Confirm to get a response. A separate
confirm state is held for each level of recursion: Yes means to copy
the object, No means not to copy the object, Quiet means to copy the
object and to tum off confirmation at this level and subsequent ones
(although if bit 1 is clear you will still be asked if you want to
overwrite an existing file), and Alxmdon means not to copy the object
and to return to the parent level. Escape abandons the entire copy
without copying the object, and returns an error.

Copies only files with a time/date stamp falling between the start
and end time/date specified in R4 • R7. (Unstamped files and
directories will also be copied.) This check is made before any
prompts or information is output.

Automatica11y unlocks, sets read and write permission, and overwrites
an existing file. (If this bit is clear then the warning message 'File
<destination name> already exists [and is locked]. Overwrite
(Y/N) ? ' is given instead. If you answer Yes to this prompt then the
file is similarly overwritten.)

A11ows recursive copying down directories.

913

914

Buffers are considered for use in the following order, if they exist or their use
is permitted:

user buffer

2 wimp free memory

3 relocatable module area (RMA)

4 application memory.

If either the Wimp free memory or the RMA buffers arc used, they are
freed between each object copied.

If application memory is used then FileSwitch starts itself up as the current
application to claim application space. If on the start application service a
module forbids the startup, then the copy is aborted and an error is generated
to the Error handler of the parent of the task that called OS_FSControl 26.
The call does not return; it sets the environment time variable to the time read
when the copy started and issues SWI OS_Exit, setting Sys$ReturnCode to 0.

FileSwitch: SWI calls

On entry

On exit

'Jse

iileSwitch: SWI calls

OS FSControl 2 7
(SWI &29)

Wipe objects

RO = 27
Rl =pointer to wildcarded path name to delete
R2 = not used
RJ = mask describing the action
R4 =optional stan time (low 4 bytes)
RS =optional stan time (high byte, in bits 0- 7)
R6 = optional end time (low 4 bytes)
R7 =optional end time (high byte, in bits 0- 7)

Registers preserved

This call is used to delete fi les. You can modify the effect of the call with the
action mask in RJ. Only bits 0- 4 and 8 are relevant to this command. The
function of these bits is as for OS_FSControl 26 (copy objects).

915

On entry

On exit

Use

916

OS FSControl 28
(SWI &29)

Count objects

RO = 28
Rl =pointer to wildcardcd path name to count
R2 =not used
R3 = mask describing the action
R4 = optional start time (low 4 byres)
R5 = optional start time (high byte, in bits 0- 7)
R6 =optional end time (low 4 byres)
R7 =optional end time (high byte, in bits 0- 7)

RO, Rl preserved
R2 = total number of bytes of all files that were counted
R3 = number of files counted
R 4 - R 7 preserved

This call returns information on the number and size of files. You can modify
the effect of the call with the action mask in RJ . Only bits 0, 2 - 4 and 8 are
relevant to this command. The function of these bits is as for OS_FSControl
26 (copy objects).

Note that the command rerums the amount of data that each object is
comprised of, rather than the amount of disc space the data occupies. Since a
file normally has space allocated to it that is not used for data, and
dire~tories are not counted, any estimates of free disc space should be used
with caution.

FileSwitch: SWI calls

On entry

On exit

Use

FileSwitch: SWI calls

OS FSControl 31
(SWI &29)

Converts a string giving a file type to a number

RO = 31
R 1 = pointer to control-character terminated file type string

RO, Rl preserved
R2 = filetype

This call converts the string pointed to by R 1 to a file type. Leading and
trailing spaces are skipped. The string may either be a file type name (spaces
within which will not be skipped):

Obey
Text

or represent a file type number (the default base of which is hexadecimal):

FEB
4 33333333

Hexadecimal version of Obey file type number
Base 4 version of Text file type number

OS_FSControl 18 does the opposite conversion - a file type number to a
textual file type.

917

On entry

On exit

Use

918

OS FSControl32
(SWI &29)

Outputs a list of object names and information

RO = 32
Rl =pointer to wildcardcd pathname

Registers preserved

This call outputs a list d object names and information on them. The format
is the same as for the *Filelnfo command.

FileSwitch: SWI calls

On entry

On exit

Use

FileSwitch: SWI Calls

OS FSControl 33
(SWI &29)

Converts a filing system number to a filing system name

RO = 33
Rl = filing system number
R2 = pointer to buffer
R3 = length of buffer

Registers preserved

This call converts the filing system number pas.o;ed in R I to a filing system
name. The name is stored in the buffer pointed to by R2, and is null
terminated. If FileSwitch does not know of the filing system number you pass
it, a null string is returned.

919

* Commands

Syntax

Parameters

Use

Examples

Related commands

920

*Access
Controls who can run, read from, write to and delete specific files.

*Access <object spec> [<attributes>]

<object spec>

<attributes>

L(ock)
R(ead)
W(rite)
/R,/W,{RW

a valid (wildcarded) pathname specifying a file or

directory

The following attributes are allowed:

Lock object against deletion
Read permission
Write permission
Public read and write permission (on NetFS)

*Access changes the attributes of all objects matching the wildcard
specification. These attributes control whether you can nm, read from, write to,
or delete a file.

NetFS uses separate attributes to control other people's access to your files:
their 'public access'. By default, files are created without public read and
write permission. If you want others on the network to be able to read files
that you have created, make sure you have explicitly changed the access status
to include public read. If you are willing to have other NetFS users work on
your files (ie overwrite them), set the access status to public write permission.
Other NetFS users cannot completely delete your files though, unless they
have owner access.

The public attributes can be set within any FilcCore-based filing system,
except when using L-format; but they will be ignored unless the file is
transferred to the NetFS. Other filing systems may work in the same way, or
may generate an error if you try to use the public attributes.

*access myfile 1

*access myfile wr/r

*Info

FileSwitch: ·Commands

Syntax

Parameters

Use

Example

Related commands

FileSwitch: • Commands

Adds data to an existing file.

*Append <filename>

*Append

<filename> a valid path name specifying an existing file

*Append opens an existing file so you can add more data to the end of the
file. Each line of input is passed to OS_GSTrans (SWI &27 - see the chapter
entitled Conversions) before it is added to the file. An Escape finishes the
input:

*type thisfile
this line is already in thisfile
*append thisfile

1 some more text
<Press Esc>
*type thisfile
this line is already in thisfile
some more text

*Build

921

Syntax

Parameters

Use

Example

Related commands

922

*Build
Opens a new file (or overwrites an existing one) and directs subsequent input
to it.

*Build <filename>

<filename> a valid pathname specifying a file

*Build opens a new file (or reopens an existing one with zero extent) and
directs subsequent input to it .. Each line of input is passed to OS_GSTrans
(SWI &27 - see the chapter entitled Conversions) before it is added to the
file. An Escape finishes the input.

Note that for compatibility with earlier systems the *Build command creates
files with lines terminating in the carriage return character (ASCII &OD). The
Edit application provides a simple way of ch:mging this into a linefeed
character, using the CRHLF function from the Edit submenu.

*Build testfile
1 This is the first line of testfile

<Press Esc>
*Type testfile
This is the first line of testfile

*Append

FileSwitch: • Commands

Syntax

Parameters

Use

Examples

Related commands

FileSwitch: • Commands

Lists all the objects in a directory.

*Cat [<directory>]

*Cat

<directory> a valid pathname specif)·in~: a directory

*Cat (short for 'catalogue') lists all the objecrs in a directory, showing their
access attributes and other information on the disc name, options set, etc. If no
directory is specified, the contents of the current dirccrory arc shown. *Cat can
be abbreviated to '*.' (a full stop), provided that you have not *Set the system
variable Alias$. to a different value from its default.

*

*cat net#59.254:

*.ram:$.Mike

*Cat { > printer: }

catalogue of current directory

catalogue of current directory on NetFS file
server 59.254

catalogue of RAM filing system directory
$.Mike

catalogue of current directory redirected to
printer

*Ex , *Filelnfo, *Info, *LCat and *LEx

923

Syntax

Parameters

Use

Examples

Related commands

924

*CDir
Creates a directory.

*CDir <directory> [<size in entries>]

<directory> a valid pathname specifying a directory

<size in entries> how many entries the directory should hold before it
needs to be expanded (NctFS only)

*CDir creates a directory with the specified pathname. On the NeeFS, the size
of the directory can also be given.

*CDir fred

*CDir ram:fred

*Cat

creates a directory called fred on the current filing
system, as a daughter to the current directory

creates a directory called fred on the RAM fi ling
system

FileSwitch: • Commands

Syntax

Parameters

Use

Related commands

FileSwitch: • Commands

*Close
Closes files.

*Close

None

*Close closes all open files on the current filing sysrem, and is useful when ::1

program crashes, leaving files open.

If preceded by the filing system name, *Close can be used to close files on
systems other than the current one. For example:

*adfs:Close

would close all files on ADFS, where NetFS is the current filing system.

You must not use this comm;md within a progr:~m rh::~t runs in a multi-tasking
environment such as the desktop, as it may clo~e files being used by other
programs.

*Shut, *Shutdown, *Bye

925

Syntax

Use

Related commands

926

*Configure Boot

Causes a power on, reset or Ctrl Break to perform a boot.

*Configure Boot

The configured boot action is read at power-on or hard reset. *Configure Boot
causes any kind of reset to perform a boot, provided that the Shift key is not
held down- if it is, then no boot takes place.

When a boot does take place, the file & • ! Boot is looked for, and if found is
dealt with in the way set by the *Opt 4 command. You might use a boot file
to load a program automatically when the computer is switched on. For
information on NetFS boot files, sec your network manager.

You can use the *FX 255 command to override the configured boot action at
any time; a typical use is to disable booting at the end of a boot file, so that
the computer does not re-boot on a soft reset.

The Break key always operates as an Escape key after power on.

NoBoot is the default setting.

This option can also be set from the desktop, using the Configure application.

*Opt 4, *Configure NoBoot, *FX 255

FileSwitch: • Commands

Syntax

Parameters

Use

Example

Related commands

FileSwitch: • Commands

*Configure DumpFormat

Selects the layout for *Dump, *List and *Type commands.

*Configure DumpFormat <n>

<n>

Value

0
1
2
3

A number in the range 0 to 15. The parameter is treated as a
four-bit number. The bottom two bits define how control
characters are displayed, as follows:

Meaning

GSTrans format is used (eg I A for ASCII 1)
Full stop '.' is used
<n> is used, where n is in decimal
<&n> is used, where nisin hexadecimal

Characters which have their top bit set are normally treated as control codes.
However, if n has a value between 4 and 7 (ie if bit 2 is set) they are treated
as printable characters. n=5, for example, causes ASCII character 247 to be
printed as+ (Latin fonts only).

If bit 3 is set (ie for values of n between 8 and 15), characters are ANDcd
with &7F before being processed, (ie converted to ordinary characters)
otherwise they are left as they are.

*Configure DumpFormat <n> selects the format to be used by the *Dump,
*List and *Type commands, and the vdu: ourput device. The command has
immediate effect. The default value is 4 (GSTran~ format, ch:mcters with the
top bit set are printed, all 8 bits considered).

*Dump ignores the setting of the bottom two bits of the parameter, and
always prints control characters as full stops.

*Configure DumpFormat 2

*Dump, *List

927

Syntax

Parameters

Use

Example

928

*Configure FileSystem

Selects the filing system robe used at power on or hard reset

*Configure FileSystem <n> I <name>

<n>

<name>

filing system number (8 for ADFS, 5 for NetFS)

filing system name (ADFS, Net or Ram)

*Configure FileSystem selects the filing system to be used at power on or
hard reset. This is done just before any boot action is taken. A banner is
displayed showing what filing system is in use. (The banner is also shown on
a soft reset.)

If you use a filing system name then it must be registered with FileSwitch at
the time, so it can be converted to the filing system number that is actually
stored.

If the filing system is not found then FileSwitch will return an error on every
subsequent command that tries to use the currently selected filing system,
until a current filing system is successfully selected.

*Configure FileSystem Net

FileSwitch: ·Commands

Syntax

Use

Related commands

FileSwitch: · Commands

*Configure NoBoot
Causes a Shift power on, Shift reset or Shift Break to run a boot file.

*Configure NoBoot

The configured boot action is read at power-on or hard reset. •Confi~urc
NoBoot causes any kind of reset not to perform a boot - except if the Shift
key is held down, when a boot takes place.

When a boot does take place, the file & • ! Boot is looked for, and if found is

dealt with in the way set by the •Opt 4 comm:md. You might use a boot file
to load a program automatically when the computer is switched on. For
information on NetFS boot files, see your network mt~nagcr.

You can use the *FX 255 command to override the configured boot action at
any time; a typical usc is to disable booting at the end of a boot file, so that
the computer does not re-boot on a soft reset.

The Break key always operates as an Escape key after power on.

This is the default setting.

This option can also be set from the desktop, using the Confi~re application.

*OPT 4, *Configure Boot, •FX 255

929

Syntax

Parameters

930

*Copy

Copies files and directories.

*Copy <source spec> <destination spec> [[-)<options>)

<source spec>

<destination spec>

<options>

file pathname

file pathname

upper- or lower-case letters, optionally
separated by spaces

A set of default options is read from the system variable Copy$0ptions,
which is set by the system as shown below. You can change these default
preferences using the *Set command. You are recommended to type:

*Set Copy$0ptions <Copy$0ptions> extra options

so you can see what the original options were before you added your extra
ones. The default options are overruled by any given to the command.

To ensure an option is ON, include it in the list of options; to ensure it is OFF,
immediately precede the option by a '-' (eg -C-r to turn off the C and R
options).

• A(ccess)
Default ON.

Force destination access to same as source.

Important when you arc copying files from ADFS to NctFS, for example,
because it maintains the access rights on the files copied. You should set
this option to be OFF when you are updating a common release on the
network, to maintain the correct access rights on it.

• C(onfirm)
Default ON.

Prompt for confirmation of each copy.

Useful as a check when you have used a wildcard, to ensure that you are
copying the files you want. Possible replies to the prompt for each file
are Y (to copy the file or structure and then proceed to the next item), N

(to go on to the next item without making a copy), Q(uict) (to copy the

FileSwitch: • Commands

FileSwitch: ·Commands

item and all subsequent items without further prompting), A(bandon) (to

stop copying at the current level - sec the R option), o r Esc (to stop
immediately).

• D(elete)
Default OFF.

Delete the source object after copy.

This is useful for moving a file from one di!'oe. or other storage unit to
another. The source object is copied; if the wpy is successful, the source
object is then deleted. If you want to move files within the same disc, the
*Rename command is quicker, as it does not have to copy the files.

• F(orce)

Default OFF.

Force overwriting of existing objects.

Performs the copy, regardless of whether the destination files exist, or
what their access rightS are. The files can be overwritten even if they arc
locked or have no write permission.

• L(ook)
Default OFF.

Look at destination before loading source file.

Files are normally copied by reading a large amount of data into
memory before attempting to save it as a destination file. The L option
checks the destination medium for accessibility before reading in the
data. Thus L often saves time in copying, except for copies on the same
disc.

• N(ewer)

Default OFF.

Copy only if source is more recent than destination.

This is useful during backups to prevent copying the same files each time,
or for ensuring that you arc copying the latest version of a file.

• P(rompt)
Default OFF.

Prompt for the disc to be changed as needed in copy.

This is provided for compatibility with older filing systems and you
should not need to usc it. Most RISC OS filing systems will
automatically prompt you to change media .

• Q(uick)
Default OFF.

Usc application workspace as a buffer

The Q option uses the application workspace, so overwrites whatever is
there. It should not be used if an application is active.

931

Use

932

In the Desktop copying can use the Wimp's free memory, and so you
should not need to usc this option. It's quicker not to use this option when
you are copying from hard disc to floppy, as these operations are
interleaved so well. However, in other circumstances this option can speed
up the copying operation considerably.

• R(ecurse)
Default OFF.

Copy subdirectories and contents.

This is useful when copying several levels of directory, since it avoids the
need to copy each of the directories one by one.

• S(tamp)

Default OFF.

Restamp date-stamped files after copying.

Useful for recording when the particular copy was made.

• (s)T(ructure) Copy only the directory structure.

Default OFF.

Copies the directory structure but not the files. By using this option as a
first stage in copying a directory tree, access to the files is faster when
they are subsequently copied.

• V(erbose)
Default ON.

Print information on each object copied.

This gives full textual commentary on the copy operation.

*Copy makes a copy between directories of any object(s) that match the given
wildcard specification. Objects may be files or directories. The only wildcard
that can be used in the destination is a '*' as the leafname (see example
below).

A *wildcard can be used in the *Copy command. For example:

Copy data Dir2.*

will copy all the files in the current directory with names beginning data to
Dir2. The lcafname of the destination must either be a specific filename, or
the character '*' (as in the above example) in which case the destination will
have the same leafname as the source.

Note that it is dangerous to copy a directory into one of its subsidiary
directories. This results in an infinite loop, which only comes to an end when
the disc is full or Esc is pressed.

FileSwitch: • Commands

Examples

Related commands

FileSwitch: • Commands

If the Copy$0ptions variable is unset then Copy behaves as if the variable
were set to its default value.

*Copy fromfile tofile rfq-c-v

Copy :fred.data :jim.* Copies all files beginning data
from the disc. called fred to the disc.
called jim.

*Rename, *Delete, "'Access, *Wipe, and the system variable Copy$0ptions.

933

Syntax

Parameters

Use

934

*Count
Adds up the size of data held in file objects, and the number of objects.

*Count <file spec> [<options>)

<file spec>

<options> upper- or lower-case letters, optionally separated by
spaces

A set of default options is read from the system variable Count$0ptions,
which is set by the system as shown below. You can change these default
preferences using the *Set command. You are recommended to type:

*Set Count$0ptions <Count$0ptions> extra options

so you can see what the original options were before you added your extra
ones. The default options are overruled by any given to the command.

To ensure an option is ON, include it in the list of options; to ensure it is OFF,
precede the option by a'-' (e.g: -C-r to tum off the C and R options).

• C(onfirm) Prompt for confirmation of each count.
Default OFF.

• R(ecurse)
Default ON.

• v(erbose)

Default OFF.

Count subdirectories and contents.

Print information on each file counted, rather than
printing the subtotal counted in directories.

*Count adds up the size of data held in one or more files that match the given
specification.

Note that the command returns the amount of data that each object is
comprised of, rather than the amount of disc space the data occupies. Since a
file normally has space allocated to it that is not used for data, and
directories are not counted, any estimates of free disc space should be used
with caution.

FileSwitch: • Commands

Example ·

Related commands

FileSwitch: • Commands

If the Count$0ptions variable is unset then Count behaves as if the variable
were set to its default value.

*Count $ r-ev Counts all files on disc, giving full information on
each file object.

*Info, *Ex, and the system variable Count$0ptions

935

Syntax

Parameters

Use

Example

Related commands

936

*Create

Reserves space for a new file.

*Create <filename> [<length> [<exec addr> [<lo ad addr>]]]

<filename>

<length>

<exec addr>

<load addr>

a path name specifying a file

the number of bytes to reserve (default 0)

the address to be jumped to after loading, if a
program

the address at which the file is loaded into RAM
when *Loaded (default 0)

*Create reserves space for a new file, usually a data file. No data is
transferred to the file. You may assign load and execution addresses if you
wish. The units of length, load and execution addresses arc in hexadecimal by
default.

If both load and execution addresses are omitted, the file is created with type
FFD (data) and is date and time stamped.

*Create mydata 1000 0 8000

*Create newfile 10 4096

*Create bigfile &10000

*Load, *Save

Creates a file &1000 bytes long,
which will be loaded into address
&8000.

Creates a file & 1000 bytes long
which is-date and time stamped.

FileSwitch: *Commands

Syntax

Parameters

Use

Examples

Related commands

FileSwitch: • Commands

*Delete
Erases a single file or directory.

*Delete <filename>

<filename> a path name specifying a file

*Delete erases the single named file. If the file does not exist, an error
message is reported. Wildcards may be used in all the components of the
path name except the last one.

Delete S.dir.myfile

*Delete myfile

*Wipe, *Remove

Note that wildcards are permitted in all of
the pathname save for the leafname.

Deletes my file from the current directory.

937

Syntax

Parameters

Use

Examples

Related commands

938

*Dir
Selects a directory.

*Dir [<directory>)

<directory> a valid path name specifying a directory

*Dir sets the currently selected directory (CSD) on a filing system. You may
set the CSD separately on each filing system, and on each server of a multi·
server filing system such as NetFS. If no directory is specified, the user root
directory (URD) is selected.

*Dir Sets the CSD to the URD.

*Dir mydir Sets the CSD to mydi r.

A CSD may be set for each filing system, for instance, within NetFS, the
command:

*Dir ADFS: ...

whereas:

*ADFS: Dir ...

*CDir; *Back

sets the current filing system to ADFS and selects
the CSD there; it does not affect the CSD in NetFS

sets the CSD on ADFS only; NeeFS remains the
current filing system

File Switch: • Commands

Syntax

Parameters

Use

Example

Related commands

FileSwitch: * Commands

*Dump

Displays the contents of a file, in hexadecimal and ASCII codes.

*Dump <filename> [<file offset> [<start address>))

<filename>

<file offset>

<start address>

a valid pathname specifying a file

offset, in hexadecimal, from the beginning of the file
from which to dump the clara

(in hexadecimal) display as if the file were in
memory starting at this address - defaults to the
file's load address

"'Dump displays the contents of a file as a hexadecimal and (on the righthand
side of the screen) as an ASCII interpretation. An address is given on the left
hand side of:

<Start address> + current offest in file

You can set the format used to display the ASCII interpretation using
*Configure DumpFormat. This gives you control over:

• whether the top bit of a byte is stripped first

• how bytes are displayed if their top bits are set.

If a file is time/date stamped, it is treated as having a load address of 2ero.

*Dump myprog 0 8000 Dumps the file myprog, starting from the
beginning of the file (offset is 0) but
numbering the dump from &8000, as if the
file were loaded at that address.

•Type, "'List, •Configure DumpFormat.

939

Syntax

Parameters

Use

Examples

Related commands

940

*EnumDir

Creates a file of object leafnames.

*EnumDir <directory> <output file> [<pattern>]

<directory> a valid pathname specifying a directory

<output file> a valid filename

<pattern> a wildcard specification for matching against

*EnumDir creates a file of object leafnames from a directory that match the
supplied wildcard specification.

The default is *, which will match any file within the current directory. The
current directory can be specified by @.

EnumDir $.dir myfile data

Creates a file myfile, containing a list of all files beginning data
contained in directory$. dir

*EnumDir @ listall *_doc

Creates a file listall, containing a list of all files in the current
directory whose names end in _doc.

*Cat, *LCat

FileSwitch: • Commands

Syntax

Parameters

Use

Examples

Related commands

FileSwitch: ·Commands

*Ex
Lists file information within a directory.

*Ex [<directory>)

<directory> a valid pathname specifying a directory

*Ex lists all the objects in a directory together with their corresponding file
information. The default is the current directory.

Most filing systems also display an informative header giving the directories
name and other useful information.

•Ex mail

Mail
OS
Dlr. Mllardy

Current
Log file

WR
WR

*Info, *Filelnfo

Owner
Opt ion 0 (Off)

Lib. ArthurJ.Jb

Text
Text

1~:5 4: 37 04-Jan-1989 60 bytes
15:54 : 37 04-Jan-1989 314 bytes

941

Syntax

Parameters

Use

Example

Related commands

942

*Exec

Causes input to be taken from a file

*Exec [<filename>)

<filename> a valid pathname specifying a file

*Exec <filename> causes character input to be taken from the given file,
rather than from the keyboard or serial input buffer. The file, once open,
takes priority over the keyboard or serial port input streams.'

The command is commonly used from a * prompt to execute a file of
*Commands contained in a command file.

*Exec with no filename closes the exec file. You also close an existing exec
file by the command *Exec <new exec file>.

If an exec file is open when the Desktop is started as the configured
language, it detects this and exits to the supervisor, so that the supervisor can
process the character input from the exec file.

However, if you use the command *Desktop this in turn issues the command
*Exec, thus closing any open exec files. This is to make it easy for you to enter
the Desktop from an exec boot file - simply put the *Desktop command at
the end of the file.

*Exec !Boot

*Obey

Uses file ! Boot as though its contents have been
typed in from the keyboard.

FileSwitch: • Commands

Syntax

Parameters

Use

Example

Related commands

FileSwitch: · Commands

*Filelnfo
Displays full file information.

*Fileinfo <object>

<object> a valid (wildcarded) pathname specifying a file

*Filelnfo gives the full file information of the specified object(s); this
includes load, length and execution addresses in hexadecimal, and other
filing system specific information not given by *Info. FileCore based filing
systems (such as ADFS and RamFS) give information on all matches of the
pathname, whereas some other filing systems (such as NetFS) only give
information on the first match.

•FileJnfo current

current WR/ Text 15:54:37,40 04-Jan-1989 000007F 0002AA2E 007A3500

The above example shows the information displayed by *Filclnfo on ADFS.
On NetFS, a second date and time are also shown: these arc the settings from
the file server clock.

*Ex, *Info

943

Syntax

Parameters

Use

Example

Related commands

944

*Info
Displays information about specified objects.

*Info <object spec>

<object spec> a valid pathname specifying one or more file objects

*Info lists file information for any object marching the given wildcard
specification.

If the file is dated, the date and time are displayed using the current
Sys$Dateformat. If it is not dated, the load and exec addresses are
displayed in hexadecimal.

• In!o my file

my file WR Text 15:54:37 04-Jan-1989 60 bytes

FileSwitch: • Commands

Syntax

Use

Related commands

FileSwitch: • Commands

Displays objects in a library.

*LCat [<directory>]

*LCat

<directory> a valid pathname specifying a subdirectory of the
current library

•LCat lists all the objects in the named library subdirectory. The default is
the current library. •LCat is equivalent to •Cat %.

•LEx, •Cat

945

Syntax

Parameters

Use

Related commands

946

*LEx
Displays file information for a library.

*LEx [<directory>)

<directory> a valid pathname specifying a subdirectory of the
current library

*LEx lists all the objects in the named library subdirectory together with
their file information. If no subdirectory is named, the objects in the current
library are listed. This command is the equivalent of *Ex %.

*Ex, *LCat

FileSwitch: • Commands

Syntax

Parameters

Use

Example

Related commands

FileSwitch: • Commands

Selects a directory as a library.

*Lib [<directory>)

<directory> a valid pathname specifying a directory

*Lib

*Lib selects a directory as the current library on a filing system. You can
independently set libraries on each filing system.

If no other directory is named, the action taken is filing system dependent: in
ADFS the default is the object that would be referenced by the URD; under
NetFS there is no default.

*Lib $.mylib

•Configure Lib, *NoLib

Sees the directory$. my lib to be the current library.

947

t·.

.. <

Syntax

Parameters

Use

Example

Related commands

948

*List
Displays file contents with line numbers.

*List [-File) <filename> [-TabExpand]

-File may optionally precede <filename>; it has no effect

<filename> a valid pathname specifying a file

-TabExpand causes Tab characters (ASCII 9) to be expanded to 8 spaces

*List displays the contents of a file usind the configured DumpFormat. Each
line is numbered.

*List -file myfile -tabexpand

*Configure DumpFormat, *Dump, *Print, *Type

FileSwitch: • Commands

Syntax

Parameters

Use

Example

Related commands

FileSwitch: • Commands

*Load
Loads the named file (usually a data file).

*Load <filename> [<load addr>]

<filename>

<load addr>

a valid pathname spccifyin~: a file

load address (in hexadecimal by default); this
overrides the file's load address or any load address
in the Alais$@LoadTypc variable associated with
chis file

*Load loads the named file at a load address specified.

The filename which is supplied with the *Load command is searched for in
the directories listed in the system variable Filc$Path. By default, File$Path
is set to''. This means that only the current directory is ~rched.

If no address is specified, the file's type (BASIC, Text etc) is looked for:

• If the file has no file type, it is loaded at its own load address.

• If the file does have a file type, the corresponding Alias$@LoadTypc
variable is looked up to determine how the file is to be loaded. A BASIC
file has a file type of &FFB, so the variable Alias$@LoadType_FFB is
looked up, and so on. You are unlikely to need to change the default values
of these variables.

*Load myfile 9000

*Create, *Save

949

Syntax

Parameters

Use

950

*Opt 1
*Opt 1 controls filing system messages.

*Opt 1 [[,] <n>]

<n> 0 to3

*Opt 1, <n> sets the filing system message level (for operations involving
loading, saving or creating a file)):

*Opt 1, 0 No filing system messages

*Opt 1, 1 Filename printed

*Opt 1, 2 Filename, hexadecimal addresses and length printed

*Opt 1, 3 Filename, and either datestamp and length, or
hexadecimal load and exec addresses printed

*Opt 1 must be set separately for each filing system.

FileSwitch: • Commands

Syntax

Parameters

'Jse

:xample

Related commands

rileSwitch: *Commands

*Opt4
*Opt 4 sets the filing system boot action.

*Opt 4 [[, 1 <n> 1

<n> 0 to3

*Opt 4, <n> sets the boot action for the current filing system. On filing
systems with several media {eg ADFS using several discs) the boot action is
only set for the medium {disc) containing the currently selected directory ..

*Opt 4, 0 No boot action

*Opt 4, 1 *Load boot file

*Opt 4, 2 *Run boot file

*Opt 4, 3 *Exec boot file

The boot file is named & • ! Boot on FileCore-based filing systems (such as

ADFS and RamFS), and & • ! ArmBoot on NetFS.

If you want such a boot file, and want to enter the desktop after executing it,
the file should end with the command *Desktop, and similarly for other
languages.

*Opt 4,2 sets the boot action to *Run for the current filing system.

*Configure Boot and *Configure Nol3oot

951

Syntax

Parameters

Use

Example

Related commands

952

*Print
Displays raw text on the screen.

*Print <filename>

<filename> a valid pathname specifying a file

*Print displays the contents of a file by sending each byte - whether it is a
printable character or not - to the VDU. Unless the file is a simple text file,
some unwanted screen effects may occur, since control characters are not
filtered out.

*Print myfile

*Dump, *List, *Type

FileSwitch: ·Commands

Syntax

Parameters

Use

Related commands

FileSwitch: • Commands

*Remove
Deletes a file.

*Remove <filename>

<filename> a valid pathname specifying a file

*Remove deletes a named file. Its action is like that of *Delete, except that
no error message is returned if the file named does not exist. This allows a
program to remove a file without having to trap that error.

*Delete, *Wipe

953

Syntax

Parameters

Use

Example

Related commands

954

*Rename
Changes the name of an object.

*Rename <object> <new name>

<object>
<new name>

a valid pathname specifying a file or directory
a valid pathname specifying a file or directory

*Rename changes the name of an object, within the same storage unit. Locked
objects cannot be renamed (unlock them first by using the *Access command
with the Lock option clear). It can also be used for moving files from one
directory to another, or moving directories within the directory tree.

*Rename fred jim

*Rename $.data.fred $.newdata.fred

Moves fred into directory newdata.

To move objects between discs or filing systems, use the *Copy command with
the D(elete) option set.

FileSwitch: • Commands

Syntax

Parameters

Use

Example

Related commands

FileSwitch: • Commands

*Run
Executes a file.

*Run <filename> [<parameters>]

<filename>

<paramete·rs>

a valid pathname specifying a file

a Command Line mil (see the chapter entitled
Program Environment for further details)

*Run executes a file, together with a list of parameters, if appropriate. The
given pathname is searched for in the directories listed in the system variable
Run$Path. If a matching object is a directory then it is ignored, unless it
contains a !Run file.

The first file, or directory.!Run file that matches is used:

• If the file has no file type, it is loaded at its own load address, and
execution commences at its execution address.

• If the file has cype &FF8 (Absolute code) it is landed and run at &8000

• Otherwise the corresponding Alias$@RunType variable is looked up to
determine how the file is to be run. A BASIC file has a file type of &FFB,
so the variable Alias$@RunType_FFB is looked up, and so on. You arc
unlikely to need to change the default values of these variables.

By default, Run$Path is set to ',%.'. This means thnt the current directory is
searched first, followed by the library. This default order is also used if
Run$ Path is not set.

*Run my_prog

*Run my_prog my_data

*SctType

my_data is passed as a parameter to the
program my _prog. The program can then
use this filename to look up the data it needs.

955

Syntax

Parameters

Use

Example

Related commands

956

*Save
Copies an area of memory to a file.

•save <filename> <start addr> <end addr> [<exec addr> [<load addr>l 1

or

•save <filename> <start addr> + <length> [<exec addr> [<load addr> l)

<filename>

<start addr>

<end addr>

<length>

<exec addr>

<load addr>

a valid pathname specifyin~ a file

the address (in hexadecimal by default) of the first
byte to be saved

the address (in hexadecimal by default) of the byte
after the last one to be saved

number of bytes to save

execution address (default is start addr)

load address (default is start addr)

*Save copies the given area of memory to the named file. Start addr is the
address of the first byte to be saved; end addr is the address of the byte after
the last one to be saved. Length is the number of bytes to be saved; exec addr
is the execution address to be stored with the file (it defaults to the start
address). Load is the reload address (and is assumed to be same as start if
omitted).

*Save myprog 8000 + 3000

*Save myprog 8000 8000 9300 9000

*Load, *SctT ype

FileSwitch: • Commands

Syntax

Parameters

Use

Example

FileSwitch: • Commands

*Set Type

Establishes a file type for a file.

*SetType <filename> <file type>

<filename> a valid pathname specifying a file

<file type> a number (in hexadecimal by default) or text
description of the file type to be set. A list of valid
file types can be displayed by the command *Show
Filc$Type*.

*SetT ype sets the file type d the named file. If the file does not have a date
stamp, then the current time and date are assigned to the file. Examples of
file types are Palette, Font, Sprite and BASIC: a list is given in Appendix B,
or can be inspected by typing *Show File$Type*.

Textual names take preference over numbers, so the sequence:

*Set File$Type_123 DFE
*SetType filename DFE

will set the type of filename to &123, not &DFE - the string DFE is
treated in the second command as a file type name, not number. To avoid such
ambiguities we recommend you always precede a file type number by an
indication of its base.

Build a small file containing a one-line command, set it to be a command
type (&FFE), and ~n it from the Command Lfne; finally, view it from the
desktop:

*Build X

1 *Echo Hello World
<Press Esc>
*SetType x Command
*Run x

the file is given the name x
the line number is supplied by *Build
the Escape character terminates the file
*SetType x &FFEisanaltemative
the text is echoed on the screen

The file has been ascribed the 'command file' type, and can be run by double
clicking on the file icon.

957

Syntax

Parameters

Use

Related commands

958

*Shut
Closes all open files.

*Shut

None

*Shut closes all open files on all filing systems. The command may be useful
to programmers to ensure that all files are clo~d if a program crashes
without closing files.

You must not use this command within a program mnning in a multi-tasking
environment such as the desktop, as it may close files being used by other
programs.

*ShutDown, *Bye, *Close

FileSwitch: • Commands

Syntax

Parameters

Use

Related commands

File Switch: • Commands

*ShutDown
Closes files, logs off file servers and parks hard discs.

*ShutDown

None

*ShutDown performs all the actions of the *Shut command, and in addition
logs off all NetFS file servers and causes hard discs to be parked in a safe
state for switching off the computer.

*Shut, *Bye, "'Close

959

Syntax

Parameters

Use

Example

Related commands

960

*Spool
Sends every character written to the screen to the named file.

*Spool [<filename>)

<filename>

*Spool <filename>

a valid pathname specifying a file

closes any existing spool file and opens a new file to
receive data which is sent to the VDU.

*Spool (or *SpoolOn) with no filename closes the spool file. You also
close an existing spool file by the command *Spool (or *Spool On)
<new spool file>.

Load a simple BASIC program (called, say Test), rype *Spool x and LIST
the program; switch spooling off with *Spool, and examine the spooled file
using the desktop, to see its distinctive icon. The spooled file, x, can be read
by a text editor. Drag the file icon to the Edit icon on the icon bar, and an
editing window opens with the text of the spooled file.

*BASIC
>LOAD "Tes t "
>*Spool x
>LIST

>*Spool

*Spool On

spool on - to file x

spool off

FileSwitch: • Commands

Syntax

Parameters

Use

Example

Related commands

FileSwitch: • Commands

*Spool On
Add characters written to the screen to the end of an existing file.

*SpoolOn [<filename>]

<filename> a valid pathname spccifyin~ a file

*SpoolOn <filename> is similar to *Spool, except that it takes the name
of an existing file. Characters written to the screen are also added to the end
of the file.

*SpoolOn (or *Spool} with no filename clo~s the spool file. You also
close an existing spool file by the command *Spool On (or *Spool)
<new spool file>.

*BASIC
>LOAD " Test"

>*SpoolOn myfile append text to file myfile which already exists
>LIST

>*Spool On close spool file

*Spool

961

Syntax

Parameters

Use

Example

Related commands

962

*Stamp
Date stamps a file.

*Stamp <filename>

<filename> a valid pathname specifying a file

*Stamp sets the date stamp on a file to the current time and date. If the file
has not previously been date stamped, it is also given file type Data (&FFD}.

*Stamp myfile

FileSwitch : • Commands

Syntax

Parameters

Use

Example

Related commands

FileSwitch: • Commands

*Type
Displays the contents of a file.

*Type [-File) <filename> [-TabExpand)

- File may optionally precede <filename>; it has no effect
<filename> a valid pathname specifying a file
-TabExpand causes Tab characters (ASCII 9) to be expanded to spaces

*Type displays the contents of the file in the configured DumpFormat.
Control F might be displayed as 'IF', for instance.

*Type -file myfile -tabexpand

*Configure DumpFormat, *Dump, *List, *Print

963

Syntax

Parameters

Use

Example

Related commands

964

*Up
Moves the current directory up the directory tree.

*Up [<levels>)

<levels> a positive number in the range 1 to 128 (in decimal by
default)

*Up moves the current directory up the directory structure by the specified
number of levels. If no number is given, the directory is moved up one level.
The command is equivalent to *Dir A.

Note that while NetFS supports this command, some fileservers do not, so you
may get a not found error.

*Up 3

This is equivalent to *Di r A • A. A, but note that the parent of $ is $, so you

cannot go any further up the directory tree than this.

*Dir

FileSwitch: • Commands

Syntax

Parameters

Use

FileSwitch: • Commands

*Wipe
Deletes one or more objects.

*Wipe <file spec> [<options>]

<file spec>

<options>

a valid pathname specifying an object (or, with
wildcards, a group of objects)

upper- or lower-case letters, optionally separated by
spaces

A set of default options is read from the system variable Wipe$0ptions,
which is set by the system as shown below. You can change these default
preferences using the *Set command. You arc recommended to type:

*Set Wipe$0ptions <Wipe$Options> extra options

so you can see what the original options were before you added your extra
ones. The default options arc overruled by any given to the command.

To ensure an option is ON, include it in the list of options; to ensure it is OFF,
precede the option by a'-' (e.g: -C-r to turn off the C and R options).

• C(onfirm) Prompt for confirmation of each deletion.
Default ON.

• F(orce) Force deletion of locked objects.
Default OFF.

• R(ccurse) Delete subdirectories and contents.
Default OFF.

• V(erbose) Print information on each object deleted.
Default ON.

*Wipe deletes one or more objects that march the given wildcard
specification.

If the Wipe$0ptions variable is unset then Wipe behaves as if the variable
were set to its default value.

965

Example

966

Wipe Games. -R Deletes all files in the directory Games (but not any
of its subdirectories).

FileSwitch: • Commands

Application
notes
Writing your own filing
system

What to read next

Declaring your filing
system

FileSwitch: Application notes

You can add filing systems to RISC OS. You must write them as relocatable
modules. There are two ways of doing so:

• by adding a module that FileSwitch communicates with directly

• by adding a secondary module to FileCore; FilcSwitch communicates with
FileCore, which then communicates with your module.

In both cases, the amount of work you have to do is considerably less than if
you were to write a filing system from scratch, as the FileSwitch and
FileCore modules already provide a core of the functions your filing system
must offer. Obviously if you use FileCore as well as FileSwitch, more is
already provided for you, and so you have even le~s work to do. The structure
of FileCore is then imposed on your filing system; to the user, it will appear
very similar to ADFS, leading to a consistency of design.

Obviously there is no way that FileSwitch can know how to communicate
directly with the entire range of hardware that any filing system might use.
Your filing system must provide these facilities, :md declare the entry points
to FileSwitch. When FileSwitch receives a SWI cflll or *Command, it does
its share of the work, and uses these entry po ints to get the relevant filing
system to do the work that is hardware dependent.

The relevance of the rest of this section depends on how you intend to write
your own filing system:

• if you are not using FilcC..ore, then you should read this section, which
tells you how to add a filing system to FileSwitch

• if you are using FilcCore, then you should ign0re this section and instead
read the next chapter entitled FileCore.

In both cases you should also see the chapter entitled Modules, for more
information on how to write a module.

When your module initialises, it must declare itself to be a filing system, so
that FileSwitch knows of its existence. You muH call OS_FSControl 12 to do
this - see this chapter's section on SWI calls for details. R 1 and R2 tell

967

Filing system information
block

Filing system information
word

968

FileSwitch where to find a fiUng system information block. This in turn tells
FileSwitch the locations of all the entry points to the filing system's low level
routines that interface with the hardware.

This table shows the offsets from the start of the filing system information
block, and the meaning of each word in the block:

Offset Contains

&00
&04
&08
&OC
&10
&14
&18
&lC
&20
&24
&28

Offset of filing system name (null terminated)
Offset of filing system startup text (null terminated)
Offset of routine to open files
Offset of routine to get bytes from media
Offset of routine to put bytes to media
Offset of routine to control open files
Offset of routine to close open files
Offset of routine to do whole file operations
Filing system information word
Offset of routine to do various FS operations
Offset of routine to do multi-byte operations

(FSEnrry_Open)
(FSEnrry_GetBytes)
(FSEnrry_PutBytes)
(FSEnrry_Args)
(FSEnrry_Ciose)
(FSEntry_File)

(FSEnrry_Func)
(FSEnrry_GBPB)

The offsets held in each word are from the base of the filing system module.
The GBPB entry (at offset &28 from the start of the information block) is
optional if the filing system supports non buffered 1/0, and not required
otherwise.

The block need not exist for long, as FilcSwitch takes a copy of it and
converts the entry points to absolute addresses. So you could set up the block
as an area in a stack frame, for example.

The filing system information word (at offset &20) tells FileSwitch various
things about the filing system:

Bit Meaning if set

31 Special fields are supported
30 Streams are interactive
29 Filing system supports null length filenames
28 Filing system should be called to open a file whether or not it exists
27 Tell the filing sy!'tem when flushing by calling FSEntry_Args 255

FileSwitch: Application notes

FileSwitch: Application notes

26 Filing system supports FSEntry_Filc 9
25 Filing system supports FSEntry_Func 20
24 Filing system supports.FSEntry_Func 18

Bits 16- 23 are reserved and should be set to zero.

Bits 8- 15 tell FileSwitch the maximum number of files that can be easily
opened on the filing system (per server, if appropriate). A value of 0 me-ans
that there is no definite limiting factor - DMA failure does not count as such
a factor. These bits may be used by system extemion modules such as the
Font Manager to decide whether a file may be left open or should be opened
and closed as needed, to avoid the main application running out of file
handles.

In addition, bits 0 • 7 contain the filing system identification number.
Currently allocated ones arc:

File system

None
RomFS
NetFS
ADFS
NetPrint
Null
Printer
Serial
Vdu
RawYdu
Kbd
RawKbd
DeslcFS
Computer Concepts RomFS
RamFS
RISCiXFS
Streamer
SCSIFS
Digitiser
Scanner
MultiFS

Number

0
3
5
8
12
13
14
15
17
18
19
20
21
22
23
24
25
26
27
28
29

For arl allocation, contact Acorn Computers in writing.

969

Selecting your filing
system

Other * Commands

Removing your filing
system

Filing system interface:
calling conventions

970

If your filing system has associated file storage, it must provide a * Command
to select itself, such as *ADFS or *Net. This must c<lll OS_FSControl 14 to
direct FileSwitch to make the named filing system current, thus:

StarfilingSystemComma~d

STMfD R13!, (R1 4) ; I n a • Comma~d so R0-R6 may be corr upted
MOV RO, f fSCo~tro l_SolectfS

ADR Rl, filinqSystemName
swr xcs_rscontrol
LDMfD R13!, l PC)

For full details of OS_FSControl 14, see the section on SWI calls earlier in
this chapter.

There are no other * Comm<lnds that your filing system must provide, but it
obviously should provide more than just a way to select itself. Look through
the remaining chapters of this part of the manu::tl to see what other filing
systems offer.

If the list of * Commands you want to provide closely matches those in the
chapter entitled FileCore, you ought to investigate adding your filing system to
FileCore rather than to FilcSwitch; this will be less work for you.

The finalise entry of your module must call OS_FSControl 16 (for both soft
and hard deaths), so that FilcSwitch knows that your filing system is being
removed:

MOV
ADR

SWI
CMP

RO, lf'SCont.rol _ Re>movers 16
Rl , Fi lingSyst omName
XOS fSControl
PC, 10 ; Clears v (also c l ears ~.z, set s C)

For full details of OS_FSControl 16, see the section on SWI calLs earlier in
this chapter.

The principal part of a filing system is the set of low-level routines that
control the filing system's hardware. There are certain conventions that apply
to them.

Fi leSwitch: Application notes

Processor mode

Using the stack

Using file buffers

FileSwitch: Application notes

Routines called by FileSwirch are always entered in SYC mode, with both
IRQs and FIQs enabled. This means you do not have to change mode either to
access hardware devices directly or to set up FIQ rcgi~tcr<i as necessary.

Rl3 in supervisor mode is used as the system st:Jck pointer. The filing system
may use this full descending stack. When the filing system is entered you
should take care not to push too much onto it, as it is only guaranteed to be
1024 bytes deep; however most of the time it is substantially greater. The
stack base is on a lMbyte boundary. Hence, to determine how much stack
space there is left for your usc, use the following code:

MOV

SUB

RO, Rl3 , LSR 120
RO, Rl3, RO, LSL 120

; Get Mbytc value of SP
; Sub it from actual value

You may move the stack pointer downwards by a g1ven amount and use that
amount of memory as temporary workspace. However, intem1pt processes arc
allowed to usc the supervisor stack so you must leave enough room for these
to operate. Similarly, if you call any operating system routines, you must give
them enough stack space.

If a read or write operation occurs that requires a file buffer to be claimed
for a file, and this memory claim fails, then FilcSwitch will look to steal a
file buffer from some other file. Victims arc looked for in rhc order:

an unmodified buffer of the same size

2 an unmodified buffer of a larger size

3 a modified buffer of the same size

4 a modified buffer of a larger size.

In the last two cases, FileSwitch obviously calls the filing system to write out
the buffer first, before giving it to the new owner. If an error occurs in writing
out the buffer, the stream that owned the data in the buffer (not the stream
that needed to get the buffer) is marked as having 'data lost'; any further
operations will rerum the 'Data lost' error. FilcSwitch is always capable of
having one file buffered at any time, although it won't work very well under
such conditions.

971

Workspace

Supporting unbuffered
streams

Dealing with access

Other conventions

R 12 on entry to the filing system is set to the value 0f R3 passed to FileSwitch
in the OS_FSControl 12 call that initialised the filing system. Conventionally,
this is used as a pointer to your private word. In this case, module entries
should contain the following:

LDR R1 2, :Rl2]

to load the actual address into the register.

Filing systems may support both buffered and unbuffered streams.
Unbuffered streams must maintain their own sequential pointers, file extents
and allocated sizes. File Switch will maintain the EOF-error-on-next-read flag
for them.

Generally FileSwitch does not make calls to filing systems unless the access
on objects is correct for the requested operation.

Note that if a file is opened for buffered output and has only write access,
FileSwitch may still attempt to read from it to perform its file buffering.
You must not fault this.

Filing system routines do not need to preserve any registers other than R 13.

If a routine wishes to return an error, it should return to FileSwitch with V set
and RO pointing to a standard format error block.

You may assume that:

• all names are null terminated

• all pathnames arc non-null, unless the filing system allows them (for
example printer:)

• all pathnames have correct syntax.

972 FileSwitch: Application notes

Filing system
interfaces

FSEntry _Open

On entry

On exit

These are the intertaces that your filing system must provide. Their entry
points must be declared to FileSwitch by calling OS_FSControl 12 when the
filing system module is initialised.

RO = reason code
Rl = pointer to filename (null terminated)
R3 = FileSwitch handle to the file
R6 = pointer to special field if present, otherwise 0

RO =file information word (not the same as the file system information word)
Rl = file handle used by your filing system (0 if not found)
R2 = buffer size for FileSwitch to use (0 if file unbuffered)
RJ =file extent (buffered files only)
R4 = space currently allocated to file (buffered files)

FileSwitch calls this entry point to open a file for read or write, and to create
it if necessary. The reason code given in RO has the following meaning:

Value

0
1
2

Meaning

Open for read
Create and open for update
Open for update

For both reason codes 0 and 2 FileSwitch will already have checked that the
object exists (unless you have overridden this by setting bit 28 of the filing
system information word) and, for reason code 2 only, that it is not a
directory. These reason codes must not alter a file's datestamp.

If a directory is opened for reading, then bytes will not be requested from it.
The use of this is for compatibility with exisiting programs which use this as a
method of testing the existence of an object. 1l1is is also used to open new
directory contexts which may be written via FSEnrry_Func.

For reason code l FileSwitch will already have checked that the leafnamc is
not wildcarded, and that the object is not an existing directory. Your filing
system should return an extent of zero. If the file already exists you should
return an allocated space the same as that of the file; otherwise you should

FileSwitch: Filing system interfaces 973

974

return a sensible default that allows space for the file to ~row. Your filing
system should also give a new file a filet)rpe d &FFD (Data), datcstamp it,
and give it sensible access attributes (WR/ is recommended).

On entry, R3 contains the handle that FilcSwirch will usc for the file if your
filing system successfully opens it. This is a small intc~cr (typically going
downwards from 255), but must be treated as a 32-bit word for future
compatibility. Your filing system may want to make a note of it when the file
is opened, in case it needs to refer to files by their FileSwitch handles (for
example, it must close all open files on a *Dismount). It is the FileSwitch
handle that the user sees.

On exit, your filing system must return a 32-bit file handle that it uses
internally to FileSwitch. FilcSwitch wilt then use this file handle for any
further calls to your filing sy~tem. You may usc any value, apart from two
handles that have special meanings:

• a handle of zero means that no file is open

• a handle of -1 is used to indicate 'unset' directory contexts (sec
FSEntry _Func).

The information word remmed in ROuses the following hits:

Bit Meaning if set

31 Write permitted to this file
30 Read permitted from this file
29 Object is a directory
28 Unbuffered OS_GBPB supported (stream-type devices only)
27 Stream is interactive

An interactive stream is one on which prompting for input is appropriate, such
as kbd:.

If your memory allocation fails this is not an error, and you should indicate it
to FileSwitch by setting Rl to 0 on exit.

The buffer size returned in R2 must be power of 2 between 64 and 1024
inclusive.

FileSwitch: Filing system interfaces

FSEntry_GetBytes
from ...

.. . a buffered file

On entry

On exit

This call is used to get a single byte or a group of bytes from an open file.
There are two distinct cases tJO) consider, depending on whether the file was
opened as buffered or unbuffered:

Get bytes from a buffered file

Rl =file handle
R2 = memory address to pur data
R3 = number of byres to read
R4 = file offset to get data from

This call reads a number of bytes and places them in memory.

The file handle is guaranteed by FileSwitch not to be a directory, but not
necessarily to have had read access granted at the time of the open - sec the
last case given below.

The memory address is not guaranteed to be of any particular alignment. You
should if possible optimise your filing system's transfers to word-aligned
locations in particular, as FileSwitch's and most clients do rend to be word
aligned. The speed of your transfer routine is vital to filing system
performance. A highly optimised example (similar to that used in RISC OS)
is given at the end of this chapter.

The number of bytes to read, and the file offset from which to read data are
guaranteed to be a multiple of the buffer size for this file. The file offset
will be within the file's extent.

This call is made by FileSwirch for several purposes:

• A client has called OS_BGer at a file offset where FileSwitch has no
buffered data, and so FileSwitch needs to read the appropriate block of
data in toone of its buffers, from where data is returned to the client.

• A client has called OS_GBPB to read a whole number of the buffer size
at a file offset that is a multiple of the buffer size. FileSwitch requests
that the filing system transfer this data directly to the client's memory.
This is often the case where language libraries are being used for file
access. If FileSwitch has any buffered data in the transfer range that has

FileSwitch: Filing system interfaces 975

. .. an unbuffered file

On entry

On exit

976

been modified but not yet flushed out to the filing system, then this data
is copied to the client's memory after the Getl3ytes call to the filing
system.

• A client has called OS_GBPB to perform a more general read.
FileSwitch will work out an appropriate set of data transfers. You may
be called to fill FilcSwitch's buffers as needed and/or to transfer data
directly to the client's memory. You should make no assumptions about
the exact number and sequence of such calls; as far as possible RlSC OS
tries to keep the calls in ascending order of file address, to increase
efficiency by reducing seck times, and so on.

• A client has called OS_GBPB to perform a more general write.
FilcSwitch will work out an appropriate set of data transfers. You may
be called to fill FileSwitch's buffers as needed, so that the data at the
start and/or end of the requested transfer can be put in the right place in
FileSwitch's buffers, ready for whole buffer transfer to the filing system
as necessary.

Note that FileSwitch holds no buffered data immediately after a file has
been opened .

Get a byte from an unbuffered file

R l = file handle

RO = byte read, C clear
RO = undefined, C set if attempting to read at end of file

This call is used to get a single byte from an unbuffered file from the
position given by the file's sequential pointer. The sequential pointer must be
incremented by one, unless the end of the file has been reached.

The file handle is guarnntecd by FileSwitch nor to be a directory and to have
had read access grnnred at the time of the open.

Your filing system must not try to keep irs own EOF-error-on-next-read flag -
instead it must rerum with C set whenever the file's sequential pointer is
equal to its extent before a byte is read. lt is FileSwitch's responsibility to
keep the EOF-error-on-next-read flag.

FileSwitch: Filing system interfaces

FSEntry _PutBy1es
to ...

.. . a buffered file

On entry

On exit

If the filing system does not support unbuffered GBPB directly, then this
entry is called by FileSwitch the number of rimes requested by the client to
complete his request, stopping if it returns C set (EOF).

This call is used to put a single byte or group of bytes to a file. Again, there
are two distinct cases to consider:

Put bytes to a buffered file

Rl =file handle
R2 = memory address to take data from
R3 =number of bytes to put to file
R4 = file offset to put data to

This call is used to take a number of bytes, and place them in the file at the
specified file offset.

The file handle is guaranteed by FilcSwitch not ro be a directory, and to have
had write access granted ar rhc time of the open.

The memory address is not guaranteed to be of any particular alignment. You
should if possible optimise your filing system's transfers to word-aligned
locations in particular, as FilcSwitch's and most clients do tend to be word
aligned. The speed of your transfer routine is vital to filing system
performance. A highly optimised example (similar to that used in
FilcSwitch) is given at the end of this chapter.

The number of bytes to write, and the file offset at which to write data arc
guaranteed to be a multiple of the buffer size for this file. The final write
will be within the file's extent, so it will not need extending ..

This call is made by FileSwitch for several purposes:

• A client has called OS_GBPB to write a whole number of the buffer size
at a file offset that is a multiple of the buffer size. FilcSwitch requests
that the filing system transfer this data directly from the client's memory.
This is often the case where language libr;~ries arc being used for file
access. If Fi leSwitch has any buffered data in the transfer range that has
been modified but not yet flushed out to the filing system, then this d;m
is discarded (as it has obviously been invalidated by this operation).

FileSwitch : Filing system interfaces 977

. . . an unbuffered file

On entry

On exit

978

• A client has called OS_BGet/BPut/GBPB at a file offset where
FileSwitch has no buffered data, and the current buffer held by
FileSwitch has been modified and so must be written to the filing system.
(The current FileSwitch implementation docs not maintain multiple
buffers on each file. It is likely that this will remain the case, as
individual filing systems have better knowledge about how to do disc
caching, and intelligent readahead and writebchind for given devices.)

• A client has called OS_GBPB to perform a more general write.
FileSwitch will work out an appropriate set of data transfers. You may
be called to empty FileSwitch's buffers as needed and/or to transfer
data directly from the client's memory. You should make no assumptions
about the exact number and sequence of such calls; as far as possible
RISC OS tries to keep the calls in ascending order of file address, to
increase efficiency by reducing seek times, and~ on ..

Note that FileSwitch holds no buffered clara immediately after a file has
been opened .

Put a byte to an unbu ffercd file

RO =byte to put to file (top 24 bits zero)
Rl =file handle

This call is used to put a single byte to an unbuffered file at the posttton
given by the file's sequential file pointer. The sequential pointer must be
advanced by one. If the sequential pointer is equal to the file extent when this
call is made, the allocated space of the file must be incrcscd by at least one
byte to accomcxlate the data - although it will be more efficient to increase
the allocated space in larger chunks (256 bytes/lk is common).

The file handle is guaranteed by FilcSwitch not to be a directory, and to have
had write access granted at rhe time of the open.

If the filing system docs not support unbuffered GBPB directly, then this
entry is called by FilcSwitch the number of times requested by the client to
complete his request.

FileSwitch: Filing system interfaces

FSEntry_Args

FSEntry_Args 0

On entry

On exit

FSEntry_Args 1

On entry

On exit

FSEntry_Args 2

On entry

Various calls are made through this entry point to deal with controlling open
files. The actions are specified by RO as follows:

Read sequential file pointer

RO=O
Rl =file handle

R2 = sequential file pointer

This call is used to read the sequential file pointer for a given file. Only
filing systems which use unbuffered files should support this call.

If the filing system does not support a pointer as the concept is meaningless
(kbd: for example) then it must return a pointer of 0, and not return an error.

Write sequential file pointer

RO = 1
Rl =file handle
R2 = new sequential file pointer

This call is used to alter the sequential file pointer for a given file. Only
filing systems which use unbuffered files should support this call.

If the new pointer is greater than the current file extenr then:

• if the file was opened only for reading, or only read permission was
granted, then return the error 'Outside file'

• otherwise extend the file with zeroes and set the new extent to the new
sequential pointer.

If you cannot extend the file you should return an error as soon as possible,
and in any case before you update the extent.

If the filing system does not support a pointer as the concept is meaningless
(kbd: for example) then it must ignore the call, and not return an error.

Read file extent

RO =2
Rl =file handle

FileSwitch: Filing system interfaces 979

On exit

FSEntry_Args 3

On entry

On exit

FSEntry_Args 4

On entry

On exit

980

R2 = file extent

This call is used to read the extent of a given file. Only filing systems which
use unbuffered files should support this call.

If the filing system does not support file extents as the concept is meaningless
(kbd: for example) then it must return an extent of 0, and not return an error.

Write file extent

RO = 3
R 1 = file handle
R2 = new file extent

For buffered files, this call is only issued internally by FileSwitch in order
to set the real file extent just prior to closing an open file. The filing system
should store the value of R2 in the file's catalogue information as its new
length .

For unbuffered files, this call is passed directly through from the user.

If the new extent is less than the current sequential pointer (the file is
shrinking and the pointer would lie outside the file), then the pointer must be
set to the new extent.

If the new extent is greater than the current one then you must extend the file
with zeroes If you cannot extend the file you should return an error as soon as
possible, and in any case before you update the extent.

The file handle is guaranteed by FileSwitch not to be a directory, and to have
had write access granted at the time of the open.

If the filing system does not support ·file extents as the concept is meaningless
(kbd: for example) then it must ignore the call, and not return an error.

Read size allocated to file

RO = 4
R I = file handle

R2 = size allocated to file by filing system

FileSwitch: Filing system interfaces

FSEntry_Args 5

On entry

On exit

FSEntry_Args 6

On entry

On exit

FSEntry_ Args 7

On entry

On exit

This call is used to read the size allocated to a given file. All fi ling systems
must support this call.

EOF check

RO =5
Rl =file handle

C bit is set if (sequential pointer is equal to current extent), clear otherwise

This call is used to determine whether the sequential pointer for a given file
is at the end of the fil e or not. Only filing systems which use unbuffered files
should support this call.

If the filing system does not support a pointer and/or a file extent as the
concept(s) are meaningless (kbd: for example) then the treatment d the C bit
is dependent on the filing system. For example, kbd: gives EOF when Ctrl-0
is read from the keyboard; null : always gives EOF; and vdu: never gives EOF.

Notify of a flush

RO= 6
Rl =file handle

R2 = load address of file (or 0)
RJ =execution address offile (or 0)

This call is used to notify the filing system to flush any modified data that it
is holding in buffers to its storage media. It is only needed when the filing
system does its own buffering in addition to that done by FileSwitch . For
example, ADFS does so when doing readahead/writeQchind.

It is only called by FilcSwitch if the filing system is buffered, and bit 27 of
the filing system information word was set when the filing system v.ras
initialised.

Ensure file size

RO = 7
R 1 = file handle
R2 =size of file to ensure

R2 = size of file actually ensured

FileSwitch: Filing system interfaces 981

FSEntry_Args 8

On entry

On exit

FSEntry_Args 9

On entry

On exit

982

This call is used to ensure that a file is of at least the given size. You must not
rely on this call to zero out file storage for you. All filing systems must
sup{X)rt this call.

Write zeros to file

RO = 8
Rl =file handle
R2 = file address to write zeros at
RJ = number of zero bytes to write

This call is used to take a number of zero bytes, and place them in the file at
the specified file offset.

The file handle is guaranteed by FileSwitch not to be a directory, and to have
had write access granted at the time of the open.

The memory address is not guaranteed to be of any particular alignment. You
should if possible optimise your filing system's transfers to word-aligned
locations in particular, as FilcSwitch's and most clients do tend to be word
aligned. The speed of your transfer routine is vital to filing system
performance. A highly optimised example (similar to that used in
FileSwitch) is given at the end of this chapter.

The number of bytes to write, and the file offset at which to write data arc
guaranteed to be a multiple of the buffer size for this file ..

All filing systems which use buffered files must support this call.

Read file datestamp

RO = 9
Rl =file handle

R2 =load address of file (or 0)
R3 =execution address of file (or 0)

This call is used to read the date/time stamp for a given file. The bottom four
bytes of the date/time stamp are stored in the execution adcfress of the file.
The most significant byte is stored in the least significant byte of the load

FileSwitch: Filing system interfaces

FSEntry_Ciose

On entry

On exit

FSEntry_FIIe

FSEntry_FIIe 0

On entry

On exit

address. All filing systems must support this call. If a filing system cannot
stamp an open file given its handle, then it should return R2 and R3 set to
zero.

Close an open file

Rl =file handle
R2 = new load address to associate with file
R3 = new execution address to associate with file

This call is used to close an open file and put a new d;Jte/time stamp on it.

If the filing system returned from the FSEntry_Args 9 call with R2 and R3
both zero, then they will also have that value here, and you should not try to
restamp the file. Restamping takes place if the file has been modified and
FSEntry_Args 9 returned a non-zero value in R2.

Note that *Close and *Shut (ie close all open files) are performed by
FileSwitch which passes the handles, one at a time, to the filing system for
closing. Filing systems should not try to support this themselves.

This call is used to perform operations on whole files depending on the value
of RO as follows:

Save file

RO= 0
Rl =pointer to filename (null terminated)
R2 =load address to associate with file
R3 = execution address to associate with file
R4 = start address in memory of data
R5 =end address in memory plus one
R6 = pointer to special field if present, otherwise 0

R6 =pointer to a leafname for printing *OPT 1 info

FileSwitch: Filing system interfaces 983

FSEntry_File 1

On entry

On exit

FSEntry_File 2

On entry

On exit

FSEntry_FIIe 3

On entry

984

This call saves an area of memory to a file. FilcSwitch has already validated
the area for saving from, and ensured that the lcafname is not wildcarded. An
error such as File locked should be returned if the specified file could
not be saved.

The leafname is immediately copied by FileSwitch, so need not have a long
lifetime. You could hold it in a small static buffer, for example.

Write catalogue information

RO = I
R I =pointer to wildcarded filename (null terminated)
R2 = new load address to associate with file
R3 = new execution address to associate with file
RS = new attributes for file
R6 =pointer to special field if present, otherwise 0

This call updates the catalogue information. If the object is a directory you
must either write the information (FileCore-bascd filing systems do) or return
an error. You must not return an error if the object docs not exist.

Write load address

RO = 2
Rl =pointer to wildcarded filename (null terminated)
R2 = new load address to associate with file
R6 = pointer to special field if present, otherwise 0

This call a! ters the load address for a file. If the object is a directory you
must either write the information (FileCorc-based filing systems do) or return
an error. You must not return an error if the object does not exist.

Write execution address

RO = 3
Rl =pointer towildcarded filename (null terminated)
R3 = execution address to associate with file
R6 = pointer to special field if present, otherwise 0

FileSwitch: Filing system interfaces

On exit

FSEntry_FIIe 4

On entry

On exit

FSEntry_File 5

On entry

On exit

This call alters the execution address for a file. If the object is a directory
you must either write the information (FileC'...ore-bascd filing systems do) or
return an error. You must not return an error if the object does not exist.

Write attributes

RO = 4
R 1 = pointer to wildcarded path name (null terminated)
R5 =new attributes to associate with file
R6 = pointer to special field if present, otherwise 0

This call alters the attributes of an object. You must not return an error if the
object does not exist.

Read catalogue information

RO = 5
Rl =pointer to pathname (null terminated)
R6 = pointer to special field if present, otherwise 0

RO = object type
0 not found
1 file
2 directory

R2 = load address
RJ = execution address
R4 = file length
R5 = file attributes

This call returns the catalogue information for an object You should return an
error if:

• the pathname specifies a drive that is unknown

• the pathname specifies a media name that is unknown and not made
available after any UpCall

• the special field specifies an unknown server or subsystem.

FileSwitch: Filing system interfaces 985

FSEntry_File 6

On entry

On exit

FSEntry_FIIe 7

On entry

On exit

986

You should return type 0 if:

• the place specified by the pathname exists, but the leafname does not
match any object there

• the place specified by the path name does not exist.

Delete object

R0=6
R 1 =pointer to filename (null terminated)
R6 = pointer to special field if present, othetwisc 0

RO =object type
R2 = load address
R3 = execution address
R4 = file length
RS = file attributes

This call deletes an object. FilcSwitch will already have ensured that the
leafname is not wildcarded. No data need be transferred to the file. An error
should be returned if the object is locked against deletion, but not if the
object does not exist. The results refer to the object that was deleted.

Create file

RO = 7
R 1 = pointer to filename (null terminated)
R2 = load address to associate with file
R3 = execution address to associate with file
R4 = start address in memory of data
RS = end address in memory plus one
R6 = pointer to special field if present, othetwise 0

R6 = pointer to a filename for printing *OPT 1 info

This call creates a file with a given name. R4 and R5 are used only to
calculate the length of the the file to be created. If the file currently exists
and is not locked, the old file is first discarded. An error should be returned
if the file could not be created.

FileSwitch: Filing system interfaces

FSEntry_FIIe 8

On entry

On exit

FSEntry_File 9

On entry

On exit

FSEntry_File 255

On entry

Create directory

RO = 8
Rl =pointer to directory name (null terminated)
R4 = number of entries (0 for default)
R6 = pointer to special field if present, otherwise 0

This call creates a directory. If the directory already exists then your filing
system can do one of these:

• return without any modification to the existing directory

• attempt to rename the directory -you must not return an error if this fails.

FileSwitch will already have ensured that the leafname is not wildcarded. An
error should be returned if the directory could not be created.

Read catalogue information (no length)

RO = 9
Rl =pointer to filename (null terminated)
R6 =pointer to special field if present, otherwise 0

RO = object type
R2 = load address
R3 = execution address
R5 = file attributes

This call returns the catalogue information for an object, save for the object
length. It is useful for NetFS with FileServcrs, as the length is not stored in a
directory. You must not return an error if the object docs not exist.

It is only called by FileSwitch if bit 26 of the filing system information word
was set when the filing system was initialised. Otherwise FSEntry_File 5 is
called, and the length returned in R4 is ignored.

Load file

RO = 255
Rl =pointer to wildcardcd fi lename (null terminated)
R2 = address to load file
R6 = pointer to special file if present; otherwise zero

FileSwitch: Filing system interfaces 987

On exit

FSEntry_Func

988

RO is corrupted
R2 = load address
R3 = execution address
R4 = file length
R5 = file attributes
R6 = pointer to a filename for printing *OPT 1 info

FileSwitch has always called FSEntry_File 5 and validated the client's load
request before calling FSEntry_File 255. If FSEntry_File 5 returned with
object type 0 then the user will have been returned the 'File 'xyz' not found'
error, type 2 will have returned the "xyz' is a directory' error, types 1 with
corresponding load actions will have had them executed (which may recurse
back down to load again), those with no read access will have returned
'Access violation', and those being partially or wholly loaded into invalid
memory will have returned 'No writeable memory at this address'

Therfore unless the filing system is accessing data stored on a multi-user
server such as NetFS/FileStore, the object will still be the one whose info
was read earlier.

The filename pointed to by R6 on exit should be the non-wildcarded 'leaf
name of the file. That is, if the filename given on entry was $. ! b*, and the
file accessed was the boot file, R6 should point to the filename !Boot.

Various calls are m;;~de through this entry point to de;;~l with assorted filing
system control. Many of these output inform<~tion. You should do this in two
stages:

• amass the information into a dynamic buffer

• print from the buffer and dispose of it.

This avoids problems caused by the WrCh process being in the middle of
spooling, or by an active task swapper.

If you add a header to output (cf *Info * and *Ex on ADFS) you must
follow it with a blank line. You should always try to format your output to
the printable width of the current window. You can read this using
XOS_ReadYduYars &100, which copes with most eventualities. Don't cache
the value, but read it before each output.

FileSwitch: Filing system interfaces

FSEntry_Func 0

On entry

On exit

FSEntry_Func 1

On entry

On exit

FSEntry_Func 2

On entry

On exit

The actions are specified by RO as given below.

Set current directory

RO =0
Rl =pointer to wildcarded directory name (null terminated)
R6 =pointer to special field if present, otherwise zero

This call is used to set the current directory to the one specified by the
directory name and context given. If the directory name is null, it is assumed
to be the user root directory.

You should not also make the context current, but instead provide an
independent means of doing so, such as *FS on the NetFS.

Set library directory

RO =I
Rl =pointer to wildcardcd directory name (null terminated)
R6 = pointer to special field if present, otherwise zero

This call is used to set the current library directory to the one identified by
the directory name and context given. If the directory name is null, it is
assumed to be the filing system default (which is dependent on your
implementation).

You should not also make the context current, but instead provide an
independent means of doing so, such as *FS on the NetFS.

Catalogue directory

RO = 2
R I = pointer to wildcardcd directory name (null terminated)
R6 =pointer to special field if present, otherwise zero

This call is used to cata logue the directory identified by the directory name
and context given. If the directory name is null, it is assumed to be the current
directory. (This correspond<; to the *Cat command.)

FileSwitch: Filing system interfaces 989

FSEntry _Func 3

On entry

On exit

FSEntry _Func 4

On entry

On exit

FSEntry _Func 5

On entry

On exit

FSEntry_Func 6

On entry

990

Examine current directory

RO =3
Rl =pointer to wildcarded directory name (null terminated)
R6 = pointer to special field if present, otherwise zero

This call is used to print information on all the objects in the directory
identified by the directory name and context given. If the directory name is
null, it is assumed to be the current directory. (This corresponds to the *Ex
command.)

Catalogue library directory

RO= 4
Rl =pointer to wildcarded directory name (null terminated)
R6 = pointer to special field if present, otherwise zero

This call is used to catalogue the specified subdirectory relative to the current
library directory. If the directory name is null, it is assumed to be the current
library directory. (This corresponds to the *LCat command.)

Examine library directory

RO = 5
Rl =pointer to wildcarded directory name (null terminated)
R6 = pointer to special field if present, otherwise zero

This call is used to print information on all the objects in the specified
subdirectory relative to the current library directory. If the directory name is
null, it is assumed to be the current library directory. (This corresponds to the
*LEx command.)

Examine object(s)

RO = 6
Rl =pointer towildcarded pathname (null terminated)
R6 = pointer to special field if present, otherwise zero.

FileSwitch: Filing system interfaces

On exit

FSEntry_Func 7

On entry

On exit

FSEntry_Func 8

On entry

On exit

This call is used to print information on all the objects matching the
wildcarded pathname and context given, in the same format as for Examine
directory. (This corresponds to the *INFO command.)

Set filing system options

RO = 7
Rl =option (or 0)
R2 = parameter
R6 = 0 (cannot specify a context)

This call is used to set filing system options.

An option of 0 means reset all filing system options to their default values.
An option of 1 is never passed to you, as FileSwitch maintains these settings.
An option of 4 is used to set the boot file action. You may usc other option
numbers for your own purposes; please contact Acorn for an allocation.

(This corresponds to the *Opt command.)

You should return an error for bad combinations of options and parameters.

Rename object

RO = 8
R 1 = pointer to first path name (null terminated)
R2 = pointer to second path name (null terminated)
R6 = pointer to first special field if present, otherwise 0
R 7 = pointer to second special field if present, else 0

Rl = 0 if rename performed (<>0 otherwise)

This call is used to attempt to rename an object. If the rename is not 'simple',
(ie just changing the file's catalogue entry) R 1 should be returned with a
value other than zero. In this case, FileSwitch will return a 'Bad rename' error.

FileSwitch: Filing system interfaces 991

FSEntry_Func 9

On entry

On exit

FSEntry_Func 10

On entry

On exit

FSEntry_Func 11

On entry

On exit

992

Access object(s)

RO= 9
Rl =pointer to wildcarded path name (null terminated)
R2 =pointer to access string (null, space or control-character terminated)

This call is used to give the requested access to all objects matching the
wildcarded name given. (This corresponds to the *Access command.)

You should ignore inappropriate owner access bits, and try to store public
access bits.

Boot filing system

RO = 10

The filing system should perform its boot action on this call. For example,
ADFS examines the boot option (as set by *OJYT 4) of the disc in the
configured drive and acts accordingly, for example *Run & • ! Boot if boot
option 2 is set; whereas NctFS attempts to logon as the boot user to the
configured file server.

This call may not return if it runs an application.

Read name and boot (*OPT 4) option of disc

RO = 11
R2 = memory address to put data
R6 = 0 (cannot specify a context)

This call is used to obtain the name of the disc that the CSD is on in the
temporary filing system, and its boot option. This data should be returned in
the area of memory pointed to by R2, in the following format:

<name length byte><disc name><boot option byte>

If there is no CSD, d1is call should return the string 'Unset' for the disc name,
and the boot action should be set to zero.

FileSwitch: Filing system interfaces

FSEntry_Func 12

On entry

On exit

FSEntry_Func 13

On entry

On exit

The buffer pointed to by R2 will not have been validated and so you should
be prepared for faulting when you write to the memory. You must not put an
interlock on when you are doing so.

Read current directory name and privilege byte

RO = 12
R2 = memory address to put data
R6 = 0 (cannot specify a context)

This call is used to obtain the name of the CSD on the temporary filing
system, and privilege status in relation to that directory. This data should be
returned in the area of memory pointed to by R2, in the following format:

<zero byte><name length byte><current directory namc><privilcge byte>

If there is no CSD, this call should return the string 'Unset' for the directory
name.

The privilege byte is &00 if you have 'owner' status (ie you can create and
delete objects in the directory) or &FF if you have 'public' status (ie arc
prevented from creating and deleting objects in the directory). On FileCore
based filing systems, you always have owner status.

The buffer pointed to by R2 will not have been validated and so you should
be prepared for faulting when you write to the memory. You must not put an
interlock on when you are doing so.

Read library directory name and privilege byte

RO = 13
R2 =memory address to put data

This call is used to obtain the name of the library directory on the temporary
filing system, and privilege status in relation to that directory. This data
should be returned in the area of memory pointed to by R2, in the following
format:

<zero byte><name length bytc><library directory namc><privilcgc byte>

FileSwitch : Filing system interfaces 993

FSEntry_Func 14

On entry

On exit

994

If no library is selected, this call should return the string 'Unset' for the
library directory name.

The buffer pointed to by R2 will not have been validated and so you should
be prepared for faulting when you write to the memory. You must not put an
interlock on when you are doing so.

Read directory entries

RO = 14
Rl =pointer to wildcarded directory name (null terminated)
R2 = memory address to put data
R3 = number of object names to read
R4 = offset of first item to read in directory (0 for start of directory)
RS = buffer length
R6 = pointer to special field if present, otherwise zero

R3 = number of names read
R4 =offset of next item to read in directory (-1 if end)

This call is used to read the leaf names of entries in a directory into an area
of memory pointed to by R2. If the directory name is null, then the currently
selected directory should be read. The names are returned in the buffer as a
list of null terminated strings. You must not overflow the end of the buffer,
and you must only count names that you have completely inserted

The length d buffer that FileSwitch will have validated depends on the call
that was made to it:

• if it was OS_GBPB 8, then enough space will have been validated to hold
[R3] tO-character long directory entries (plus their terminators)

• if it was OS_GBPB 9, then the entire buffer specified by R2 and RS will
have been validated.

Unfortunately there is no way you can tell which was used. RISC OS
programmers are encouraged to use the latter.

You should return an error if the object being catalogued is not found or is a
file.

FileSwitch: Filing system interfaces

FSEntry_Func 15

On entry

On exit

FSEntry_Func 16

On entry

On exit

Read directory entries and information

RO = 15
Rl =pointer to wildcarded directory name (null terminated)
R2 = memory address to put data
R3 = number of object names to read
R4 = offset of first item to read in directory (0 for start of directory)
R5 = buffer length
R6 = pointer to special field if present, otherwise zero

R3 = number of records read
R4 =offset of next item to read in directory (- 1 if end)

This call is used to read the leaf names of entries (and their file information)
in the given directory into an area of memory pointed to by R2. If the
directory name is null, then the currently-selected directory should be read.
The names and information are returned in records, with the following format :

Offset

&00
&04
&08
&OC
&10
&14

Contents

Load address
Execution address
Length
Attributes
Object type
Object name (null terminated)

FileSwitch will have validated the area of memory. You must not overflow
the end ci the buffer, and you must only count names that you have
completely inserted. You should assume that the buffer is word-aligned, and
your records should be so too. You may find this code fragment useful to do
so:

ADD

BIC
R2, R2, lp2-1
R2, R2 , t p2-1

; p2 is a power-of-two, in this case 4

You should return an error if the object being catalogued is not found or is a
file.

Shutdown

RO = 16

FileSwitch: Filing system interfaces 995

FSEntry _Func 17

On entry

On exit

FSEntry _Func 18

On entry

On exit

996

On this call, the filing system should attempt to go into as dormant a state as
possible. For example, it should place Winchester drives in their transit
positions, etc. All files will have been closed by FileSwitch before this call
is issued.

Print start up banner

RO = 17
R6 = 0 (cannot specify a context)

This call is used to print out a filing system banner that shows which filing
system is selected. FileSwitch calls it if it receives a reset service call and the
text offset value (in the filing system information block) is -1. This is to allow
filing systems to print a message that may vary, such as Acorn Econet or
Acorn Econet no clock.

You should print the string using XOS_... SWls, and if there is an error
return with V set and RO pointing to an error block. This is not likely to
happen.

Set directory contexts

RO = 18
Rl = new currently-selected directory handle (0 = no change, -I for 'Unset')
R2 =new user root directory handle (0 = no change, -1 for 'Unset')
R3 = new library handle (0 = no change, -1 for 'Unset')
R6 = 0 (cannot specify a context)

R1 =old selected directory handle (-1 if 'Unset')
R2 =old user root directory handle (-1 if'Unset')
RJ =old library handle (-1 if'unser')

This call is used to redefine (or read) the currently-selected directory, user
root directory and library handles. FileSwitch will have ensured that all
handles being written are on the same filing system.

This call is only ever made to filing systems that have bit 24 set in the filing
system information word.

FileSwitch: Filing system interfaces

FSEntry_Func 19

On entry

On exit

FSEntry_Func 20

On entry

On exit

Read directory entries and information

RO = 19
R1 =pointer to wildcarded directory name (null terminated)
R2 = memory address to put data
R3 = number of object names to read
R4 = offset of first item to read in directory
RS = buffer length
R6 = pointer to special field if present, otherwise zero

R3 = number of records read
R4 =offset of next item to read in directory (-1 if end)

This call reads the names of entries (and their file information) in the given
directory into an area of memory pointed to by R2. If the directory name is
null, then the currently-selected directory should be read. The names and
information are returned in records, with the following format:

Offset

0
4
8
12
16
20
24
29

Contents

Load address
Execution address
Length
File attributes
Object type
System internal name- for internal use only
Time/Date (cs since 1/1/1900)- 0 if not stamped
Object name (null terminated)

Each record is word-a! igned.

Output full information on object(s)

R0=20
Rl = pointer to wildcarded path name (null terminated)
R6 = pointer to special field if present, otherwise zero.

This call is used to output full information on all the objects matching the
wildcarded pathname given. The format must be the same as for the *Filclnfo
command.

FileSwitch: Filing system interfaces 997

·· ...

FSEntry_GBPB

FSEntry_GBPB 1 and 2

On entry

On exit

FSEntry_GBPB 3 and 4

On entry

998

It is only called by FilcSwitch if bit 25 of the filing system information word
was set when the filing system was initialised. Otherwise FilcSwitch will use
calls to FSEntry_Func 6 to implement *Filelnfo.

Get/put bytes from/to an unbuffered file

This entry point isused to implement multiple get byte and put byte
operations on unbuffered files. It is only ever called if you set bit 28 of the
file information word on return from FSEntry_Open., and you need not
otherwise provide it. FileSwitch will instead use multiple calls to
FSEntry_PutBytes and FSEnrry_GetBytes to implement these operations.

Put multiple bytes to an unbuffered file

RO = 1 or 2
Rl =file handle
R2 =start address of buffer in memory
R3 = number of bytes to put to file
IfRO = 1

R4 = sequential file pointer to use for start of block

RO, R 1 preserved
R2 = address of byte after the last one transferred from buffer
R3 = number of bytes not transferred
R4 = initial file pointer + number of bytes transferred

This call is used to transfer data from memory to the file at either the
specified file pointer (RO = 1) or the current one (RO = 2). If the specified
pointer is beyond the end of the file, then you must fill the file with zeros
between the current file extent and the specified pointer before the bytes are
transferred.

The file handle is guaranteed by FileSwitch not to be a directory, and to have
had write access granted at the time of the open.

Read bytes from an open file

RO = 3 or 4
R 1 = file handle
R2 = start address of buffer in memory

FileSwitch: Filing system interfaces

On exit

R3 = number of bytes to get from file
lfRO = 3

R4 = sequential file pointer to use for start of block

RO, R 1 preserved
R2 =address of byte after the last one transferred to buffer
R3 = number of bytes not transferred
R4 = initial file pointer + number of bytes transferred

This call is used to transfer data from the file to memory at either the
specified file pointer (RO = 3) or the current one (RO = 4).

If the specified pointer is greater than or equal to the current file extent then
you must not update the sequential file pointer, nor must you return an error.

The file handle is guaranteed by FileSwitch not to be a directory and to have
had read access granted at the time of the open.

Your filing system must not try to keep its own EOF-error-on-next-read flag -
instead it is FileSwitch's responsibility to keep the EOF-error-on-next-read
flag. Unlike FSEntry_GetBytes, FileSwitch will set the C bit before it returns
to its caller if your filing system returns a non-zero value in R3 - so your
filing system need not handle this either.

FileSwitch: Filing system interfaces 999

Example program

1000

This code fragment is a highly optimised routine for moving blocks of
memory. It could be further enhanced to take advantage of the higher speed
of memory access given by the MEMC chip if LDM and STM instructions are

quad-word aligned. You should find this useful when wntmg your own filing
systems, as efficient transfer code is crucial to the performance of a filing
system.

++t+4++++•+++++++++++++i+++++++++++++++

MoveBytos(source, dest, size in bytes) - fast data copier from RCM

SKS Reordered registers and order of copying to suit fileSwitch

•• Not yet optimi sed to do transfers to make most of lN , JS feature of MEMC ••

extern void MoveBytes(vold •source , void •desti na tion , size t count);

In : rl • srcA (byte address)
r2 - dstA (byte address)
r3 -count (byte count -never zero!)

Out : rO-rJ , lr corrupt. Flags preserved

mbsrcl RN 0
mbsrcpt r RN l
mbdstptr RN 2
mbcnt RN 3
mbsrc2 RN 14
mbsrc3 RN 4
mbsrc4 RN 5
mbsrc5 RN 6
mbsrc6 RN 7
mbsrc7 RN 8
mbsrc8 RN 9
mbsrc9 RN 10
mbsh!tL RN 11
mbshftR RN 12
sp RN 13
lr RN 14
pc RN 15

MovcBytes ROUT

STMDB

TST
BNE

sp!, (lr)

mbdstpt r , 1 3
MovByt100

Note deviancy, so care in LDM/STM

These t wo go at end to save a word
and an extra Pull lr!

;)dstA not word aligned]

MovByt20 ; dstA now word aligned. branched back to from below

FileSwitch: Filing system interfaces

TST
BNE

mbsrcptr, 13

MovByt200

src• ' dst• are now both word aligned

[srcA not word aligned)

count is a byte value (may not be a whole number of words)

Quick sort out of what we've got left Lo do

SUBS mbcnt, mbcnt:, 14' 4 Four whol e words to do
BLT MovByt40 [no)

SUBS mbcnt, mbcnt:, 18'4-4 '4 Eight: whole words to do
BLT MovByt:JO [no)

(or more)

(or more)

STMDB sp!, [mbsrc3-r"bsr-c8} Push some more registers

MovByt25
LDMIA
STMIA

SUBS
BGE

mbsrcpt:r!, (mbsrcl, mbsrc3-mbsrc8, mbsrc2)
mbdst:ptr!, (mbsrcl, mbsrc3-mbsrc8, ~bsrc21

NB. Order!

mbcnt, mbcnt, 18'4
MovByt25 (do another 8 words)

CMP mbcnt, 1-8•4 Quicx test rather than chaining down
LDMEQDB sp!, (mbsrc3-mbsrc8, pc)• ; [finished)
LDMDB sp!, (mbsrc3-mbsrc8)

MovBytJO
ADDS
BLT

mbcnt:, mbcnt, 18•4-4 • 4 Four whole words to do
MovByt40

Mov8yt40

FileSwitch: Filing system interfaces

STMDB

LDMIA
STMIA

sp!, (mbsrc3-mbsrc4) ; Push some more registers

mbsrcptr!, (mbs rcl , mbsrc3-mbsrc4, mbsrc?l ; NB. Order!
mbdst:ptr!, (mbsrcJ, mbsrc3-mbsrc4, mbsrc2}

LDMEQDB sp!, (mbsrc3-mbsrc4, pc)A ; [finished)
LDMDB sp!, (mbsrc3-mbsrc4)

SUB mbcnt , mbcnt, 14'4

ADDS
BLT

mbcnt, mbcnt:, 14'4 -2 '4
MovBytSO

Two whole words to do

LDMIA
STMIA

mbsrcptr!, (mbsrcl , mbsrc21
mbdstptr!, (mbsrcl , mbsrc2)

LDMEQDB sp!, {pc)A ; [finished I

1001

1002

SUB mbcnt, mbcnt, 12*4

HovBytSO
ADDS
BLT

mbcnt, mbcnt, t2•4-1•4
HovByt60

LOR mbsrc1, [mbsrcptr) , t 4
STR mbsrc1, [mbdstptr), t 4

LDMEODB sp!, (pc)•

SUB mbcnt, mbcnt, 11*4

HovByt60
ADDS mbcnt, mbcnt, t1*4-0•4
LDMEQDB sp!, {pc)•

LOR mbsrcl, (mbsrcptrl
MovByt70

STRB mbsrc1, [mb<.lstptr), n
MOV mbsrcl, mbsrcl, LSR f 8
SUBS mbcnt, mbcnt, H
BGT HovByt70

LDMDB sp! , {pc)•

One whole word to do ?

[finished)

No more to do
[finished)

Store remaining 1,

(finished)

2 or 3 bytes

; Initial dest• not word aligned . Loop doing bytes {1,2 or 3) until it is

MovBytlOO
LDRB
STRB
SUBS
LDMEQDB

mbsrcl, (mbsrcptr), n
mbsrcl, [mbdstptr), t 1
mbcnt, mbcnt, t l
sp!, {pc)•

TST mbdstptr, 13
BNE MovBytlOO

8 HovByt20

[finished after 1 .. 3 bytes)

Back to mainline code

Mov8yt200 ; dst• now wo rd aligned, but src• isn ' t. just lr stacked here

STMDB

AND
BIC

MOV

sp! , {mbshftL, mbsh!tRI

mbshftR, mbsrcptr, 13
mbsrcptr, mbsrcptr, 13

Need more registers this section

Offset
Align src•

mbshftR, mbshftR, LSL t 3 ; rsh!t 0, 8, 16 or 24 only

FileSwitch: Filing system interfaces

RSB

LOR
MOV

mbshftL, mbshftR, 132

mbsrcl, (mbsrcptr), 14
mbsrcl, mbsrcl , LSR mbshftR

lshft • 32, 24, 16 or 8 only

Al ways have mbsrcl prepared

Quick sort out of what we've got left to do

SUBS
BLT

SUBS
BLT

STMOB

MovByt22~

LDMIA
ORR

MOV
ORR

MOV
ORR

MOV
ORR

MOV
ORR

MOV
ORR

MOV
ORR

MOV
ORR

STMIA

HOY

SUBS
BG£

mbcnt , mbcnt, 14*4 f'our whole words to do (or more)
MovByt240 [no]

mbcnt, mbcnt, 18*4-4*4 Eight whole words to do
MovByt230]no]

sp! , {mbsrc3-mbsrc9] Push some more registers

mbsrcptr! , (mbsrc3-mbsrc9, mbsrc2J ; NB. Order!
mbsrcl , mbsrcl , mbsrc3 , LSL mbshftL

mbsrc3, mbsrc3, LSR mbshftR
mbsrc3, mbsrc3 , mbsrc4, LSL mbsh!tL

mbsrc4, mbs rc4, LSR mbshftR
mbsrc4, mbsrc4, mbsrcS, LSL mbshftL

mbsrcS, mbsrc5, LSR mbshftR
mbsrcS, mbsrcS, mbsrc6, LSL mbsh!tL

mbsrc6, mbsrc6, LSR mbshftR
mbsrc6, mbsrc6, mbs rc7, LSL mbsh!tL

mbsrc7, mbsrc7, LSR mbshftR
mbsrc7, mbsrc7, mbsrcB, LSL mbshftL

mbsrc8 , mbsrc8, LSR mbshftR
mbsrc8, mbsrc8, mbsrc9, LSL mbshftL

mbsrc9, mbsrc9 , LSR mbshftR
mbsrc9, mbsrc9, mbsrc2, LSL mbshftL

mbdstpt r!, (mbsrcl , mbsrc3-mbsrc9J

mbsrcl, mbsrc2, LSR mbshftR ; Keep mbsrcl prepared

mbcnt , mbcnt, 18 '4
MovByt225 [do another 8 words]

(or more)

CMP mbcnt, 1-8 ' 4 Quick test rather than chaining down
LDMEODB sp! , {mbs rc3-mbsrc9, mbshftL, mbshftR, pc]A; (finished)
LDMDB sp! , {mbsrc3-mbsrc9]

HovByt230

FileSwitch: Filing system interfaces 1003

1004

ADDS
BLT

STMOB

LDMIA
ORR

MOV
ORR

MOV
ORR

MOV
ORR

STMIA

mbcnt , mbcnt, 18• 4-4•4 Four whole words to do
HovByt240

sp!, {mbsrc3-mbsrc5} ; Push some more reqisters

mbs rcptr! , {mbsrc3-mbsrc5 , mbsrc2} ; NB. Order!
mbsrcl, mbs rcl , mbs rc3 , LSL mbshftL

mbsrc3, mbsrc3, LSR mbsh!tR
mbsrc3, mbsrc3, mbsrc4, LSL mbshf tL

mbsrc4, rrbsrc4, LSR mbshftR
mbsrc4, mbsrc4, mbsrc5, LSL nbshftL

mbsrc5, mbsrcS, LSR mbshftR
mbsrc5, mbsrcS, mbsrc2, LSL ll'bshftL

mbdstptr!, {mbsrcl, mbsrc3-mbsrcS}

LDM~ODB sp!, {mbsr c3-mbsrcS , mbshftL, mbsh ftR , pc}A
LDMDB sp!, {mbsrc3-mbsrcS}

(finished)

SUB
MOV

MovByt240
ADDS
BLT

STMDB

LDMIA
ORR

MOV
ORR

STMIA

mbcnt, mbcnt, 14' 4
mbsrcl, mbs rc2, LSR mbshftR Keep mbsrcl prepared

mbcnt , mbcnt, t 2• 4
Mov8yt250

Two whole words to do

sp!, {mbsrc3} ; Push another reqister

mbsrcpt r! , {mbsrc3 , mbsrc2} ; NB. Order!
mbs rcl , mbsrcl , mbsrc3, LSL mbshf tL

mbsrc3, mbsrc3 , LSR mbshftR
mbsrc3 , mbsrc3 , mbsrc2, J.SL mbshf t L

mbdstptr!, {mbsrcl , mbsrc3}

LDMEQDB sp!, {~bsrc3, mbshftL, mbshftR, pc)A
LDMOB sp! , {rrbsrc3)

{finished)

SUB
MOV

MovByt2SO
ADDS
BLT

mbcnt, mbcnt , • 2 • 4
mbsrcl , mbsrc2, LSR mbshftR Keep mbsrcl prepared

mbcnt, mbcnt, 12• 4-1 •4
MovByt 260

One who le word to do ?

LDR mbsrc2, (rrbsrcptrJ , 14
ORR mbsrcl , mbsrcl , mbsrc2, LSL mbshftL

FileSwitch: Filing system interfaces

STR mbsrc1 , (mbdslptr} , f4

LOMEQDB sp!, {mbshftL, mbshftR, pc}'

SUB
MOV

MovByt260
ADOS

mbcnt, mbcnt , !1 • 4
mbsrc1, mbsrc2, LSR mbshftR

mbcnt, mbcnt, 11'4-0• 4

LDMEODB sp! , (mbsh(tL, mbshftR, pel'

}finished}

Keep mbsrcl prepared

(t1n1shed}

LOR
ORR

mbsrc2, (mbsrcptr} ; Store rema ining 1, 2 or 3 bytes

MovByL270
STRB
MOV
SUBS
BGT

LDMOB

mbsrc l, mbsrcl , mbsrc2 , LSL mbshftL

mbsrc1 , [mbdstptr} , 1 1

mbsrcl , mbsrcl , LSR f8
mbcnt, mbcnt , 1 1
MovBy~270

sp! , }mbshftL, mbshftR, pc} '

++++t+~++++++++++++++~tt+ti i++t+++++++++++++++t++++++++++++++++++t++t+++++ttt

ESO

FileSwitch: Filing system interfaces 1005

1006 Fi leSwitch: Filing system interfaces

FileCore

Introduction

FileCore: Introduction

FileCore is a filing system that does not itself access any hardware. Instead it
provides a core of services to implement a filing system similar to ADFS in
operation. Secondary modules arc used to actually access the hardware.

ADFS and RamFS arc both examples of such secondary modules, which
provide a complete filing system when combined with FileSwitch and
FileCore.

The main use you may have for FilcCore is to use it as the basis for writing a
new ADFS-like filing system. Because it already provides many of the
functions, it will considerably reduce the work you have to do.

1007

Overview

Similarities with
FileSwitch

Adding a module to
FileCore

1008

FilcCorc is a filing system module. It provides ;~II the entry points for
FileSwitch that any other filing system does. Unlike them, it docs not control
hardware; instead it issues calls to secondary modules that do so.

This concept of a parent module providing many of the functions, and a
secondary module accessing the hardware, is very similar to the way that
FilcSwitch works. There arc further similarities:

• there is a SWI, FilcC'..orc_Crcate, which modules u~ to register
themselves with FileCore as p:nt of the filing system

• this SWI is passed a pointer to a table giving information about the
hardware, and entry points to low-level routines in the module

• FilcCore communicates with the module using these entry points.

When you register a module with FileCorc it creates a fresh instantiation of
itself, and returns a pointer to its workspace. Your module then uses this to
identify itself on future calls to FileCorc.

When you add a new module to FileCore, there is compa~ttivcly lirtle work
ro be done. It needs:

• low-level routines to ;~ccess the h:udware

• a* Command that can be used to select the filing ~y~tem

• any additional *Commands you feel necessary - typically very few

• a SWI interface.

The SWI interface is usually very simple. A typical FilcC'..ore-based filing
system will have SWls that functionally arc a subset of those that FilcCore
provides. You implement these by calling the appropriate FileCore SW!s,
making sure that you identify which filing system you arc. RamFS implements
all its SW!s like this, ADFS most of its. So unbs you need to provide a lot
of extra SW!s, you need do little more than provide the low-level routines
that control the hardware.

FileCore: Overview

Technical details

Disc formats

FileCore: Technical details

FileCore-based filing systems are very like ADFS in operation and
appearance (since ADFS is itself one). However, there is no reason why you
need use FileCore only with discs; indeed, RamFS is also a FilcCore-ba~cd
filing system. The text that follows describes FilcCorc in terms of discs, disc
drives, and so on. We felt you would find it easier to usc than if we had used
less familiar terminology - but please remember you can use other media too.

On a floppy drive the following recording formats are available:

Format Tracks Density

L
D
E

80
80
80

Double
Double
Double

Sec tors/track

16
5
5

Bytes/sector

256
1024
1024

Storage

640 Kbytcs
800 Kbyrcs
800 Kbytcs

Using the L format you can create 47 entries in each directory; top-bit-set
characters are not allowed in pathnames. This is the old format. Using the D or
E formats, 77 entries may be created, and top-bit-set characters are allowed
in pathnames.

E format has the following additional advantages:

• files need not be stored contiguously, so you don't need to compact it
(however, FilcCorc does try to create E form:-.t files in one block, and
will also try to merge file fragments back together again if it is
compacting a zone of the disc)

• the disc map has no limit on size or number of entries, so map fuU errors
do not occur

• the map keeps a record of defects when the disc is formatted, so omits
defective sectors

• defects are kept as objects on the disc, so they don't need to be taken into
account when calculating disc addresses, and can be mapped out without
reformatting.

These are because E format uses a new disc map; L and D formats are said to

use the old map.

1009

Data format

Disc Identifiers

Drive numbers

Disc names

1010

Files stored using FileCore are sequences of bytes which always begin at the
start of a sector and extend for the number of sectors necessary to
accommodate the data cont(lined in the file. The last sector used to
accommodate the file may have a number of unused bytes at the end of it. The
last 'data' byte in the file is derived from the file length stored in the
catalogue entry for the file, or if the file is open, from its extent.

Many of the commands described below allow discs to be specified.
Generally, you can refer to a disc by its physical drive number (eg 0 for the
built-in floppy), or by its name.

FileCore supports 8 drives. Drive numbers 0 - 3 arc 'floppy disc' drives, and
drive numbers 4- 7 arc 'hard disc' drives. You cannot implement a filing
system under FileCore that has more than four drives of the same physical
type.

The disc name is set using *NameDisc. When you refer to a disc by name it
will be used if it is in a drive. Otherwise a Disc not present error will be
given if the disc has been previously seen, or a Disc not known error if the

disc has not been seen.

Machine code programs can trap these errors before they arc issued. This
allows the user to be prompted to insert the disc into the drive. See the
chapter entitled Communications within RISC OS for details.

In fact, disc names may be used in any pathname given to the system. When
used in a pathname, the disc name (or number) must be prefixed by a colon.
Examples of pathnames with disc ~pccifiers are:

*CAT :MikeDisc.fonts
INFO :4.LIB.*

Note that :drive really means :drive.$.

Disc names can have wildcards in them, so long as the name only matches one
of the discs that FileCore knows about for the filing system. If more than one
name matches FileCore will return an Ambiguous disc name error.

You are very strongly recommended to use disc names rather than drive
numbers when you write programs.

FileCore: Technical details

Changing discs FileCore keeps track of eight disc names per filing system, on a first in, first
out basis. When you eject a floppy disc from the drive, FilcCore still 'knows'
about it. This means that if there are any directories set on that disc (the
current directory, user root directory, or library), they will still be associated
with it. Thus any attempt to load or run a file will result in a Disc not
present/known error.

However, this means that you can replace the disc and still use it, as if it had
never been ejected. The same applies to open files on the disc; they remain
open and associated with that disc until they are closed.

You can cause the old directories to be overridden by *Mounting a new disc
once it has been inserted. TI1is resets the CSD and so on. Alternatively, if you
unset the directories (using *NaDir, *Nolib and *NoURD), then FilcC'.-are
will use certain defaults when operations on these arc required.

If there is no current directory, FileCore will usc $ on the default drive. This
is the configured default, or the one set by the last *DRIVE command.

If there is no user root directory set, then references to that directory will usc
$on the default drive.

If there is no library set, then FileCore will try &.Library, $.Library and then
the current directory, in that order.

Current selections The currently selected directory, user root directory and library directory are
all stored independently for each FileCore-bascd filing system.

FileCore: Technical details 1011

Disc addresses

Disc records

1012

The disc address of a byte gives the number of bytes it is into the disc, when it
is read in its sequential order from the start. To calculate the disc address of
a byte you need to know:

• its head number h

• its track number t

• its sector numbers

• the number of byres into the sector b

• the number of heads on the drive H

• the number of sectors per trnck S

• the number of bytes per sector B

• the number of defective sectors earlier on the elise x (for old map h<~rd
discs only- use zero for old m<~p floppy discs or new map discs)

You can usc this formula for ;my disc - except an L-format one - to get the
values of bits 0 • 28 inclusive:

address= ((t * H +h)* S + s - x) * B + b

Tracks, heads and sectors arc all counted from zero.

Bits 29 • 31 contain the drive number.

A disc record describes the shape and format of a disc. It is 64 bytes long:

Offset Meaning

0
J
2
3
4
5

6
7
8
9

log2 of sector size

sectors per tr..1ck
heads (I for old directories)
density (I, 2 or 4- ie 256, 512 or 1024 bytes per sector) if applicable
length of id field of mnp frngment, in bits
log2 of bytes for each map bit (0 for old map)

track to track sector skew for r:mdom access file allocation
boot option
reserved
number of zones in the map

FileCore : Technical details

Defect lists

FileCore: Technical details

10
12
16
20
22
32-63

bits in zone which arc neither map bits nor special Zone 0 I>ytes
disc address of root directory
disc size in bytes
disc id
disc name
reserved bytes

Bytes 4 - 11 inclusive must be zero for old map discs.

As an example of how to usc the logarithmic values, if the sector size was
1024, this is 210, so at offset 0 you would store 10.

Reserved bytes should be set to zero.

You can usc a disc record to specify the size of your media - this is how
RamFS is able to be larger than an ordinary floppy disc.

A defect list is a list of words. Each word contains the disc address of the first
byte of a sector which has a defect. This address is an absolute one, and docs
not take into account preceding defective sectors. The list is terminated by a
word whose value is &200000XX. The byte XX is a check-byte calculated
from the previous words. Assuming this word is initially set to &20000000, it
can be correctly updated using this routine:

On entry

Ra =pointer to start of defect list

On exit

loop

Ra corrupt
Rb check byte
Rc corrupt

MOV

LOR
CMPS
EORCC

BCC
EOR
EOR
AND

Rb,!O ;init check

Rc,[Ra], f4 ; get next e!'ltr·y
Rc,! &?O OOOOOO ; all done?
Rb,Rc ,Rb ,ROR • 13
loop
Rb,Rb,Rb , LSR fl6;compress word to byt~
Rb, Rb, Rb, LSR 18
Rb,Rb,i&FF

1013

Boot blocks

1014

Hard discs contain a 512 byte boot bk!ck at disc address &COO, which contains
important information. (On a disc with 256-byte sectors, such as ADFS uses,
this corresponds to sectors 12 and 13 on the disc.) A boot block has the
following format:

Offset

&000 upwards
& I 8F downwards
&1CO- & IFF

Contents

Defective sector list (see above)
Hardware-dependent parameters
Disc record (sec above)

There is no guarantee how many bytes the hardware-dependent information
may take up. As an example of use of this space, for the HD63463 controller
the hardware parameters have the following contents:

Offset

&1BO - &182
&183
&184
&185
&186
&187
&188- &189
&lBA- &1B8
&lBC- &IBF

Contents

Unused
Step pulse low
Gap 2
Gap3
Step pulse high
Gap 1
Low current cylinder
Pre-compensation cylinder
Unadjusted parking disc address

Note that in memory, this information would be stored in the order disc
record, then defect list/hardware parameters. This is to facilitate passing the
values to Filc('.ore SWis.

FileCore: Technical details

SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

FileCore: SWI Calls

F ileCore_DiscOp
(SWI &40540)

Performs various operations on a disc

R 1 bits 0- 3 = reason code
bits 4 - 7 =option bits
bits 8- 31 =bits 2- 25 of pointer to altem:nivc disc record, or zero

R2 = disc address
R3 = pointer to buffer
R4 = length in bytes
R8 = pointer to FilcCore insc-,mce private word

R 1 preserved
R2 = disc address of next byte to be transferred
R3 = pointer to next buffer location to be transferred
R4 = number of bytes not tran~ferrcd

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This call performs various disc operations as specified by bits 0 - 3 of R 1:

Value Meaning Uses Updates

0 Verify R2,R4 R2,R4
1 Read sectors R2,RJ,R4 R2, RJ, R4
2 Write sectors R2,R3,R4 R2, R3, R4
3 Floppy disc: read track R2,RJ

Hard disc: read Id R2,R3
4 Write track R2,R3
5 Seck (used only to park) R2
6 Restore R2
7 Floppy disc: step in
8 Floppy disc: step out
15 Hard disc: specify R2

1015

1016

The option bits have the following meanings:

Bit 4

This bit is set if an alternate defect list for a hard disc is to be used. This
is assumed to be in RAM 64 bytes after the start of the disc record
pointed to by RS.

This bit may only be set for old map discs.

Bit 5

If this bit is set, then the meaning of R3 is altered. It docs not point to the
area of RAM to or from which the disc data is to be transferred. Instead,
it points to a word-aligned list of memory address/length pairs. All but
the last of these lengths must be a multiple of the sector size. These word
pairs are used for the transfer until the total number of bytes given in R4
has been transferred.

On exit, R3 points to the first pair which wasn't fully used, and this pair is
updated to reflect the new start address/hytes remaining, so that a
subsequent call would continue from where this call has finished.

This bit may only be set for reason codes 0 - 2.

Bit 6

If this bit is set then escape conditions are ignored during the operation,
otherwise they cause it to be aborted.

Bit 7

If this bit is set, then the usual time-out for floppy discs of 1 second is not
used. Instead FileCore will wait (forever if necessary) for the drive to
become ready.

The disc address must be on a sector boundary for reason codes 0- 2, and on
a track boundary for other reason codes. Note that you must make allowances
for any defects, as the disc address is not corrected for them.

The specify disc command (reason code 15) sets up the defective sector list,
hardware information and disc description from rhe disc record supplied.
Note that in memory, this information must be stored in the order disc record,
then defect list/hardware parameters.

FileCore: SWI Calls

Related SWis

Related vectors

FileCore: SWI Calls

None

None

1017

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

1018

FileCore Create
(SWI &40541)

Creates a new instantiation of an ADFS-like filing system

RO =pointer to descriptor block
R1 =pointer to calling module's base
R2 = pointer to calling module's private word
RJ bits 0- 7 = number of floppies

bits 8 - 15 = number of hard discs
bits 16 - 24 = dcfaul t drive
bits 25 - 31 = start up options

R4 =suggested size for directory cache
R5 =suggested number of 1072 byte buffers for file cache
R6 = hard disc map sizes

RO =pointer to FileCore instance private word
Rl =address to call after completing background floppy op
R2 = address to call after completing background hard disc op
R3 =address to call to release FIQ after low level op

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This call creates a new instantiation of an ADFS-Iike filing system. It must be
called on initialisation by any filing system module that is adding itself to
FileCore.

The descriptor block is described in the Application notes later in this chapter,
on adding a filing system to FileCore.

The only start-up option (passed in bits 25 - 31 of RJ) currently supported is
No directory state which is indicated by setting bit 30. All other bits
representing start-up options must be clear.

FileCore: SWI Calls

Related SWis

Related vectors

FileCore: SWI Calls

If the filing system does not support background transfers of data, RS must
be zero.

The hard disc map sizes are given using 1 byte for each disc. The byte should
contain map size/256 (ie 2 for the old map). This is just a good guess and
should not involve starting up the drives to read from them You might store
this in the CMOS RAM.

You must store the FileCore instance private word returned by this SWI in
your module workspace; it is your module's means of identifying itself to
FileCore.

When your module calls the addresses returned in Rl - RJ, it must be in
SYC mode with R12 holding the value of RO that this SWl returned.
Interrupts need not be disabled. RO- Rll and RIJ will be preserved by
FileCore over these calls.

None

None

1019

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1020

FileCore Drives
(SWI &40542)

Returns information on rhe filins: system's drives

R8 = pointer to FileCore instance private word

RO = default drive
R I = number of floppy drives
R2 = number of hard disc drives

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This call returns information on the filing system's drives.

None

None

FileCore: SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

FileCore: SWI Calls

FileCore_FreeSpace
(SWI &40543)

Returns information on a disc's free space

RO = pointer to disc specifier (null terminated)
R8 = pointer to FileCore instance private word

RO =total free space on disc
Rl = size of largest object that can be created

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

Not defined

This call returns the total free space on the given disc, and the largest object
that can be created on it.

None

None

1021

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1022

FileCore_FloppyStructure
(SWI &40544)

Creates a RAM image of a floppy disc map and root directory entry

RO =pointer to buffer
Rl =pointer to disc record describing shape and format
R2 bit 7 set for old directory structure

bit 6 set for old map
RJ =pointer to list of defects

RJ = total sire of structure created

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This call creates a RAM image of a floppy disc map and root directory entry.

The pointer to a list of defects is only needed for new map discs. They must
be byte addresses giving the start of defective sectors, and terminated with
&20000000.

You do not need to know a FilcCore instantiation private word to usc this call;
instead the disc record tells FileC'..ore which filing system is involved.

None

None

FileCore: SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

FileCore: SWI Calls

FileCore DescribeDisc
(SWI &40545)

Returns a disc record describing a disc's shape and format

RO =poi nter to disc specifier (null terminated)
R l =pointer to 64 byte block
R8 =pointer to FileCore instance private word

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This call returns a disc record in the 64 byte block passed to it. The record
describes the disc's shape and format.

None

None

1023

* Commands

Syntax

Use

Related commands

1024

*Back
Exchanges current and previous directories.

*Back

*Back swaps current and previously selected directories. The command is
used for switching between two frequently used directories.

*Dir, which changes to a specified directory

FileCore: • Commands

Syntax

Parameters

Use

Example

Related commands

FileCore: ·Commands

*Backup

Copies the used part of a floppy disc.

*Backup <source drive> <dest drive> [Q]

<source drive>
<dest drive>

the number of the floppy drive (0 to 3)
as source drive, above

[Q] speeds up the operation, by using the application work area as a
buffer if extra room is needed to perform the backup, so fewer disc
accesses are done. You must save any work you have done and quit
any applications you are using before using this option.

*Backup copies a whole floppy disc to another, with the exception of free
space. If the source drive is the same as the destination (as it is on a single
floppy drive system), you will be prompted to swap the disc, as necessary.
The command only applies to floppy, not hard discs.

*Backup 0 1

*Copy

1025

Syntax

Use

Related commands

1026

*Bye
Ends a filing system session.

*Bye

*Bye ends a filing system session by closing alt files, unsetting alt directories
and libraries, forgetting all floppy disc names and parking the heads of hard
discs to their 'transit position' so that the hard disc unit can be moved without
risking damage to the read/write head.

You should check that the correct filing system is the current one before you
use this command, or alternatively precede the command by the filing system
name. For example you could end an ADFS session when another filing
system is your current one by typing:

*adfs:Bye

*Dismount, *Shutdown, *Shut, *Close

FileCore: • Commands

Syntax

Parameters

Use

Example

Related commands

FileCore: • Commands

Checks a disc map for consistency.

*CheckMap (<disc spec>)

*CheckMap

<disc spec> the name of the disc or number of the disc drive

*CheckMap checks that the map of an E-format disc (whether floppy or hard)
has the correct checksums and is consistent with the directory tree. If only one
copy of the map is good, it allows you to rewrite the bad one with the
information in the good one.

*CheckMap :Mydisc

*Defect, *Verify

1027

Syntax

Parameters

Use

Example

Related commands

1028

*Compact
Collects free spaces together on L- and D- format discs, and old map hard
discs

*Compact [<disc spec>]

<disc spec> the name of the disc or number of the disc drive

*Compact collects free spaces together by moving files. If no argument is
given, the *Compact command is carried out on the current disc. *Compact
works on either hard or floppy discs.

You cannot add a file to an old map disc that is larger than the biggest single
free space. Because the free space has been gathered together, the maximum
size of file you can fit on the disc will be as high as is pos.~ible.

The maximum size of file you can add to an E-format disc does not depend on
how fragmented the free space is, so there is not the same need to compact
them. This command is still useful, as it will attempt to gather together any
fragmented files, and generally tidy the disc up.

*Compact :0

*CheckMap, *Map, *Filel nfo.

FileCore: ·Commands

Syntax

Use

Related commands

FileCore: • Commands

*Configure Dir

Mounts a disc on power on.

*Configure Dir

*Configure Dir mounts a disc on power on (see *Mount) on all FileCore
based filing systems that support mounting (ADFS does, RamFS doesn't).
NoDir is the default setting.

This option can also be set from the desktop, using the Configure application.

This command is in fact provided by the kernel; however, since it is FileCore
that looks at the configured value, it is included in this chapter for clarity.

*Configure NoDir, *Configure Drive, *Mount

1029

Syntax

Use

Related commands

1030

*Configure NaDir
Docs not mount a disc on power on.

*Configure NaDir

*Configure NoDir docs not mount a disc on power on (sec *Mount) on any
FileCore-bascd filing system that supports mounting (ADFS does, RamFS
doesn't). This is the default setting.

This option can also be set from the desktop, using the C'.-enfigure application.

This command is in fact provided by the kernel; however, since it is FileCore
that looks at the configured value, iris included in this chaprer for clarity.

*Configure Dir, *Configure Drive

FileCore: • Commands

Syntax

Parameters

Use

Example

Related commands

FileCore: • Commands

*Defect
Marks a part of a disc as defective so that it will no lancer be used.

*Defect <disc spec> <disc add>

<disc spec> the name of the disc or number of the disc drive

<disc add> the address where the defect exists (provided by the
*Verify command if the disc is faulty)

If a physical defect occurs in an unallocated part of an E-format disc, *Defect
will render that part of the disc inaccessable by altering the 'map' of the disc.

The disc address must be a multiple of 256- that is, it must end in '00'.

If the defect is in an allocated part of the disc, *Defect tells you what object
contains the defect, and the offset of the defect within the object. This may
enable you to retrieve most of the information held within the object, using
suitable software. You must then delete the object from the defective disc.
*Defect may also tell you that some other objects must be moved: you should
copy these to another disc, and then delete them from the defective disc. Once
you have removed all the objects that the *Defect command listed, that part
of the disc is then unallocated, so you can repeat the *Defect command to
make the defective part of the disc inaccessable.

Sometimes the disc will be too badly damaged for you to successfully delete
objects listed by the *Defect command. ln such cases the damage cannot be
repaired, and you must restore the objects from a recent backup.

*Verify mydisc
Disc error 08 at : 0/00010400
*Defect mydisc 10400
$. mydir must be moved
.myfilel has defect at offset 800
.myfile2 must be moved

*Verify, *CheckMap

1031

Syntax

Parameters

Use

Example

Related commands

1032

*Dismount
Ensures that it is safe to finish using a disc.

*Dismount [<disc spec>)

<disc spec> the name of the disc or number of the disc drive

*Dismount closes files, unscts directories that were set on the given disc, and
parks its read/write head. If no disc is specified, the current disc is used as
the default. *Dismount is useful before removing a particular floppy disc, (it
is essential if the disc is to taken away and modified on another computer),
but the *Shutdown command is usually to be preferred, especialty when
switching off the computer.

*Dismount

*Mount.

FileCore: • Commands

Syntax

Parameters

Use

Example

Related commands

FileCore: • Commands

*Drive
Sets the current drive.

*Drive <drive>

<drive> the number of the disc drive, from 0 to 7

Sets the current drive if NoDir is set. Otherwise, *Drive has no meaning. The
command is provided for compatibility with early versions of ADFS.

*Drive 3

*Dir, *NoDir

1033

Syntax

Parameters

Use

Example

Related commands

1034

Displays amount of unused disc space.

*Free [<disc spec>]

*Free

<disc spec> the name of the disc or number of the disc drive

*Free displays the total free space remaining on a disc. If no disc is
specified, the total free space on the current disc is displflyed.

*Free 0

Bytes free &OOOC1C00=793600
Bytes used &00006400=25600

FileCore: • Commands

Syntax

Parameters

Use

Example

Related commands

FileCore: • Commands

Displays a disc's free space map.

*Map [<disc spec>]

*Map

<disc spec> the name of the disc or number of the disc drive

*Map displays a disc's free space map. If no disc is specified, the map of the
current disc is displayed.

*Map :Mydisc

*Free, *Compact

1035

Syntax

Parameters

Use

Example

Related commands

1036

Prepares a disc for general usc.

*Mount [<disc spec>)

*Mount

<disc spec> the name of the disc or number of the disc drive

*Mount sets the directory to the disc root directory, sets the library directory
(if it is currently unset) to $.Library, and unscts the URD (User Root
Directory). If no disc spec is given, the default drive is used. The command is
preserved for the sake of compatibility with earlier Acorn operating systems.

*Mount :mydisc

*Dismount

FileCore: ·Commands

Syntax

Parameters

Use

Example

Related commands

FileCore: ·Commands

*NameDisc
Changes a disc's name.

*NameDisc <disc spec> <disc name>

<disc spec> the present name of the disc or number of the disc drive
<disc name> a text string up to 10 characters long

•NameDisc (or alternatively, •NameDisk) allows you to change a disc's name.

*NameDisc :0 DataDisc

None

1037

Syntax

Use

Related commands

1038

Unscts the current directory.

*NoDir

"'NoDir unsets the current directory.

"'NoURD, "'NoLib

*NaDir

FileCore: • Commands

Syntax

Use

Related commands

FileCore: • Commands

Unsets the library.

*No Lib

*NoLib unsets the library.

*Lib

*NoLib

1039

Syntax

Use

Related commands

1040

Unsets the User Root Directory (URD).

*NoURD

*NoURD unsets the User Root Directory.

*NaDir, *URD

*NoURD

FileCore: • Commands

Syntax

Parameters

Use

Related commands

FileCore: • Commands

Sets the tide of the current directory.

*Title [<text>)

<text> a text string of up to 19 characters

*Title

*Title sets the title of the current directory. Titiles take no place in
pathnames, and should not be confused with disc names. Spaces are permitted
in *Title names.

Titles are output by some • Commands that print headers before the rest of
the information they provide: for example *Ex.

*Cat displays the titles of directories.

1041

Syntax

Parameters

Use

Example

Related commands

1042

Sets the User Root Directory.

*URD [<directory>]

*URD

<directory> any v-.1lid pathname spccifyins; a directory

*URD sets the User Root Directory. This is shown as an'&' in pathnames.

If no directory is specified, the URD is set to the root directory.

*URD adfs: :0.$.MyDir

*NoURD

FileCore: ·Commands

Syntax

Parameters

Use

Example

Related commands

FileCore: • Commands

*Verify

Checks a disc for readability.

*Verify [<disc spec>]

<disc spec> the name of a disc or number of the disc drive, from
0 to 7 (ie applies to floppy discs and hard discs)

*Verify checks that the whole disc is readable, except for sectors that are
already known to be defective .. The default is the current disc.

Use *Verify to check discs which give errors during writing or reading
operations.

*Verify 4

*Verify :Mydisc

*Defect

1043

Application
notes
Adding your own
module to FlleCore

Declaring your module

Descriptor block

1044

FileCore docs not know how to communicate directly with the hardware that
your filing system uses. Your module must provide these facilities, and
declare the entry points to FilcSwitch.

This section describes how to add a filing system ro FileC'.ore. You should
also see the chapter entitled Modules for more information on how to write a
module.

When your module initialises, it must inform FilcCore of its existence. You
must call FileCore_Crcatc to do this - sec this chapter's section on SWI calls
for details.

RO tells FileCore where to find a descriptor block. This in turn tells FilcCore
the locations of the entry points to your module's low level routines that
interface with the hardware:

Offset Contains

0 flags: bit 0 set if winnie needs FIQ
bit 1 set if floppy needs FIQ
bit 2 set if able to support background ops

3 filing system number (see the chapter entitled FileS witch)
4 offset of filing system title from module base
8 offset of boot text from module base
12 offset of low-level disc op entry from module, bal'e
16 offset of low-level miscellaneous entry from module base

FileCore_Create starts a new instantiation of FileCore, and the pointer to the
new workspace that has been reserved for FileCorc is returned in RO to your
module. You must store this in your module workspace for future calls to
FileCore; it is this value that tells FileCore which filing system you are (as
well as enabling it to find its workspace!).

Unlike filing systems that are added under FileSwitch, the boot text offset
cannot be -1 to call a routine.

FileCore: Application notes

Selecting your filing
system

Other* Commands

Implementing SWI calls

Removing your filing
system

Module Interfaces

FileCore: Application notes

Your filing system should provide a *Command to select itself, such as
* ADFS or *Net. This must call OS_FSControl 14 to inform FileSwitch that
the module has been selected, thus:

StarrilingSystemCommand
STMFD Rl3 ! , { Rl4}
MOV RO, f FSContro l SelectrS
ADR Rl, FilingSystemName
SWI XOS _FSControl
LDMFD Rl3!, (Rl51

For full details of OS_FSControl 14, see the chapter entitled FileSwitch.

There are no other *Commands that your filing system must provide. For
many FileCore-based systems the range it provides will be enough, and your
module need add no more.

SWI calls in a FileCore module are usually implemented by simply:

• loading R8 with the pointer to the FileCore instance private word for your
module

• calling the corresponding FilcC'.ore SWI.

For example, here is how a module might implement a DiscOp SWI:

STMFD R13! , {R8, Rl4} R12 points to module workspace
LDR R8 , [R12, toffset I R8 <- pointer to Fi leCore private word
SWI XFi leCore_DiscOp
LDMFD Rl3!, {R8, Rl5}

Usually OiscOp, Drives, FreeSpace and DeocribcDisc are implemented like
this. Of course you can add any extra SWI calls that are necessary.

The finalise entry of your module must remove its instantiation of FileCore.
For full details of how to do so, see the chapter enti tied Modules.

The next section describes the interfaces to FilcCore that your module must
provide.

1045

Module
interfaces

DlscOp entry

1046

Your module must provide two interfaces to FilcC'..ore: one for DiscOps, and
one for other miscellaneous functions.

The entry for DiscOps docs much of the work for a DiscOp SWI. It is passed
the same values as FilcCore_DiscOp, except:

• an extra reason code is added to Rl allow background processing

• consequently Rl can no longer used to point to an alternative disc record;
instead RS is used

• R6 points to a boot block (for hard disc operations only).

These are the reason codes that may be passed in RO:

Value

0
1
2
3

4
5
6
7
8
15

Meaning

Verify
Read sectors
Write sectors
Floppy disc: read track
Hard disc: read Id
Write track
Seek (used only to park)
Restore
Floppy disc: step in
Floppy disc: step out
Hard disc: specify

The reason codes you must support are 0, 1, 2, 5 and 6.

Your routine must preserve RI, RS · Rl3, and theN, Z and C flags. R2 must
be incremented by the amount transferred for Ops 0, I and 2; otherwise you
must preserve it. R3 must be incremented appropriately for Ops 1 and 2;
otherwise you must preserve it. R4 must be decremented by the amount
transferred for Ops 0, 1 and 2; otherwise you must preserve it.

FileCore: Module interfaces

Background transfer

FileCore: Module interfaces

If there is no error then RO must be zero on exit and the V flag clear. If there
is an error then V must be set and RO must be one of the following:

Value

RO < &100
&100 ~ RO < 231

RO 211

Meaning

internal FilcCore error number
pointer to error block
disc error bits:

bits 0 - 20 = disc byte address /256
bits 21 - 23 =drive
bits 24 - 29 = disc error number
bit30 = 0

If bit 8 of Rl is set, then transfer may be wholly or partially in the
background. This is an optional extension to improve performance. To reduce
rotational latency the protocol also provides for transfers of indeterminate
length.

R3 must point to a list of address/length word pairs, specifying an exact
number of sectors. The length given in R4 is treated as the length ci the
foreground part ci the transfer. R5 is a pointer to the disc record to be filled
in.

Your module should rerum to the caller when the foreground part is
complete, leaving a background process scheduled by interrupts from the
controller. This process should terminate when it finds an address/length pair
with a zero length field.

The foreground process can add pairs to the list at any time. To get the
maximum decoupling between the processes your module should update the
list after each sector. This updating must be atomic (use the STMIA

instruction). Your module must be able to retry in the background.

The list is extended as below:

Offset Contents

--8 Process error
-4 Process stntus
0 lst address
4 lst length
8 2nd address
12 2nd length

1047

Miscellaneous entry

1048

16 3rd address
20 3rd length

etc

N Loop back marker - N (where N is a multiple of 8)
N+4 Length of zero

Process error is set by the caller to 0, on an error your module should set this
to describe the error in the form<lt described above.

The bits in process status are:

Bit

31
30
0- 29

Meaning when set

process active
process can be extended
reserved

Bits 31 and 30 are set by the caller and cleared by your module. Your
module must have IRQs disabled from updating the final pair in the list to
clearing the active bit.

A negative address of - N indicates that your module has reached the end of
the table and should get the next address/length pair from the start of the
scatter list N bytes earlier.

Your module may be called with the scatter pointer (R3) not pomtmg to the
first (address/length) pair. So to find the addre~scs of Process error and
Process status the end of list must be searched for. From this the start of the
scatter block may be calculated.

This entry performs various miscellaneous tasks, depending on the value ofRO.

Your routine must preserve registers, and theN, Z and C fhgs.

You may only return an error from reason code 0 (Mount); this must be done
in the same way as for the OiscOp entry.

FileCore: Module interfaces

Miscellaneous entry 0

On entry

On exit

Miscellaneous entry 1

On entry

On exit

FileCore: Module interfaces

Mount

RO = 0
Rl =drive
R2 = disc address to read from
R3 = pointer to buffer
R4 = length to read into buffer
R5 =pointer to disc record to fill in (floppies only)

R 1 - R5 preserved

For a floppy disc, this asks you to read in the free space map and identify the
format. The suggested density to try first is given in the disc record.
Identifying the format consists of filling in the density, and for old format
discs the sector size, sectors per track, heads, disc size and root dir.

For a hard disc, this asks you to read in the boot block. If the disc doesn't have
one, your module will have to generate one itself.

Poll changed

RO= I
Rl =drive
R2 = sequence number

R2 = sequence number
R3 = result flags

The sequence number is to ensure no changes arc lost due to reset being
pressed. Both your module and the FileCore incarnation should start with a
sequence number of 0 for each drive. Your module increments the sequence
number with each change of state. If your module finds the entry sequence
number does not match its copy it should return changed/maybe changed
depending on whether the disc changed line works/doesn't work.

The bits in the result flags have the following meanings:

Bit Meaning when set

0 not changed
I maybe changed
2 changed

1049

Miscellaneous entry 2

On entry

On exit

Miscellaneous entry 3

On entry

On exit

Miscellaneous entry 4

On entry

On exit

1050

3 empty
6 empty works
7 changed works

Exactly one of bits 0 · 3 must be set. Once bit 6 or 7 is returned set for a given
drive, they must always be so.

Lock drive

R0=2
Rl =drive

This can only be called for a floppy drive. It should at least ensure that the
drive light stays on until unlocked.

Unlock drive

RO = 3
Rl =drive

This can only be called for a floppy drive.

Poll period

RO = 4
Rl ·=drive

RS = minimum polling period (in centi-seconds), or
-1 if disc changed doesn't work

R6 =pointer to media type string cg 'disc' for ADFS

This call informs FilcCore of the minimum period between polling for disc
insertion. This is so that drive lights do not remain continously illuminated.
The values arc re-exported by FilcC'.ore in the up calls McdiaNotPresent and
MediaNotKnown. The value applies to all drives rather than a particular
drive.

FileCore: Module interfaces

ADFS

Introduction

ADFS: Introduction

ADFS is the Advanced Disc Filing System. It is a module that, together with
FileSwitch and FileCorc, provides a disc-based filing system.

Most of the facilities that you will use with ADFS are in fact provided by
FileCore and FilcSwitch, and you should read the chapters on those modules
in conjunction with this one.

1051

Overview

1052

ADFS is a module that provides the hardware-dependent part of a disc·
based filing system. It uses FileCore, and so conforms to the standards for a
module that does so; see the chapter entitled FileCore for details.

It provides:

• a* Command to select itself (*ADFS)

• a* Command to format discs (*Format)

• various configure options, accessed using *Confi~ure

• four SWis that give access ro corresponding FilcC'..orc SWis

• two further SWis to set the address of an alternative hard disc controller,
and to set the number of retries used for various operations

• the entry points and low-level routines that FilcC'..ore needs to access the
disc controllers and associated hardware.

Except for the low-level entry points and routines (which arc for the usc of
FileCore only) all of these are described below.

ADFS: Overview

SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

ADFS: SWI calls

Calls FileCore_DiscOp

See FileCore_DiscOp (SWI &40540)

See FileCore_DiscOp (SWI &40540)

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

ADFS_DiscOp
(SWI &40240)

This SWI calls FileCore_DiscOp (SWl &40540), after first setting R8 to
point to the FileCore instantiation private word for ADFS.

This call is functionally identical to FileCore_DiscOp (SWI &40540).

FileCore_DiscOp (SWI &40540)

None

1053

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1054

ADFS HDC
(SWI &40241)

Sets the address of an alternative hard disc controller

R2 = address of alternative hard disc controller
RJ =address of poll location for IRQ/DRQ
R4 = bits for IRQ/DRQ
R5 = address to enable IRQ/DRQ
R6 = bits to enable IRQ/DRQ

Interrupt status is undefined
Fast intemJpts are enabled

Processor is in SYC mode

Not defined

This call sets up the address of the hard disc controller to be used by the
ADFS. For instance, an expansion card can supply an alternative controller to
the one normally u~d.

The polling and interrupt sense is done using:

LDRB Rn, [poll location]
TST Rn, [poll bits]

The IRQ/DRQ must be 1 when active.

None

None

ADFS: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

ADFS: SWI calls

Calls FileCore_Drives

See FileCore_Drives (SWI &40542)

See FileCore_Drives (SWI &40542)

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

ADFS Drives
(SWI &40242)

This SWI calls FilcCore_Drives (SWI &40542), after first setting RS to
point to the FileCore instantiation private word for ADFS.

This call is functionally identical to FileCore_Drives (SWI &40542).

FileCore_Drives (SWI &40542)

None

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1056

Calls FilcC'..orc_FreeSpacc

See FilcCore_FreeSpace (SWI &40543)

See FilcCore_FreeSpace (SWI &40543)

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

Not defined

AD FS_FreeSpace
(SWI &40243)

This SWI calls FileCore_FrccSpace (SWI &40543), after first setting R8 to
point to the FileCore instantiation private word for ADFS.

This call is functionally identical to FileCore_FrccSpace (SWI &40543).

FilcCorc_FreeSpace (SWI &40543)

None

ADFS: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

ADFS: SWI calls

ADFS Retries
(SWI & 40244)

Sets the number of retries used for various operations

RO = mask of hits to change
R 1 = new values of bits to change

RO preserved
Rl = RO AND entry value ofRl
R2 = old value of retry word
RJ = new value of retry word

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

Not defined

This call sets the number of retries used by writing to the retry word. The
format of this word is:

Byte Number of retries for

0 hard disc read/write sector
1 floppy disc read/write sector
2 floppy disc mount (per copy of the disc map)
3 verify after *Format, before sector is considered a defect

The new value is calculated as follows:

(old value AND NOT RO) EOR (Rl AND RO)

None

None

1057

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

~058

Calls FileCore_DescribeOisc

ADFS DescribeDisc
(SWI &40245)

See FileCore_DcscribcDisc (SWI &40545)

See FileCore_DescribeOisc (SWI &40545)

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

Not defined

This SWI calls FilcCore_OescribeOisc (SWI &40545), after first setting R8
to point to the FilcCore instantiation private word for ADFS.

This call is functionally identical to FileCore_DescribeDisc (SWI &40545).

FileCore_DescribcDisc (SWI &40545)

None

ADFS: SWI calls

* Commands

Syntax

use

. ~elated commands

ADFS: • Commands

Selects the Advanced Disc Filing System.

*ADFS

*ADFS

*ADFS selects the Advanced Disc Filing System as the filing system for
subsequent operations. Remember that it is not necessary to switch filing
systems if you use the full pathnames of objects. For example, you can refer
to NetFS objects (on a file server, say) when ADFS is the current filing
system .

*RAM, *Net

1059

·::·,,

,•'::.

Syntax

Parameters

Use

Example

1060

*Configure ADFSbuffers
Sets the number of ADFS file buffers.

*Configure ADFSbuffers <n>

<n> number of buffers

*Configure ADFSBuffers sets the number of 1024 byte file buffers reserved
for ADFS in order to speed up operations on open files. A value of n= I
reserves the default number of buffers appropriate to the RAM size
supplied; a value of n=O disables fast buffering on open files.

*Configure ADFSbuffers 8

ADFS: • Commands

Syntax

Parameters

Use

Example

ADFS: • Commands

*Configure ADFSDirCache
Reserves an area of RAM for the directory cache.

*Configure ADFSDirCache <size>[K)

<size> kilobytes of memory reserved

•Configure ADFSDirCache reserves an area of memory for the directory
cache. Directories are stored in the cache to save reading them from the disc;
this speeds up disc operations, and reduces disc wear. A value of 0 selects a
default value which depends on RAM size.

*Configure ADFSDirCache 16K

1061

Syntax

Parameters

Use

Example

Related commands

1062

Sets the drive selected at power on.

*Configure Drive <n>

<n> drive number

*Configure Drive

*Configure Drive sets the number of the drive which will automatically be
selected on power on. 0-3 correspond to floppy disc drives; 4- 7 correspond to
hard disc drives. Since most Acorn computers have only one floppy disc drive
and no more than one hard disc drive, the most common values arc 0 or 4.

*Configure Drive 0

*Configure Floppies, *Configure HardDiscs, *Confi~:urc FilcSystcm

ADFS: ·Commands

Syntax

Parameters

Use

Example

Related commands

AOFS: • Commands

*Configure Floppies
Sets the number of floppy disc drives recognised at power on.

*Configure Floppies <n>

<n> 0 to4

*Configure Floppies sets the number of floppy disc drives the computer will
recognise. The default value is 1.

*Configure Floppies 0

*Configure HardDiscs

1063

Syntax

Parameters

Use

Example

Related commands

1064

*Configure HardDiscs

Sets the number of hard disc drives recognised at power on.

*Configure HardDiscs <n>

<n> 0 to 2

•Configure HardDiscs sets the number of hard disc drives the computer will
recognise. The default value depends on the model number of the computer
(for example, an Archimededes 305 is not supplied with a hard disc, so the
value is 0). Note however that a delete power-on will not preserve this
default value, but will set it to zero.

*Configure HardDiscs 2

*Configure Floppies

ADFS: • Commands

Syntax

Parameters

Use

Example

ADFS: • Commands

Sets the step rate of the floppy disc drive.

*Configure Step <n> [<drive>]

<n>
<drive>

step time in milliseconds
0 to3

*Configure Step

*Configure Step sets the floppy disc drive step rate to <n>, the step time in
milliseconds. If the parameter <drive> number is omitted, the step rate is set
for all floppy disc drives. This command should only be used with non-Acom
disc drives.

The setting of this value affects disc performance. The optimum setting will
vary, and is not necessarily the shortest step time. The default value is 3
milliseconds. It is possible to set values of 2, 3, 6 and 12 milliseconds: if
other numbers are supplied, the request will be rounded up to the nearest
step available.

*Configure Step 3

1065

Syntax

Parameters

Use

Example

Related commands

1066

*Format
Prcpnrcs a new floppy disc for usc, o r crases a used di~c for re-use.

*Format <drive> [LIDIE) [Y)

<drive>

LIDIE

L 640K
D BOOK
E BOOK

the number of the disc drive, from 0 to .3

the type of form::~t required, selected from:

4 7 -entry directories

77 -entry directories
77 -entry directories

old map

old map
new map

all ADFS

Arthur I .2
RISCOS

Y no prompt for confirmation

The default is E-format. This format offers improved handling of file
fragmentation on the disc and therefore docs not need to be periodically
compacted (sec the *Compact command).

*Format 0

*Format 0 L

*Compact

Formats to default E-format.

Formats the disc in drive 0 for usc with ADFS on the
BBC M::~ster range of computers.

ADFS: • Commands

RamFS

Introduction

RamFS: Introduction

RamFS is the RAM Filing System. It is a module that, together with
FileSwitch and FileCore, provides a RAM-based filing system.

Most of the faci lities that you will use with RamFS are in fact provided by
FileCore and FileSwitch, and you should read the chapters on those modules
in conjunction with this one.

1067

Overview

1068

RamFS is a module that provides the hardware-dependent part of a RAM
based filing system. It uses FileCore, and so c0nforms to the standards for a
module that does so; see the chapter entitled FileCore for details.

It provides:

• a *Command to select itself {*RamFS)

• four SWis that give access to corresponding FilcCorc SW!s

• the entry points and low-level routines that FilcC'.ore needs to access the
RAM-based filing system.

Except for the low-level entry points and routines (which arc for the use of
FilcCorc only) all of these are described below.

RamFS: Overview

SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

RamFS: SWI calls

Calls FileCore_OiscOp

See FileCore_DiscOp (SWI &40540)

Sec FileCore_DiscOp (SWI &40540)

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

Not defined

RamFS_DiscOp
(SWI &40780)

This SWI calls FileCore_OiscOp (SWI &40540), after first setting R8 to
point to the FileCore instantiation private word for RamFS.

This call is functionally identical to FileCore_DiscOp (SWI &40540).

FilcCore_OiscOp (SWI &40540)

None

1069

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1070

Calls FilcCore_Drives

See FileCorc_Drives (SWI &40542)

See FileCore_Drives (SWI &40542)

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

RamFS Drives
(SWI &40782)

This SWI calls FileCore_Drives (SWI &40542), t~fter first setting R8 to
point to the FileCore instantiation private word for RamFS.

This call is functionally identical to FileCore_Drives (SWI &40542).

FileCorc_Drives (SWI &40542)

None

RamFS: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

RamFS: SWI calls

RamFS_FreeSpace
(SWI &40783)

Calls FileCore_FreeSpace

See FileCore_FreeSpace (SWI &40543)

See FileCore_FreeSpace (SWI &40543)

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

Not defined

This SWI calls FilcCorc_FrccSpace (SWI &40543), after first setting R8 to
point to the FileCore instantiation private word for RamFS.

This call is functionally identical to FilcCore_FrceSpacc (SWI &40543).

FileCore_FreeSpace (SWI &40543)

None

1071

,_:.'

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1072

Calls FilcC'..orc_DcscribcDisc

RamFS DescribeDisc
(SWI &40785)

See FilcCorc_DescribeDisc {SWI &40545)

See FilcC'..orc_DcscribeDisc {SWI &40545)

Interrupt status is undefined
Fast interrupts arc enabled

Processor is in SVC mode

Not defined

This SWI calls FilcCorc_DcscribeDisc {SWI &40545), after first setting R8
to point to the FileCore instantiation private word fN RamFS.

This call is functionally identical to FileCore_DcscribcDisc {SWI & 40545).

FilcCorc_DcscribeDisc {SWI &40545)

None

RamFS: SWI calls

*Commands

Syntax

Related commands

RamFS: • Commands

Selects the RAM filing system if RamFS is configured.

*Ram

*ADFS, *Net

*Ram

1073

1074 RamFS: • Commands

NetFS

Introduction The NetFS is a filing system that allows you to access and use remote file
server machines, using Acorn's Econet network. In common with other filing
systems it uses the FileSwitch module, and so when you are using the NerFS
you can usc any of the commands that FileSwitch provides.

The NetFS module takes the commands that you give to it, either directly or
via FileSwitch, and converts them to file server commands. These commands
are then sent to the file server using the standard protocol of Econet. The file
server then acts on the files or directories that it stores.

Much of the above is transparent to the user, and in general to use file servers
you do not need to know file server protocols, or how data is sent over the
Econet. For advanced work, you can communic<~te directly with file servers. If
you do need to know more about file server and Econet protocols, you should
see:

• the chapter entitled Econet

• the Econet Advanced User Guide, available from your Acorn supplier

NetFS: SWI calls 1075

Overview

1076

The NetFS software provides a filing system for RISC OS. To do this it
communicates via the Ec.onet with a file server; the file server stores the files
and keeps track of them in its directories, as well as providing authenticated
access. The NetFS software translates the user's requests that emerge from
FileSwitch into one or more file server commands. These commands are then
sent to the file server where they act on the files or directories stored there.

The NetFS software is designed to hold information about each file server
that it is logged on to and to use this information when communicating with the
file server. There are also some extra comm:mds provided by the NetFS
software that communicate directly with the file server.

All communication with the file server is done using the interfaces provided
by Ec.onet. Basic communication with a file server involves you transmitting a
command to it, and then receiving a reply. Either or both of these may contain
your data: for instance when you create a directory the name you supply is
sent to the file server, where as when you read the name of the current disc
that name is sent back to you. Most commands however send things in both
directions. The NetFS software knows all the form:~rs and requirements of the
file server and presents these to the user, via FileSwitch.

The other commands (those that do not involve files or directories directly)
are accessed via star commands. These comm:mds are only available when
NetFS is the current filing system.

There are three commands related to access control : *Logon, *Pass, and *Bye.
Two commands are to do with selecting file servers: *FS, and *ListFS. The
*Free command provides information about the amount of free space
remaining on each of the discs of a file server. The two commands *Mount
and *SDisc are identical; the former is provided for comparability with
ADFS, the latter for comparability with existing network software (ANFS
and NFS).

NetFS: Overview

Technical Details

Naming

Tlmeouts

Direct access to file
servers

NetFS: Technical Details

As well as supplying a filing system name as part of a file name (such as
'Net:&.Fred), you can supply as part of the filing system name the name or
number of a file server: for example 'Net#253:&.Fred' . or
'Net#Maths:Program'. This will cause the file to be found (or saved, or
whatever) on the given file server. If a name is quoted, you must currently be
logged on to that file server. If a number is given then you must be logged on
to the resulting file server; if only part of the number is given then it will be
defaulted against the current file server number.

The dynamics of communication are controlled by several timeouts.

The values used by NetFS for the TransmitCount, TransmitDelay, and
ReceiveDelay are more fully explained in the chapter entitled Econet. These
are the values used for all normal communication with the file server.

Before attempting to log on to a file server, NetFS tries the immediate
operation MachinePeek to the file server. This operation uses a second set of
values: the MachinePeekCount and the MachinePeekDelay. If this operation
fails, the error "Station not present" is generated. TI)e reason for this is that
stations must respond to MachinePeek. You can therefore determine quite
quickly if the destination machine is actually present on the network, without
having to wait the long time required for a normal transmission to timeout and
report "Station not listening".

The last value used is called the BroadcastDelay; this is the amount of time
for which NetFS will wait for a file server to ~respond to the broadcast for
names of file servers. If the named file server has not responded within that
time the error "Station name not found" will be returned.

To provide access to those functions not provided as part of the FileSwitch
interface, or as one of the command interfaces provided directly by NetFS,
there are a pair of SWI calls.

The first of these (SWI NetFS_DoFSOp) provides communication with the
current file server, and the second (SWI NetFS_DoFSOpToGivenFS) to any
file server to which the NctFS software is logged on.

1077

• The function (in RO) is an indication to the file server what it should do.
You will find documentation of the file server functions in the Econet
Advanced User Guide (part number 412,019) .

• The buffer contains the data to be sent to the file server. Econet's five
byte header (Reply port, Function, URD, C.SD, C'...SL) is prepcnded to the
buffer during transmission. When a reception occurs Econet's two byte
header is stripped off before the returned data is placed in the buffer.

1078 NetFS: Technical Details

SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

NetFS: SWI calls

NetFS ReadFSNumber
(SWI & 40040)

Returns the full station number of your current file server

RO = station number
Rl = net number

Interrupt status is unaltered
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

This call returns the full station number of your current file server.

NetFS_SetFSNumber (SWI &40041), NetFS_ReadFSName (SWI &40042)

None

1079

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1080

NetFS SetFSNumber
(SWI &40041)

Sets the full station number used as the current file server

RO = station number
Rl = net number

Interrupts may be enabled
Fast intemJpts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call sets the full station number used by NetFS as the current file server.

NetFS_ReadFSNumber (SWI &40040), NetFS_SetFSN:-~me (SWI &40043)

None

NetFS: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

NetFS: SWI calls

NetFS ReadFSName
(SWI &40042)

Reads the name of the your current file server

Rl =pointer to buffer
R2 =size of buffer in bytes

RO =pointer to buffer
Rl = pointer to the terminating null of the string in the buffer
R2 =amount of buffer left, in bytes

Interrupt status is unaltered
Fast interrupts are enabled

Processor is in SYC mode

SWI is re-entrant

This call reads the name of your current file server.

NetFS_ReadFSNumber (SWI &40040), NctFS_SetFSName (SWI &40043)

None

1081

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1082

NetFS SetFSName
(SWI &40043)

Sets by name the file server used as your current one

RO =pointer to buffer

Interrupt status is unaltered
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

This call sets by name the file server used as your current one.

NctFS_SctFSNumber (SWI &40041), NetFS_ReadFSNt~me (SWI &40042)

None

NetFS: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

NetFS: SWI calls

NetFS ReadCurrentContext
(SWI & 40044)

Unimplemented

RO - R2 corrupted

Interrupt status is unaltered
Fast interrupts arc enabled

Processor is in SVC mode

SWI is re-entrant

This call is unimplemented, and returns immediately to the caller.

NetFS_SetCurrentContext (SWI &40045)

None

1083

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Relate,d vectors

1084

NetFS SetCurrent Context
(SWI &40045)

Unimplemented

All registers preserved

Interrupt status is unaltered
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

This call is unimplemented, and returns immediately to the calle r, with all
registers preserved.

NetFS_ReadCurrentContext (SWI &40044)

None

NetFS: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

NetFS: SWI calls

NetFS ReadFSTimeouts
(SWI & 40046)

Reads the current values for timcouts used by NetFS

RO = transmit count
R 1 = transmit delay in centiseconds
R2 = machine peek count
RJ = machine peek delay in centiseconds
R4 = receive delay in centiseconds
RS = broadcast delay in centiseconds

Interrupt status is unaltered
Fast interrupts are enabled

Processor is in SYC mode

SWI is re-entrant

This call reads the current values for timeouts used by NctFS when
communicating with the file server.

NetFS_SetFSTimeouts {SWI &40047)

None

1085

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1086

NetFS SetFSTimeouts
(SWI &40047)

Sets the current values for timeouts used by NetFS

RO = transmit count
Rl = transmit delay in centiseconds
R2 = machine peek count
R3 = machine peek delay in centiseconds
R4 = receive delay in centiseconds
R5 =broadcast delay in centiseconds

Interrupt status is unaltered
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

This call sets the current values for timeours used by NctFS when
communicating with the file server.

NetFS_ReadFSTimeouts (SWI &40046}

None

NetFS: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Reiated vectors

NetFS: SWI calls

NetFS_DoFSOp
(SWI & 40048)

Commands the current fi le server to perform an operation

RO = file server function
Rl = pointer to buffer
R2 = number of bytes to send to file server from buffer
R3 =size of buffer in bytes

RO = return condition given by file server
RJ = number of bytes placed in buffer by file server

Interrupts are enabled
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

This call commands the file server to perform an operation, as specified by
the file server function passed in RO. For further derails of these functions, the
data they need to be passed in the buffer, and the data they return in the
buffer, you should see the Econet Adoonced User Guide or the documentation
for your file server.

The buffer must be large enough to hold the data that the file server returns.

Errors returned by the file server are copied into NetFS's workspace and
adjusted to be like a normal RISC OS error - RO points to the error, and the
V bit is set. Any further use of NetFS may overwrite this error, so you should
copy it into your own workspace before you call NetFS again, either directly
or indirectly. (For example, character input or output may call NetFS, as you
may be using an exec or spool file.)

NetFS_DoFSOpToGivenFS (SWI &4004C)

None

1087

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1088

NetFS EnumerateFSList
(SWI & 40049)

Lists all file servers to which the NeeFS software is currently logged on

RO = offset of first item to read in file server list
Rl =pointer to buffer
R2 = size of buffer in bytes
R3 = number of file server names to read from list

RO =offset of next item to read (-1 iffinished)
R3 = number of file server names read

Interrupts are enabled
• Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call lists all the entries in the list of file servers to which the NeeFS
software is currently logged on. This is the same as the list you would get by
using the *FS command with no parameters.

The entries are returned as 20 byte blocks in the buffer:

Offset

0
1
2
3
19

Contents

Station number
Network number
Zero
Disc name
Zero

The order of the list is not significant, save that if you are logged on to your
current file server it will be returned last.

NetFS_EnumerateFS (SWI &4004A)

None

NetFS: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWls

Related vectors

NetFS: SWl calls

NetFS EnumerateFSCache
(SWI &4004A)

Lists all file servers of which the NetFS software currently knows

RO = offset of first item to read in file server list
Rl =pointer to buffer
R2 = size of buffer in bytes
R3 = number of file server names to read from list

RO =offset of next item to read (- 1 if finished)
R3 = number of file server names read

Interrupts are enabled
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

This call lists all the entries in a list of fi le servers which the NetFS software
holds internally. This list is · used by the NctFS software to resolve file server
names, and is the same as the list you would get by using the *ListFS

command.

The entries are returned as 20 byte blocks in the buffer:

Offset Contents

0 Station number
1 Network number
2 Drive number
3 Disc name
19 Zero

They are returned in alphabetical order.

NetFS_EnumerateFSList (SWI &40049)

None

1089

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1090

NetFS ConvertDate
(SWI &4004B)

Converts a file server time and date to a RISC OS time and date

RO =pointer to file server format time and date (5 bytes)
Rl =pointer to 5 byte buffer

Rl is preserved

Interrupt status is unaltered
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

This call converts a file server format time and date to a time and date in the
internal format used by RISC OS (centiseconds since 00:00:00 on 1/1/1900).

The file server format is:

Byte Bits Meaning

0 0 - 4 Day of month (1 - 31)
5 - 7 High bits of year (offset from 1980, 0 - 127)
0- 3 Month of year (1- 12)
4- 7 Low bits ofyear(offsct from 1980,0- 127)

2 0-4 Hours(0-23)
5-7 Unused

3 0- 5 Minutes (0- 59)
6, 7 Unused

4 0- 5 Seconds (0- 59)
6, 7 Unused

OS_ConvertStandardDateAndTime (SWI &CO),
OS_ConvertDateAndTime (SWI &C1)

None

NetFS: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

NetFS: SWI calls

N etFS_DoFSOp T oGivenFS
(SWI & 4004C)

Commands a given file server to perform an operation

RO = file server function
Rl =pointer to buffer
R2 = number of bytes to send to file server from buffer
R3 =size of buffer in bytes
R4 =station number
R5 = network number

RO = return condition given by file server
R3 = number of bytes placed in buffer by file server

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call commands the given file server to perform an operation, as specified
by the file server function passed in RO. For further details of these functions,
the data they need to be passed in the buffer, and the data they return in the
buffer, you should see the Econet Advanced User Guide or the documentation
for your file server.

The buffer must be large enough to hold the data that the file server returns.

Errors returned by the file server are copied into NetFS's workspace and
adjusted to be like a normal RISC OS error - RO points to the error, and the
V bit is set. Any further use of NetFS may overwrite this error, so you should
copy it into your own workspace before you call NetFS again, either directly
or indirectly. (For example, character input or output may call NetFS, as you
may be using an exec or spool file.)

NetFS_DoFSOp (SWI &40048)

None

1091

*Commands

Syntax

Parameters

Use

Example

Related commands

1092

Logs the user off a file server.

*Bye [[:]<file server>]

*Bye

<file server> the file server name or number - defaults to the
current file server

*Bye terminates your use of a file server, closing all open files and
directories.

*Bye 49.254

*Bye :fs

*Shutdown, *Shut, *Logon

NetFS: • Commands

Syntax

Parameters

Use

Example

Related commands

NetFS: • Commands

*Configure FS
Sets the default file server for the Network Filing System.

*Configure FS <nnn>.<sss> I <name>

<nnn>
<sss>
<name>

network number
station number
station name

*Configure FS sets the network file server used where none is specified. It is
preferable to use the station name, as this is less likely to change. The default
value is 0.254.

This option can also be set from the desktop, using the Configure application.

*Configure FS Serverl

*Configure PS, *Configure FileSystem, *I Am, *Logon.

1093

Syntax

Parameters

Use

Example

1094

*Configure Lib

Defines how the library is selected by NetFS after logon.

*Configure Lib [0 I 1)

0 or 1

*Configure Lib defines how the library is selected by NetFS after logon.

When NctFS logs on to a file server, the file server searches for $.Library on
drives 0- <maxdrive> of the file server, in that order. It passes the first match
back to NetFS as the library to be used. If it d0es not match this directory
then it instead passes back $on the lowest numbered physical disc.

• If 0 is used as the parameter, then NetFS uses the library directory
returned by the file server.

• If 1 is used as the parameter, then NetFS searches for $.ArthurLib on
drives 0- <maxdrive> of the file server, in that order. The first match is
used by NetFS as the library. If it does not find a match, then it uses the
library directory returned by the file server.

*Configure Lib 0

NetFS: • Commands

Syntax

Parameters

Use

Example

NetFS: • Commands

*Free

Displays file server free space.

*Free [:<file server>) [<user name>)

<file server> file server name or number - defaults to the current
file server

<user name> issued by the network manager

*Free displays your current remaining free space as well as the total free
space for the disc. If a user name is given, the free space belonging to that
user name is printed out. If no user is given, then the current user's free space
is displayed.

*Free :Business William
Disc name Drive Byt es free

Business 0

User free space

Bytes used

3 438 592
30 967 808

185 007

1095

Syntax

Parameters

Use

Example

Relate<;! commands

1096

*FS
Restores the file server's previous context.

*FS [[:)<file server>)

<file server> the file server name or number - defaults to the
current file server

*FS changes the currently selected file server, restoring your previous context
(for example, the current directory on that file server). If no argument is
supplied, your current fi le server number and name arc printed out, followed
by any non-current context.

*FS 49.254

*FS :myFS

*FS
59.254 "Business"
4.254 "Accounts"

*ListFS

NetFS: • Commands

NetFS: ·Commands

*I am
Identical to •Logon (see below), except that *I am first selects the NetFS.
There is therefore no need to type •Net before the *I am command.

1097

Syntax

Use

Example

Related commands

1098

*ListFS
Lists available file servers.

*ListFS

*ListFS displays a list of the file servers which NetFS is able to recognise.

*ListFS
1.254 :0
1.254 :1
6.246 :0

*FS

Financel
Finance2
Production

NetFS: • Commands

Syntax

Parameters

Use

Example

Related commands

NetFS: • Commands

*Logon

Logs you on to a network file server.

*Logon [[:)<station number>! :<file server name>)
<user name> [[:<CR>) <password>)

<station number>

<file server name>

<user name>

<password>

a number specifying the station you wish to

log on to

the name of the station you want to log on to

issued by the network manager

controlled by user

*Logon enables you to use a file server. If you give neither a station number
nor a file server name, then this command logs you on to the current file
server. Your user name and password are checked by the file server against
the password file, to allow access. You must select NetFS before typing
*Logon (this is not necessary with the *I am command).

*Net
*Logon :fs guest

*I am

1099

Syntax

Parameters

Use

Example

Related commands

1100

*Mount
Selects the user root directory, the current selected directory and the library.

*Mount [:]<disc spec>

<disc spec> the name of the disc to be mounted

Within NetFS, *Mount enables you to set a user root directory on a specified
disc, as well as your currently selected directory and I ibrary.

*Mount fs

*SDisc is a synonym. It is not possible to dismount (*Dismount) a network
file server.

NetFS: • Commands

Syntax

Related commands

NetFS: • Commands

Selects the Network Filing System as the current filing system.

*Net

*ADFS, *RAM

*Net

1101

Syntax

Parameters

Use

Examples

1102

*Pass

Allows you to change your password.

*Pass [<old password> [<new password>))

<old password>

<new password>

the user's existing password (if any)

the new password (if any) that the user wishes to
assign

*Pass enables you to change the password. knowledge of which allows
unrestricted access to your network files. If you enter the command without
parameters, the computer will prompt you to enter your old and new
passwords, reflecting each character you type as a hyphen. If you do not have
one, or wish to remove the one you have without sub~tituting a new one, press
Return at either of the prompts. A password ml!y not be more than six
characters long.

*Pass

Old password:

New password:

*Pass bucket

New password:

User types pail.

User types bucket.

User enters command again, this time giving
existing password tls parameter.

User presses Return, leaving himself with no
password.

NetFS: ·Commands

Syntax

Parameters

Use

Example

Related commands

NetFS: • Commands

*SDisc
Selects the user root directory, the current selected directory and the library.

*SDisc (:]<disc spec>

<disc spec> the name of the disc to be mounted

Within NetFS, *SDisc enables you to set a user root directory on a specified
disc, as well as your currently selected directory and library.

*SDisc fs

*Mount is a synonym. It is not possible to dismount (*Dismount) a network
file server.

1103

Example program

1104

The following program fragments are examples of how you might usc file
server operations by calling NetFS_OoFSOp:

ReadFileServerVersion
MOV rO, 125
ADR rl , Buffer
MOV r2, 0
MOV

SWI
r3, I (?Buffer - 1)

XNetFS_DoFSCp

rO, tO
rO, I r 1, r3
ro, rl
xos Writ eO -
Error

PrintStationNumberOfUser
ADR rl , Buffer
MOV r2, tO

Loop LDRB r3, I ro], 11

CMP r3, I" ..
MOVLT r3, 113
STRB r3, [rl , r2

ADD r2 , r2, il

BGT Loop
MOV rO, f24
MOV r3, I?Buffer
SWI XNetFS_DoFSOp
BVS Error
LDRB r3, [rl, n I
LDRB r4 , [rL 12 I
STMf'D r1 3!, I r3 , r4 I
MOV rO, rl3
MCV r2 , I?Buffer
SWI XOS_ConvertNe~Station

ADD r13 , r1 3, 18
SWIVC XOS _WriteO
SWIVC XOS_NewLine
BVS Error

Command

Nothing r. o send
Lots t o receive

User name pointed to by RO

Inll1ril Vrilue of l~dex

Check f.or termlnrition
Tra~sl~:e to what the FS wants
Copy i:1: o tra nsmit buffer
Updritc : r~nx, and si ze to send

Comm<~nd

?ickup station number
Piclc'JP, network number
Deposit :n s t ack frame
Pointer t o value for conversion
Destination size

Dispose st<~c< !ra~e

Display output

NetFS: Example program

NetPrint

Introduction and
Overview

NetPrint is a filing system that allows you to access and use remote printer
server machines, using Acorn's Econet network. In common with other filing
systems it uses the FileSwitch module. When you are using NetPrint you can
use many of the commands that FileSwitch provides. Obviously there arc
some operations (such as those that read stored data) that are not applicable
to network printer servers.

The NetPrint module takes the commands that you give to it, either directly or
via Filewitch, and converts them to printer server commands. These commands
arc then sent to the printer server using the standard protocol of Econet. The
printer server then acts on the commands and files that it is sent. It handles
their spooling, and manages its (locally) connected printer.

Much of the above is transparent to the user, and in general to use printer
servers you do not need to know printer server protocols, or how data is sent
over the Econet. If you do need to know more about printer server and Econet
protocols, you should see:

• the chapter entitled Econet

• the Econet Advanced User Guide, available from your Acorn supplier

NetPrint: Introduction and Overview

Technical Details

Naming

The current printer server

Operations supported

1106

The network pnntmg system is actually a filing system, and as such you can
use it by giving its name as part of a file name. For example:

*Save NetPrint:Fred AOOO +14C3

However, with current implementations the file name is ignored, and the
'NetPrint:' part is used to send the data to the network printer. As well as
save operations, the NetPrint filing system can also open files and take data.
This means that the operating system can spool to NetPrint:. This is discussed
in more derail in the chapter entitled System devices.

Whenever you open or save a file onto NetPrint: the current printer server is
used. This printer server has a default value which is stored in CMOS RAM,
and you can set the current value using a star command. You can also override
the current value by supplying the printer server number as part of the fi le
name. For example:

Netprint#234:

This example would send the print to the printer server at station 234. As
usual you can specify a full network number. For example:

Netprint#2.235:

Also, since printer servers can be named, you can supply the printer name
rather than the number. For example:

NetPrint#Epson:
NetPrint#Daisy:

The NetPrint filing system supports the OS_File Save operation and the
OS_Find OpenOut operation, as well as OS_BPut and OS_GBPB writes (but
not backwards) .

NetPrint: Technical Details

Linking NetPrlnt to
*FX 5 4 and VDU 2

Tlmeouts

Net Print: Technical Details

There are system variables that connect the YOU print streams to files; an
example of this is the default value set up by NctPrint upon its initialisation.
This is PrinterType$4, and its value is NetPrint:. You could change this
value to indicate a particular printer:

NetPrint#Epson:

and set up another variable to contain a different value:

PrinterType$3 = NetPrint#2.235

so that you can swap between printers with a *FX command. For example:

*FX 5 4
*FX 5 3

The dynamics of communication are controlled by severn! timeouts.

The values used by NetPrint for the TransmitCount, TrnnsmitDelay, and
ReceiveDclay are more fully explained in the chapter entitled Econet. These
are the values used for all normal communication with the printer server.

Before attempting to connect to a printer server, NetPrint tries the immediate
operntion MachinePeek to the printer server. This operntion uses a second set
of values: the MachinePeekCount and the MachinePeekDclay. If this
operation fails, the error "Station not present" is genernted. The reason for
this is that stations must respond to MachinePeek. You can therefore
determine quite quickly if the destination machine is actually present on the
network, without having to wait the long time required for a normal
trnnsmission to timeout and report "Station not listening''.

The last value used is called the BroadcastDclay; this is the amount of time
for which NetPrint will wait for a printer server to respond to the broadcast
with the name of the printer server. If the named printer server has not
responded within that time the error "No free printer server of this type" will
be returned.

1107

SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

.
Related vectors

1108

NetPrint ReadPSNumber
(SWI & 40200)

Returns the full station number of your current printer server

RO = station number
R 1 = net number

Interrupts status is unaltered
Fast interrupts arc enabled

Processor is in SVC mode

SWI is re-entrant

This call returns the full station number of your current printer server.

NetPrint_SetPSNumber (SWI &40201),
NetPrint_ReadPSName (SW &40202)

None

NetPrint : SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

NetPrint: SWI calls

NetPrint SetPSNumber
(SWI &40201)

Sets the fu ll station number used as the current printer server

RO = station number
R 1 = net number

Interrupts may be enabled
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

TI1is call sets the full station number used by NetPrint as your current printer
server.

NetPrint_ReadPSNumber (SWI &40200),
NetPrint_SetPSName (SWI &40203)

None

1109

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1110

NetPrint ReadPSName
(SWI &40202)

Reads the name of your current printer server

Rl =pointer to buffer
R2 = size of buffer in bytes

RO =pointer to buffer
Rl =pointer to the terminating null of the string in the buffer
R2 = amount of buffer left, in bytes

Interrupt status is unaltered
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

This call reads the name of your current printer server.

NctPrint_ReadPSNumbcr (SWI &40200),
NetPrint_SetPSName (SWI &40203)

None

NetPrint: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

NetPrint: SWI calls

NetPrint SetPSName
(SWI &40203)

Sets by name the printer server used as your current one

RO = pointer to buffer

Interrupt status is unaltered
Fast interrupts are enabled

Processor is in SVC mode

SWI is nor re-entrant

This call sets by name the printer server used as your current one.

NetPrint_SetPSNumber (SWI &40201),
NetPrint_ReadPSName (SWI &40202)

None

1111

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1112

NetPrint ReadPSTimeouts
(SWI & 40204)

Reads the current values for timcouts used by NetPrint

RO = transmit count
Rl =transmit delay in centiseconds
R2 = machine peek count
R3 = machine peek delay in centiseconds
R4 = receive delay in centiseconds
RS = broadcast delay in centiseconds

Interrupt status is unaltered
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

This call reads the current values for timeouts used by NctPrint when
communicating with the printer server.

NetPrint_SetPSTimeours (SWI &40205)

None

NetPrint: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

NetPrint: SWI calls

NetPrint SetPSTimeouts
(SWI &40205)

Sets the current values for timeouts used by NetPrint

RO = transmit count
Rl ==transmit delay in centiseconds
R2 == machine peek count
R3 = machine peek delay in centiseconds
R4 =receive delay in centiseconds
R5 =broadcast delay in centiseconds

Interrupt status is unaltered
Fast interrupts are enabled

Processor is in SYC mode

SWI is re-entrant

This call sets the current values for timeouts used by NetPrint when
communicating with the printer server.

NetPrint_ReadPSTimeouts (SWI &40204)

None

1113

·: '('

* Commands

Syntax

Parameters

Use

Example

1114

*Configure PS
Selects the network printer server number or name at power on.

*Configure PS <nnn>.<sss> I <name>

<nnn>
<sss>
<name>

network number
station number
station name

*Configure PS selects the number or name of the printer server within the
NetFS.

You do not need to be logged on to a file server to use:~ printer server.

*Configure PS Laserl

NetPrint: • Commands

Syntax

Parameters

Use

Example

Related commands

NetPrint: • Commands

*PS
Changes the printer server to be used.

*PS <printer server>

<printer server> the name or station number of the printer server

•PS changes the currently selected printer server, checking that the new one
exists. The new printer server will be used next time you print to the net
printer.

*PS 49.254

*PS myPS

•SeePS, •Configure PS

1115

Syntax

Parameters

Use

Example

Related commands

1116

*SetPS
Changes the printer server to be used.

*SetPS <printer server>

<printer server> the name or station number of the printer server.

*SetPS changes the currently selected printer server. This command only
changes the stored name or number of the current printer server. No check is
made that the printer server exists, or is available, until the next time you
print to the network printer. It is only then that an error might be cenerated.

*SetPS 49.254

*SetPS myPS

*PS, *Configure PS

NetPrint: • Commands

DeskFS

Introduction

DeskFS: Introduction

DeskFS is a ROM based filing system that provides system resources for the
Desktop. The Desktop uses the system variable Wimp$Path to find these
system resources; by default its value is DeskFS: . You can change where the
Desktop looks for these system resources by changing the value of
Wimp$Path.

DeskFS provides a single * Command to select the filing system, described
overleaf.

1117

* Commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

1118

Selects the desktop filing system

*DeskFS

None

*DeskFS

*DeskFS selects the desktop filing system. This is a ROM based filing
system used to store system resources for the Desktop module.

*DeskFS

*Ram, * ADFS, *Net

None

None

OeskFS: • Commands

System devices

System devices

System devices suitable
for input

System devices suitable
for output

Redirection

System devices: Introduction

The SystemDevices module provides a number of system devices, which
behave like files in some ways. You can use them anywhere you would
normally use a file name as a source of input, or as a destination for output.
They include:

kbd:

rawkbd:
serial:

null:

vdu:
rawvdu:
serial:
printer:

netprint:
null:

the keyboard, reading a line at a time using OS_ReadLine
(this allows editing using Delete, Ctrl-U, and other keys)
the keyboard, reading a character at a time using OS_ReadC
the serial port

the 'null device', which effectively gives no input

the screen, using GSRead format passed to OS_ WriteC
the screen, via the VDU drivers and OS_ WriteC
the serial port
the printer
the network printer driver (provided by the NetPrint module)
the 'null device', which swallows all output

An error is given if the specified system device is not present; for example, if
the SystemDevices module is not present ..

These system devices can be useful with commands such as *Copy, and the
redirection operators(> and<):

*Copy myfile printer:

*Cat { > printer: }
printer

Send myfile to the printer

List the files in the current directory to the

1119

Suppressing output
using null:

Input devices

net print:

printer:

You can use the system device null: to suppress unwanted output from a
command script or program:

*myprogram { > null: Run myprogr am with no output

You can only open one file for input on kbd: at once as it has buffered input;
normal line editing facilities arc available. If you try to open kbd: a second
time whilst the first file is open, you will get returned a handle of 0, or an
error if the appropriate bit is set in the open mode passed to FilcSwitch. Ctri
D in the input line will yield EOF when it is read from the buffer.

You can open rawkbd: as many times as you like, even if a file is open on
kbd:. It uses XOS_ReadC (without echoing to the screen) to read characters.
No EOF condition exists on rawkbd: or serial:; the program reading them must
detect an input value/pattern and stop on that.

No files exist on any of these devices. If you call OS_File 5 on the devices it
will always return object type 0, so you cannot use them for input to programs
that need to load an entire file at once for processing.

The netprint: sytem device is more sophisticated that other ones. As well as
using it in place of file names, you can also usc it with certain commands that
normally use the name of a filing system. For example, to display the
currently selected network printer and a list of available network printers.

*Cat ne tprint:

The printer: device allows various special fields, to refer to the different
types of printers. Thl'se are:

• printer#sink: and printer#null: arc synonyms

• printer#parallcl: and printer#centronics: are synonyms

• printer#serial: and printer#rs423: are synonyms

• printer#user:

• printcr#<n>: refers to printer type <n> , where <n > is in the range 0 · 255.

1120 System devices: Suppressing output using null:

Other output devices

You can only open one file on printer: at once; if you try to open a second one
FileSwitch returns a handle of 0. (Future versions of RISC OS may instead
return an error.) If you try to save data to printer: as a whole file while
another file is open, printer: returns an error

You can open as many files as you wish on the other output devices, which are:

null:, vdu:, serial: and rawvdu:

For example:

H% = OPENOUT "rawvdu:"
SYS"OS_ Byte",199,H%,0

type here

*Spool

When you type everything is sent to the vdu, which outputs it and then uses
XOS_BPut to send it to the spool file handle. This in tum sends it (through
another mechanism, OS_PrintChar) to the screen again! The *Spool at the
end clears up.

In addition to byte-oriented operations, you are allowed to perform file save
operations on the output devices.

The difference between vdu and rawvdu is that the former is filtered using
the configured DumpFormat, whereas rawvdu characters go straight to the
VDU drivers.

System devices: Other output devices 1121

1122 System devices: Other output devices

Part 4 ,. The Window Manager

1123

1124

The Window Manager

Introduction This chapter describes the Window Manager. It provides the facilities you
need to write applications that work in the Desktop windowing environment
that RISC OS provides.

The Window Manager is an important part of RISC OS because:

• it provides a simple to use graphical interface, that makes your
applications more accessible to a wider range of users

• it also provides the means for you to make your applications run in a
multi-tasking environment, so they can interact with each other, and with
other software.

This chapter also gives guidelines on how your applications should behave so
that they are consistent with other RISC OS applications. This should make it
easier for users to learn how to use your software, as they will already be
familiar with the necessary techniques.

You will find it benefits both you and o ther programmers if you make all
your applications run under the Window Mant~ger ' (and in a consistent
manner), since this will lead to a much richer RISC QS environment.

The Window Manager: Introduction 1125

w Manager is designed to simplify the task of producing
programs to run under a WIMP (Windows, Icons, Menus and Pointer)
environment. The manager itself is usually referred to as the Wimp.
Programs that run under the Wimp are often called tasks, because they are
operating under a multi-tasking environment. In this section, the words task,
program and application should be treated as synonyms.

An immediately recognisable feature of Wimp programs is their use of
overlapping rectangular windows on the screen. These are u~d to implement
a 'desktop' metaphor, where the windows represent documents on a desk. The
responsibility of drawing and maintaining these windows is shared between
the application(s) and the Window Manager.

The Wimp co-operates with the task in kecpinJ: the screen display correct by
telling the task when something needs to be redrawn. Thus, the task needs to
make as few intelligent decisions as possible. It merely has to respond
appropriately to the messages it receives from the Wimp, in addition to
performing its own processing (using the routines supplied to perform
window operations).

Very often, much of the work of keeping a window's contents up to date can
be delegated to the Wimp. This is especially true if a program takes
advantage of icons. An icon is a rectangular area in a window whose contents
can be text, a sprite, both, or user-drawn graphics. In the first three cases, the
Wimp can maintain the icon automatically, even to the point of performing
text input without the application's intervention.

Menus also form an important part of WIMP-based programs. RISC OS
Wimp menus are pop-up. That is, they can be made to appear when the user
clicks on the appropriate mouse button - the middle Menu button. This is an
alternative to the menu bar approach, where an area of the screen is
dedicated to providing a fixed set of menu headers. In a multi-tasking
environment, pop-up menus are much more usenblc. Further, they can be
context-sensitive, ie the menu that pops up is appropri;'lte to the mouse pointer
position when the Menu button was pressed.

The Wimp provides support for nested menus, where one menu entry can
lead to another menu, to any desired depth. Moreover, the 'le,..f' ci a menu
structure can be a general window, not just a fixed text item. This allows for
very flexible selections to be made from menus.

The Window Manager: Overview

A very powerful feature of the RISC OS Wimp is its support for co
operative multi-tasking. Several programs can be active at once. They gain
control on return from the Wimp's polling routine, which is described below.
There is normally no pre-emption. Pre-emption means the removal of control
from a task at arbitrary times, without its prior knowledge. With polling, a
task only relinquishes control when it chooses, so for the system to work, tasks
must be well behaved. This means they must not spend too much time
between polling, otherwise other tasks will be prevented from running.
However, it is possible to enforce pre-emption for non-Wimp tasks, by
running them in for example, the edit application's task window.

To allow several applications to run at once, the Wimp must also perform
memory management. This allows each application to 'sec' a standard
address space starting at &8000 whenever it has control. As far as a task is
concerned, it is the only user of the application workspace. The amount of
workspace that a task has is settable before it starts up. A program does not
therefore have to be written with multi-tasking in mind. A task that does
everything correctly will work whether it is the only program running, or one
of several.

Communication between tasks is possible. In fact, it is often necessary, as the
Task Manager sometimes needs to 'talk' to the programs it is controlling. The
Wimp implements a general and very powerful message-passing scheme.
Messages are used to inform tasks of such events as screen mode and palette
changes, and to implement a general purpose file transfer facility.

The next section gives an overview of the major components of the RISC OS
Window Manager.

The Window Manager: Overview 1127

Technical details

Polling

1128

Central to any program running under the Wimp environment IS Its polling
loop. Wimp programs are event driven. This means that instead of the
program directing the user through various steps, the program waits for the
user to control it. It responds to events. An event is a message sent to a task by
the Wimp (or by another task). Events are usually generated in response to
the user performing some action, such as clicking a mouse button, moving the
pointer, selecting a menu item, etc. Inter-rask ('user') messages are also
passed through the polling loop.

An application calls the routine Wimp_poll (SWI &400C7) to find out
which events, if any, are pending for it. This routine returns a number giving
the event type, and some event-specific information in a parameter block
supplied by the caller. One event is Null_Rcason_Code (0), which means
nothing in particular needs to be done. The program can usc this event to
perform any background processing.

In very broad terms, Wimp applications will have the following (simplified)
structure:

SYS "Wimp _Initialise"

finished ~ fALSE : DIM blk 255
REPEAT

SYS"Wimp_Po ll ", 0, bll< TO event Code

CASE eventCode Of

WHEN 0: .. .

WHEN 1 : .. .

ENDCASE
UNTIL finished

SYS"ilimp_CloseDown"

Tell the Wimp about the task
Get block for Wimp_Poll

Get the event code to process

Do Nuli_Rcason_Code
Do Redraw_ Window_Request
etc.

Tell Wimp we've finished

Currently, event codes in the range 0 to 19 are returned, though not all of
these are used. A fully specified Wimp program will have WHEN (or
equivalent) routines to deal with most of them.

The Window Manager: Technical details

Mouse buttons

Some of the event types are fairly esoteric and can be ignored by many
programs. It is very important that tasks do not complain about unrecognised
event codes; they should simply ignore them or better, avoid receiving them in
the first place.

When calling Wimp_Poll, the program can mask out certain events if it docs
not want to hear about them at the moment. For example, if the program
doesn't need to know about the pointer leaving or entering a window, it could
mask out these events. This makes the whole system more efficient, as the
Wimp will not bother to pass control to a task which will simply ignore the
event. Some events are unmaskable, eg an application must respond ro
Open_ Window_Request.

As noted above, events are usually generated internally by the Wimp.
However, a user task may also send messages, which result in Wimp_Poll
events being generated at the destination task. For example, the Madness
application moves all of the windows around the screen by sending an
Open_ Window_Request message to their owners. A more useful usc of
messages is the data transfer protocol. Most mes.~ages sent between tasks arc
of type User_Message_xxx (17, 18 and 19). See the entry for
Wimp_SendMessage (SWI &400E7) for details of these.

All of the event types are described in the entry for Wimp_Poll in the
section on SWl Calls, along with descriptions of how the application should
respond to them.

The Wimp system works with a three-button mouse, and since it is import<Jnt
that all tasks use the mouse in as consistent a manner as possible, it has been
decided that the buttons shall be used as follows:

lefthand button
middle button
righthand button

Select
Menu
Adjust

The interpretation of which button should do what depends on the
circumstances, but broadly speaking the Select button is used to make new
selections, while the Adjust button is used to alter existing selections, or to
add selections to existing ones. Often, where Select performs a certain task.

The Window Manager: Technical details 1129

Layout of windows

1130

Adjust under the same circumstances will pcrtorm a vanatton on it. See the
descriptions of controls in the section W indow system areas for examples d
this.

Various parts of the Wimp enforce the interpretations given above for the
mouse buttons. For example, icons may be programmed to respond in various
ways to clicks with the the Adjust and Select buttons, by setting their button
type. On the other hand, a click on the Menu button is always reported in
exactly the same way, regardless of where it occurs, as a Mousc_Click event
with the button state set to 2. This is to encouras:e all programs to interpret a
click on the middle button in the same way -as a request to open a menu.

Windows consist of a visible area, in which the task can draw graphics, and a
surrounding 'system' area, comprising a Title Bar, scroll bar indicators and so
on. The task does not normally draw directly in this area, except the Title Bar.
The visible area provides a window into a larger region, called the work area.
You can imagine the work area to be the complete document you are working
with, and the visible area a window into this.

There are, therefore, two sets of coordinates to deal with when setting up a
window. The visible area coordinates determine where the window will
appear on the screen and its size. These are given in terms d OS graphics
units, with the origin in its default position at the bottom left of the screen.

Then there are the work area coordinates. These give the minimum and
maximum x and y coordinate of the whole document. The limits of the work
area are sometimes called its extent. The work area is specified when a
window is created, but can be altered using the Wimp_SetExtent
(SWI &40007) call.

Bctween the work area coordinates and the visible area coordinates is a final
pair which join the two together. These arc the scroll offsets. They indicate
which part of the work area is shown by the visible area - this is called the
visible work area.

The scroll offsets give the coordinates of the pixel in the work area which is
displayed at the top lefthand comer of the visible region. Suppose the visible
region shows the very top left of the work area. Then the x scroll position
would be 'work area x min', and the y scroll position would be 'work area y
max'.

The Window Manager: Technical details

It is common to define the work area such that its origin (0,0) is at the top left
of the document. This means that all x scroll offsets are positive (as you can
only ever be on or to the right of the work area origin), and all y offsets are
zero or negative (as you can only ever be on or below the work area origin).

To summarise, let's consider which part of the work area will be visible, and
where it will appear on the screen, for a typical set of coordinates.

The following give the total document size:

work_area_x_min = 0
work_area_y_min = -5000
work_area_x_max = 1000
work_area_y_max = 0

The document is therefore 1000 units wide by 5000 high, with the work area
origin at the top left of the document. The following give the window's
position on the screen and its size:

visible_area_x_min = 200
visible_area_y_min = 100
visible_area_x_max = 500
visible_area_y_max = 400

This gives a window 300 units wide by 300 high. It is positioned about !/6th
(200/1280) of the way across and 1/!0th (100/1024) of the way up a typical
1280 by 1024 unit display.

The following determine which part ci the work area is displayed:

scroll_offset_x = 250
scroll_offset_y = -400

Thus the pixel at the top left of the window represents the point (250,-400) in
the work area. This is shown on the screen at coordinates (200,400).

Combining the above bits of information, we can work out what portion of the
work area is visible. By definition, the minimum x coordinate and the
maximum y coordinate of the visible work area arc just the scroll offsets. The
maximum x and minimum y can then be derived by adding the width and
subtracting the height respectively of the displayed window:

The Window Manager: Technical details 1131

1132

visible_work_area_min_x = scroll_offset_x = 250
visible_work_area_min_y = scroll_offset_y- height = -700
visible_work_area_max_x = scroll_offset_x + width = 550
visible_work_area_max_y = scroll_offset_y = -400

Thus on the screen at coordinates (200,100) • (500,400) would be a 300 pixel
square window showing the visible work area (250,-700) • (550,-400).
Moreover, the Sliders drawn by the system have a length proportional to the
area that the window displays. The horizontal Slider would therefore occupy
about 300/1000 = 0.3 of the horizontal scroll bar, :md the vertical one would
occupy 300/5000 = 0.06 of the scroll bar.

All this is shown in the diagram below.

(x,y) = screen coordinates
(x,y) =window coordinates

Back

Scroll left

(0,0)

Toggle size icon

!+--Scroll up

Slider

Scroll bar

14---Scroll down

!+--Adjust size icon
~=..;!

Scroll right

The Window Manager: Technical details

A commonly required calculation is one which gives the coordinates of a point
in the work area of a window, given a screen position (eg where a mouse
button click occurred). This mapping obviously depends on the window's
screen position and its scroll offsets. The first step is to find the work area
pixel that would be displayed at the screen origin, then add the given screen
coordinates to this.

The formula below generalises this:

work area x =screen x + (scroll_offset_x-visible_work_area_min_x)
work area y =screen y + (scroll_offset_y-visible_work_area_max_y)

However, it is easier to envisage this as:

work area x =screen x- (visible_work_area_min_x-scroll_offset_x)
work area y =screen y- (visible_work_area_max_y-scroll_offset_y)

since (visible_min_x-scroll_x, visible_max_y-scroll_y) are equal to the
coordinates of the origin of the work area on the screen.

Generally, when this calculation is needed, the scroll offsets and visible work
area coordinates are available (eg having been returned from Wimp_Poll).
Even if they are not, a call to Wimp_GetWindowState (SWI &400CB) will
secure the information.

In addition to the coordinates described above, several other attributes have to
be set when a window is created. These are described in detail in the entry on
Wimp_CreateWindow (SWI &400Cl), but are summarised below.

Windows can overlap on the screen. In order to determine which windows
obscure which, the Wimp maintains 'depth' as well as positional information.
We say that there is a window stack. The window at the top of the stack
obscures all others that occupy the same space on the screen; the one on the
bottom of the stack is obscured by any other at the same coordinates.

Certain mouse operations alter a wi.ndow's depth in the stack. A click with
Select on the Title Bar (see below) brings the window to the top. Similarly
you can give a window a Back icon, which, when clicked on, will send the
window to the bottom of the stack. On opening a window, you can determine
its depth in the stack by specifying the window that it must appear behind.
Alternatively you can give its depth absolutely as 'top' or 'bottom'.

The Window Manager: Technical details 1133

·:.:·
.·: .. ·:

Window system areas

Back icon

Close icon

1134

There are several colours used in drawing a window. For harmonious
operation with other applications, several of these have been standardised:
you should set the Title Bar colours, the scroll bar inner and outer colours
and highlighted title colour to the values given in the section entitled
Application notes, unless you have some good reason not to. On the other hand,
the work area colours (which are set for you before an update or redraw) can
be assigned any values required.

One 32-bit word of the window block contains flags. These control many of its
attributes: which control icons it should have, whether it's movable, whether
Scroii_Request events should be generated etc. Another word of flags control
the appearance of the Title Bar, and yet another word set the button type of
the work area. Both of these are actually icon attributes, the Title Bar being
treated like an icon in many ways.

Finally there are miscellaneous properties such as the sprite area address to
use for icon sprites, the minimum size of the window, and the icon data for the
Title Bar.

Appended to the window definition are any initial icons that it owns. Further
icons can be added using the call Wimp_Createlcon (SWI &400C2) .

The window illustrated above has a fully defined system area - it has all of
the available controls. The control areas, going clockwise from the top-left
comer are described below. Where the effects of using Select and Adjust on
them are different, this is noted.

A click on this icon causes the window to be moved to the back of the window
stack, making it the 'least visible' one. A Redraw_ Window_Requcst event is
issued to any applications which have windows that were obscured by it and
are now visible.

A click on this icon should cause the window to be closed, or rather the Wimp
generates a Close_ Window_Request event and it is then up to the application
to respond with a Wimp_CioseWindow (SWI &400C6) call. (Or not, if it
has good reason not to.) Using Adjust on the Close icon of a Filer window
closes the directory display, but opens its parent directory. When a window is
closed, the Wimp will issue Redraw_ Window_Requests to those windows
which were obscured by it and are now visible.

The Window Manager: Technical details

Title bar

Toggle Size icon

Vertical scroll bar

This contains the name of the window, which is set when the window is created.
Dragging the Title Bar causes the whole window to be dragged. If Select is
used for the drag, the window is also brought to the top; Adjust leaves it at
the same depth. The Tide Bar has many of the attributes of an icon (font type,

indirection, centring etc). If the whole window is being dragged (and not just
its outline), each movement will generate an Open_ Window_Request for it,
and Redraw_ Window_Requcsts to windows that become unobscured.

A click in this icon toggles the window between its maximum size and the last
user-set size. An Open_ Window_Request event is generated to ask the
application to update the work region of the resized window. The maximum
site of a window depends on its work area extent and the size of the screen.
Again, using Select uncovers the window; Adjust leaves it at the same place in
the stack. As usual, if the change in window size renders previously obscured
window visible, Redraw_ Window_Requests will be generated for them.
When the window is toggled back to its small size, it goes back to its previous
depth in the stack.

Although this is one object as far as the window definition is concerned, there
are five regions within it. They are: the scroll up arrow, the page up area
(above the Slider), the Slider, the page down area, and the scroll down arrow.

If the user clicks on one of the arrows with Select, the scroll offset for the
window is adjusted by 32 units in the appropriate direction. Using Adjust
scrolls in the reverse direction. Holding down either button causes the
scrolling to auto-repeat. A click in the page up/down region adjusts the scroll
offsets by the height of the window work area, with Adjust again giving the
reverse effect from Select. An Open_ Window _Request is generated to
update the scrolled window.

If the window had one of the Scroll_Request flags set when it was created, a
click in one of the arrows or page up/down areas causes a Scroli_Request
event to be generated instead. The application can decide how much to scroll
and call Wimp_ Open Window (SWI &400C5) to update its contents.

Finally, the Slider may be dragged to set the scroll offsets to any position in
the work area. The Open_ Window_Rcquest events are returned either
continuously or when the drag finishes, depending on the state of the Wimp
drag configuration bits.

All scroll operations leave the window's depth unaltered.

The Window Manager: Technical details 1135

Adjust Size icon

Horizontal scroll bar

Redrawing windows

1136

Dragging on this icon causes the window to be resized. The limits of the new
window size are determined by the work area extent and the minimum size
given when the window was created. Depending on the state of the Wimp
drag configuration flags the Wimp generates either continuous
Open_ Window_Requests (and possibly Redraw_ Window_Requests for other
windows) or a single one at the end of the drng. Select brings the window to
the top; Adjust leaves it at the same depth.

This is exactly equivalent to the vertical scroll bar described above. For 'up'
read 'right' and for 'down' read 'left'. ie. scroll up increases the y-scroll
offset, while scroll right increases the x-scroll offset.

When a window is created, its control regions can be defined in one of two
ways. The 'old' way is to use certain flags which specify in a limited fashion
which of the regions should be present and which are omitted. The 'new'
method uses one flag per control, and is much easier to use. The old way was
used in Arthur, while the new is only available in RISC OS.

As mentioned above, the Wimp and the application coopernte to ensure that
the windows on the screen remain up to date. The Wimp can't do all of the
work, as it does not always know what the contents of a window should be.

When the task receives the reason code R<.-draw _Window _Request from
Wimp_poll, it should enter a loop of the following form:

REM blk is the Wimp_Poll block
SYS"Wimp_RedrawWindow",,blk TO flag
WHILE flag

Redraw contents of the appropriate window
SYS"Wimp_GetRectangle",,blk TO flag

ENDWHILE
Return to polling loop

When a window has to be redrawn, often only part of it needs to be updated.
The Wimp splits this area into a series of non-overlapping rectangles. The
rectangles are returned as xO,yO,xl,yl where (xO,yO) is inclusive and (xl,yl) is
exclusive. This applies to all boxes, eg. icons, work Clrea, etc. The WHILE loop
above is used to obtain all the rectangles so that they can be redrawn. The
Wimp automatically sets the graphics clipping window to the rectangle to be
redrawn. The task can take a simplistic view, and redrdw its whole window

The Window Manager: Technical details

Updating windows

contents each time round the loop, relying on the graphics window to clip the
unwanted parts out. Alternatively, and much more efficiently, it can inspect
the graphics window coordinates (which are returned by
Wimp_RedrawWindow (SWI &400C8) and Wimp_GetRectangle
(SWI &400CA)) and only draw the contents of that particular region.

The areas to be redrawn are automatically cleared (to the window's
background colour) by the Wimp. The task must determine what part of the
workspace area is to be redrawn using the visible area coordinates and the
current scroll offsets.

When redrawing a window's contents, you should normally use the overwrite
GCOL action. You should use EOR mode when redrawing any currently
dragged object. EOR mode is also useful when updating the window contents,
such as dragging lines in Draw. As a rule, the contents of the document should
not use EOR mode.

You should not use block operations such as Wimp_BiockC'..opy
(SWI &400EB) within the redraw or update loop, only outside it to move an
area of workspace. These restrictions allow you to use the same code to draw
the window contents and to print the document. If you use, for example,
exclusive-OR plotting or block moves during the redraw these won't work on,
say, a PostScript printer driver..

When a task wants to update a window's contents, it must not simply update
the appropriate area of the screen. This is because the task does not know
which other windows overlap the one to be updated, so .it could overwrite their
contents. As with all window operations, it must be done with the Wimp's co
operation. There are two possible approaches. The program can:

• call Wimp_ForceRedraw (SWI &40001) so Wimp subsequently returns
a Redraw_ Window _Request, or

• call Wimp_UpdateWindow, and perform appropriate operations.

In both cases, you provide the window handle and the coordinates of the
rectangular area of the work area to be updated. The Wimp works out which
areas of this rectangle are visible, and marks them as invalid. If you usc the
first method, the Wimp will subsequently return a Redraw_ Window_Requcst
from Wimp_poll, which you should respond to as already described. In the
second case, a list of rectangles to be redrawn is returned immediately.

The Window Manager: Technical details 1137

Icons and sprites

1138

When Wimp_ForceRedraw is used, the Wimp clears the update area
automatically. This should therefore be used when a permanent change has
occurred in the window's contents, eg a paragraph has been reformatted in an
editor. When you call Wimp_UpdateWindow (SWI &400C9), no such
clearing takes place. This makes this call more suirable for temporary
changes to the window, eg when dragging objects or 'rubber-banding' in
graphics programs.

It is simpler to use Wimp_ForceRedraw since, once it has hccn called, the
task just returns to the central loop, from where the
Redraw_ Window_Request will be received. The code to handle this must
already be present for the program to work at all. On the other hand, the
second method is much quicker as the redrawin~; is performed immediately.
Also, you can keep the original contents, using EOR to update part of the
rectangle; for example, when dragging a line.

As mentioned earlier, an icon is a rectangular area of a window's workspace.
Icons can be created at the same time as a window, by appending their
definitions to a window block. Alternatively, you can create new icons as
needed by calling Wimp_Createlcon. A third possibility is to plot 'virtual'
icons during a redraw or update loop using Wimp_Piotlcon (SWI &400E2) .
The advantage of this last technique is that the icons plotted don't occupy
permanent storage.

Icons have handles that are unique within their parent window. Thus an icon is
totally defined by a window/icon handle pair. Uc;cr icon handles start from
zero; the system areas of windows have negative icon numbers when returned
by Wimp_GetPointerlnfo (SWI &400CF).

The contents of an icon can be anything that the programmer desires. The
Wimp provides a lot of help with this. lt will perform automatic redrawing
of icons whose contents are text strings, sprites, or both. Moreover, text icons
can be writeable, that is, the Wimp will deal with user input to the icon, and
also handle certain editing functions such as Delete and left and right cursor
movements.

Below is an overview of the information supplied when the program defines
an icon. For a detailed description, see Wimp_Createlcon (SWI &400C2)
below.

The Window Manager: Technical details

Bounding box

Icon flags

Four coordinates define the rectangle that the icon occupies in the window's
workspace. The Wimp uses this region when detecting mouse clicks or
movements over the icon, when filling the icon background (if any) and
drawing the icon border (if any).

This single word contains much of the information that make icon handling so
flexible. It indicates:

• whether the icon contains text, a sprite, or both

• for text icons, the text colours, whether the font is anti-aliased or not (and
the font handle or colours), and the alignment of text within the font
bounding box

• for sprite icons, whether to draw the icon half size

• whether the icon has a border and/or a filled background

• whether the application has to help redraw the icon's contents

• whether the icon is indirected

• the button type of the icon

• the exclusive selection group (ESG) of the icon, and how to handle Adjust
type selections of this icon

• whether to shade the icon so that it can't be selected.

Indirected icons use the last twelve bytes of the icon definition in a different
way from non-indirected ones; see below.

The button type of an icon determines how the Wimp will deal with mouse
movements and clicks over the icon. There are 16 possible types. Examples
are: ignore all movements/clicks; report single clicks, double clicks and drags;
select the icon on a single click; make the icon writcable, and so on.

When Select is used to select an icon, its selected bit is set regardless of its
previous state, and it is highlighted. When Adjust is used, its selected bit is
toggled, de-selecting it if it was previously highlighted, and vice versa.

When an icon is selected, the Wimp indicates this visually by inverting the
colours that are used to draw its text and/or sprite. Selecting an icon causes
all other icons in its exclusive selection group to be de-selected. The ESG is

The Window Manager: Technical details 1139

Icon data

1140

in the range 0 to 31. Zero is special; this puts the ic0n in a group of its own, so
selecting the icon will not affect any other icons, but each selection actually
toggles its state.

Imagine a window has three icons with ESG= I. Only one of these can be
selected at once: the selection (or toggling by Adjust) of one automatically
cancels the other two. However, if the icon has its adjust bit set, then using
Adjust to toggle the icon's srarc will not have any affect on the other icons in
the same ESG.

When the icon's shaded bit is set, the Wimp draws the icon in a 'subdued'
way, to indicate that it can't be selected. This also prevents selection by
clicking.

Icon flags occur in other contexts. A window definition uses the button type
bits to determine its work area's button type. The rest of the bits (with some
restrictions) are used to determine the appear::~nce of a window's Title Bar.
Finally menu items have icon flags to determine their appearance.

The last 12 bytes of an icon definition are used in two different ways. If the
icon is not indirected, these are used to hold a 12-byte text string. This is the
text to be displayed for a text icon, the name of the sprite for a sprite icon,
and both of these things for a text and sprite icon. C learly the last is not very
useful; it is unlikely that you will want to display an icon called
sm! a repaint along with the text sm! a repaint.

If the icon button type is writeable, clicking on the icon will position the caret
at the nearest character and you can type into the icon, modifying the 12-byte
text.

Indirccted icons overcome the limitations of standard icons. Text can be more
than 12 bytes long; the sprite in a text plus ~rite icon can have a different
name from the text displayed; sprite-only indirectcd icons can have a
different sprite area pointer from their window; writcablc icons can have
validation strings defining the acceptable characters, and anri-aliased text can
have colours other than the default white foreground/black background.

The twelve data bytes of an indirected icon arc interpreted as three words: a
pointer to the icon text or icon sprite, a pointer to the validation string or
sprite control block, and the maximum length of the icon text.

The Window Manager: Technical details

Icon sprites

Pop-up menus

The sprites that are used in icons can come from any source: the system sprite
pool, the Wimp sprite pool, or a totally independent user area. The use of
the system sprites is not recommended as certain operations (such as scaling
and colour translation) can't be performed on them. Wimp sprites arc useful
for obtaining standard shapes without duplicating them for each application.
User sprites are used when private sprites are required that aren't available
in the Wimp sprite area.

The Wimp sprite area is accessed by specifying a sprite area control block
pointer of + 1 in a window definition or indirected icon data word. There are
actually two parts to the area, a permanent part held in ROM, and a
transient, expandable area held in the RMA. The call Wimp_SpriteOp
(SWI &400E9) allows automatic access to Wimp sprites by name. This is
read-only access. The only operation allowed on Wimp sprites that changes
them is the MergeSpriteFile reason code (I I), or the equivalent
*IconSprites command. These add further sprites to the Wimp area,
expanding the RMA if necessary.

Below is a BASIC program to save the ROM sprites to a file. You can then
use Paint to examine the sprites it contains.

SYS "Wimp_BaseOfSprites" TO rom
SYS "OS_ SpriteOp",&lOC,rom,"WSprites"

Amongst the 47 (RISC OS 2.00) ROM-based sprites are standard file-rype
icons (and half size versions of most of them), standard icon bar devices
(printers, disk drives etc), common button types (radio buttons, option buttons)
and the default pointer shape.

The Wimp provides a way in which a task can define multi-level menu
structures. By multi-level we mean that a menu item may have a submenu. The
user activates this by moving the pointer over the right-arrow that indicates a
submenu. The new menu is opened automatically, the Wimp keeping track of
the 'selection so far'.

The application usually activates a menu by calling Wimp_CreateMcnu
(SWI &400D4) in response to a Mouse_Ciick event of the appropriate type.
It passes a pointer to a data structure that describes the list of menu items.
Each of those items contains a pointer to its submenu, if required.

The Window Manager: Technical details 1141

Dialogue boxes

1142

The click of the Menu button while the pointer is over a window is always
reported, regardless of button types. You can use the window and icon
handles to create a menu which accords to the context of the click. For
example, the Filer varies its menu according to the current file selection (or
pointer position if there is none).

When the user makes his or her menu choice by clicking on any of the mouse
buttons while over an item, another event, Menu_Sclecrion, is generated. The
application responds to this by decoding the selected menu item(s) and
performing appropriate actions.

Because menus can have a complex hierarchical stmcture (as opposed to the
simple single level menus on some systems) a call Wimp_DecodeMenu
(SWI &40005) is provided to help translate the selection made into a
textual form.

Just as icons can be made writeable, menu items can have that property too.
This makes it very easy to obtain input from the user while a menu is open.

Menus are not restricted to text-only items. A leaf item (ie the last in a chain
of selections) may be a window, which in tum contains a complete dialogue
box. And of course, such windows can have as many icons as required,
displaying sprites, text prompts, writeable icon fields etc.

It could be annoying that choosing an item from deep within a menu structure
causes the whole menu to disappear. For example, the user might be
experimenting with different selections from a colour menu, and he doesn't
necessarily want to perform the whole menu operation again each time he
clicks the mouse. To overcome this, selections made using the Adjust button do
not cancel the menu. The Wimp supports this directly, but needs some co
operation from the application to make it work.

Finally, because the Wimp can inform a task when a submenu is being
opened, the menu tree can be built dynamically, according to the selections
that have gone before.

There is no direct way of setting up 'dialogue' boxes under the Wimp.
However, because icons can be handled in very versatile ways, it is quite
straightforward to set up windows which act as dialogue boxes. The Wimp
can be made to deal with button clicks within the window, for example
automatically highlighting icons.

The Window Manager: Technical details

Keyboard input and
text handling

The input focus

Another feature of the Wimp which is useful in dialogue boxes is exclusive
selection groups mentioned above, where a highlighted icon is automatically
de-highlighted if another icon from the same group is selected. This provides
a 'radio button' facility, like the waveband selector on some radios.

Also, because writeablc icons are available, it is a simple matter to input text
supplied by the user, again with the Wimp doing most of the work. If
required, the task can restrict the movement of the mouse to within the
dialogue box, by defining a mouse rectangle (using the pointer OS_ Word
&15 described in the chapter entitled VDU drivers) which encloses the box.
This ensures that the user can perform no other task until he or she responds
to the dialogue box. The task should always reset the mouse rectangle to the
whole screen once the dialogue is over. Also, open_window_rcqucsts for the
dialogue box should cause the box to be reset. Note that usually the pointer is
not restricted. The dialogue box is deleted if you click outside it.

A task running under the Wimp should perform all of its input using the
Wimp_poll routine, rather than calling OS_RcadC or OS_Byte &81 directly.
It is permissible for a program to scan the keyboard using the - vc inkey
OS_Bytes. Further details arc given in the chapter entitled Character Output.

One window has what is termed the 'input focus'. For example, the main text
window of an editor might be the current input window, and its system area is
highlighted by the Wimp to show this. (A flag can also be read by the
program to see if it has the input focus.) The input window or icon also has a
caret (vertical bar text cursor) to show the current input position.

A window gains the input focus if it has a writeablc icon over which the user
clicks with Select or Adjust. The caret is positioned and sized automatically
by the Wimp in this case. It uses a height of 40 OS units for the system font.

Alternatively, the program can gain the input focus explicitly by calling
Wimp_SetCaretPosition (SWI &40002). This displays a caret of a specified
height and colour at the position specified in the given window and,
optionally, icon. If the icon is a writeablc one, the Wimp can automatically
calculate the position and height from the index into the text, if required.

The Window Manager: Technical details 1143

Key presses

Function and 'hot' keys

1144

Generally Wimp_SetCaretPosition is called in response to a mouse click
over a window's work area. The position within the window must be calculated
using the pointer position, the window's screen position, and the current scroll
offsets.

Wimp_SctCaretPosition causes a couple of evenrs to occur if the input
window actually changes: Gain_Caret and Lose_Caret. This enables tasks to
respond to the change in caret position (and po~ibly the task that owns it) by
updating their window contents appropriately. This is especially true if an
application is drawing its own caret and not relying on the Wimp's vertical
bar. Note that the Wimp's caret is automatically maintained by the Wimp in
Wimp_RedrawWindow, so you don't have to redraw it yourself.

If the insertion point is within a writeable icon, then many key presses arc
handled by the Wimp. The icon text is updated, and for certain cursor keys,
the caret position and index within the string arc updated. Other key presses,
and all keys when the input focus is not in a writeable icon, must be dealt
with by the application itself.

A program gets to know about key presses through the Wimp_Poll
Key_Pressed event. The data returned gives the standard caret information
plus the code of the key pressed. It is up to the application to determine how
the key-press is handled. There are certain standard operations for use in
dialogue boxes, eg cursor down means go to the next item, but generally it
will very much depend on what the application is doing.

Among the keys that the Wimp cannot rc.~pond to automatically are the
function keys Fl to F12. These are passed to the application as special codes
with bit 8 set (ie in the range 256 - 51 I). If the application can deal with
function keys, it should process the key press appropriately. If not, it should
pass the key back to the Wimp with the call Wimp_ProcessKcy
(SWI &400DC).

If a function key is passed back to the Wimp in this way and the input focus
belongs to a writeable icon, the Wimp will expand the function key
definition and insert (as much as possible of) the string into the icon.

In general, a program should always pass back key presses it doesn't
understand to the Wimp. This allows the writing of programs which arc
activated by 'hot keys', eg a screen dump th:tt occurs when Print (FO) is

The Window Manager: Technical details

The Escape key

pressed. Keys passed to Wimp_ProcessKcy arc passed (through the
Key_Pressed event) to tasks whose windows have the 'grab hot keys' bit set.
They are called in the order they appear on the window stack, topmost first.

If a program can act on a hot key, it should perform its magic task and return
via Wimp_Poll. If it doesn't recognise that particular key, it should pass it to
the next grab-hot-keys window in the stack by calling Wimp_processKcy
before it next calls Wimp_Poll.

Note that the caret position returned by Wimp_Poll is appropriate to the
caret position, so it may not correspond to the window with the grab-hot-keys
bit set. Also, note that all potential hot key grabbers rake priority over icon
soft key expansion, and that you should not process a key and hand it back to
the Wimp. This could lead to user-confusion.

If the only raison d'etre of a window is to allow its creator to grab hot keys, ic
if it will never appear, it should be created and opened off the screen (with a
large negative x position). To allow this, its window flags bit 6 should be set.

One of the Wimp's start-up actions (the first time Wimp_lnitialisc
(SWI &400CO) is called) is to make the Escape key return ASCII 27 . It docs
this by issuing an OS_Byte with R0=229, R 1 = I, R2=0. Thus no Escape
conditions or (RISC OS) events are normally generated. The task that has the
input focus can respond to ASCII 27 in any way it wants.

If you want to allow the user to interrupt the program by pressing Escape
during a long operation, you can re-enable it using OS_Byte with R0 =229,
R 1 =0, R2=0. The following restrictions must be observed. Escapes must only
be enabled between calls to Wimp_Poll, ie you must not call that routine
with Escape enabled. This is very important. If you detect an Escape, you must
disable it before calling the Wimp again and then clear it using OS_Byte
with R0=124.

Even if no Escape occurs, you should still disable it before you next call
Wimp_poll; it is a good idea to call OS_Byte with RO= 124 just after
disabling Escapes.

It is also a good idea to display the Hourglass pointer during long-winded
operations, preferably with the percentage of completion if this is possible.
The user is less likely to try to interrupt if they can see that the operation is
progressing. Note that you should not attempt to ch;mge the pointer while the
hourglass is still showing.

The Window Manager: Technical details 1145

Changing the pointer
shape

1146

When Wimp_CloseDown (SWI &40000) is called for the last time (ie.
when the last task finishes), the Wimp restores the Escape key to its previous
state, along with all the other settings it changed (function keys, cursor keys
etc.)

You should not use the standard OS_ Words and OS_Bytes to control the
pointer shape under the Wimp. Instead, use the call Wimp_SpriteOp
(SWI &400E9) with RO = 36 (SetPointerShape). This programs the pointer
shape from a sprite definition, performing scaling and colour translation if
required. Pointer sprites have names of the form ptr_xxxxx. The standard
arrow shape is held in the Wimp ROM sprite area and is called
ptr_default.

The call Wimp_SetPointerShape (SWI &40008) which was available
before RISC OS version 2.00 should no longer be used, although it is still
provided for compatibility.

Pointer shape I is used by the Wimp as its default arrow pointer. Any
program wishing to use a different shape must use shape 2, and program the
pixels appropriately using the above call. Do nflt use logical colour 2 in
pointer sprites, as this is unavailable in very high resolution modes. Shapes 3
and 4 arc used by utilities such as the Hourglass module which changes the
pointer shape under interrupts. For information about the SW!s supported by
this module, refer to the chapter entitled Hourglass.

Note that when changing the pointer shape, it is recommended that the pointer
palette is also reset. This is held in the sprite. Also, each sprite should have
its own palette.

A task should only change the pointer when it is within the work area of one
of its windows. The Wimp_Poll routine returns two reason codes for detecting
this: Pointer_Entering_ Window and Pointcr_Leaving_ Window (5 and 4
respectively). Whenever the first code is received, the task can change the
pointer to shape 2 for as long the pointer stays within the window. On
receiving the second code, the task should reset the pointer to shape 1. The
best way to achieve this is to usc the *Pointer command.

The Window Manager: Technical details

Mode independence

Colour handling

Tasks should trap Message_ModeChange, as a mode change resets the
pointer to its default shape. If, on a mode change, the task thinks that it 'owns'
the pointer, ie it is over one of the task's windows, it should re-program the
pointer shape, if required.

An important aspect of Wimp-based applications is that they do not depend
for their operation on a particular screen mode. A corollary of this is that
they should not explicitly change display attributes such as mode or colours.
The motivation for this rule is to ensure that many separate tasks can be active
without mutual interference.

To help programs operate in a consistent manner regardless of, say, the
number of screen colours, the Wimp provides a variety of utility functions,
such as colour translation and the scaling of sprites and text. In fact many of
these features are provided by other parts of RISC OS, but are given Wimp
calls to facilitate a more uniform interface.

The Wimp's model of the display centres on the 16-colour modes. There are
16 Wimp colours defined, listed below. In other modes, the Wimp performs
a mapping between these standard colours and those which are actually
available. When setting colours for graphics (including YOU 5 text), or anti
aliased fonts, the application specifies standard colours to the appropri:1te
Wimp routine, which translates them and generates the necessary YOU calls.

Here are the standard colours, and their usages:

0-7

8
9
10
11
12
13
14
15

grey scale from white (0) to black (7)
colour 1 is icon bar and scroll bar inner colour
colour 2 is standard window title background colour
colour 3 is the scroll bar outer colour
colour 4 is the desktop background colour
dark blue
yellow
green
red
cream, window title background for input focus owner
army green
orange
light blue

The Window Manager: Technical details 1147

In non-16 colour modes, these standard colours are repre!'oented as follows:

2-colour modes

0
l - 6
7
8- 15

4-colour modes

0- 15

256-colour modes

0- 15

logical colour 0 is set to Wimp colour 0, ie white
logical colour 1 is set to Wimp colour 7, ic black

logical colour 0
decreasing brightness stippled patterns
logical colour 1
logical colour 0 or 1, whichever is clo!'oer to standard
colour's brightness level

logical colour 0 is set to Wimp colour 0, ie white
logical colour 1 is set to Wimp colour 2, ic light grey
logical colour 2 is set to Wimp colour 4, ie dark grey
logical colour 3 is set to Wimp colour 7, ic black

set to the logical colour closest in brightness to the
standard one

the default palette is used

set to the closest colour to the standard one
obtainable

As an example of the use of colour translation, if you were to set the graphics
colour to 2 in a two-colour mode, using Wimp_SetColour (SWI &400E6),
then the Wimp would actually set up an ECF pattern (number 4 is used) to
be a lightish stippled pattern, and issue a GCOL to make ECF 4 the current
graphics colour. On the other hand, in a 256-colour mode it would calculate
the GCOL and TINT which gives the closest march to the standard light grey,
and issue the appropriate VDUs.

In 256-colour modes, exact representations of the Wimp colours 0- 7 (the
grey scale) arc available, but only approxim(ltC (albeit pretty close)
representations of Wimp colours 8 - 15 can be obtained.

The Wimp utilises its colour translation mechanism in the following
circumstances:

• when using the colours given in a window's definition, unless bit 10 of the
window flags is set. In this case, the colour is used directly. NB in a 256-
colour mode an untranslated colour is given as %cccccct t, ic bits 0- l
give bits 6- 7 of the TINT and bits 2- 7 give hits 0- 5 of the GCOL.

1148 The Window Manager: Technical details

System font handling

Dragging boxes

• when using the colours in an icon's definition. Text colours are translated,
except that the stippled patterns can't be used in two-colour modes.
Sprites are plotted using the OS_SpriteOp PutSpriteScalcd reason code
with an appropriate colour table and scaling factors.

• when using the text caret colour, unless translation is overridden.

If you want to override the Wimp's translation of colours, you can use the the
ColourTrans module and PutSpriteScaled to perform more sophisticated
colour matching. The Draw and Paint applications do this.

The system font is the standard 8 by 8 pixel character set. It is used by
OS_ WriteC text printing codes. Under the Wimp, the system font is defined
to be 16 units wide by 32 OS units high. This is true regardless of the actual
screen resolution. The consequence of this is that system font characters arc the
same physical size, independent of the screen mode.

To obtain the appropriate sizing of characters, the Wimp uses the YOU
driver's ability to scale characters printed in VDU 5 mode. Thus in mode 4,
where a pixel is 4 OS units wide, system font characters are only four pixels
wide, to maintain their 16 OS unit width. Similarly in 512-line modes,
characters are plotted double height to give them the same appearance as in
mode 12.

One of the recognisable features of most window systems is the ability to
'drag' items around the screen. The RISC OS Wimp is no exception, and
provides extensive facilities for dragging objects.

Icons and window work areas can be given a button type which. causes the
Wimp to detect drag operations automatically. A 'drag' is defined as the
Select or Adjust button being pressed for longer than about 0.2s.
Alternatively, if the user clicks and then moves the mouse outside the icon
rectangle before releasing, this also counts as a drag. The result is that a
Mouse_Click event is returned by Wimp_Poll. Note that before a drag event
is generated, the application will also be informed of the initial click, and the
drag could in turned be followed by a double click event, depending on the
button type.

The Window Manager: Technical details 1149

1150

The call Wimp_DragBox (SWI &400DO) initiates a dragging operation. The
user supplies the initial position and size of the box to be dragged, and a
'parent' rectangle within which the dragging must be confined. Normally, the
initial position of the box will be such that the mouse pointer is positioned
somewhere within the box. However, this is not mandatory; the Wimp, while
perfonning the dragging, ensures that the relative positions of the pointer and
the box remain constant.

There are two main types of drag operation: system and user. System types
work on a given window, and drag its size, position or scroll offsets. These
drags are normally performed automatically if the window has the
appropriate control icon (eg a Title Bar to drng its position). However, you
might want to allow a non-titled window to be moved, or a window without a
Adjust Size icon to be resized; the system drag types cater for this sort of
operation.

User drag boxes can be fixed size, where the whole of the box is moved
along with the pointer, or variable sized, where the topleft of the box is fixed,
and the bottom-right moves with the pointer. (The fixed and movable corners
can be varied by specifying the box's top-left :md bottomright coordinates in
the reverse order.) The Wimp displays the drng box using dashed lines
whose dash pattern changes cyclically.

There is an 'invisible' type of drag box. In this case, the mouse is simply
constrained to the parent rectangle, which must be a single window, and the
initial box coordinates arc ignored. It is up to the task to draw the object
being dragged. This usually involves setting a 'drngging' flag in the main poll
loop, and the use of Wimp_UpdateWindow (SWI &400C9). The task must
also ensure that the dragged object is redrawn if a Redraw_ Window_Request
is issued, and enable Null reason codes and usc them to perform trncking.

Finally, a program can arrange for the W imp to call its own machine code
routines during dragging, for the ultimate in flexibility. This enables the
program to drag any object it likes, so long as it can draw it and then remove
it without affecting the background. In this case, the object can go outside the
window. The Wimp will ask for it to be removed at rhe appropriate times.

In all cases, the task is notified when the drag operntion ends (when the user
releases all mouse buttons) by Wimp_Poll returning the reason code
User_Drag_Box.

The Window Manager: Technical details

Tool windows and
'panes'

Memory management

A pane is a window which is 'fixed' to another window, but has different
properties from it. For example, consider a drawing program. You might have
a scrollable, movable main window for the drawing area. This is called the
tool window. On the left edge of this might be a fixed window which contains
icons for the various drawing options. This lefthand window (the pane) always
moves with the main window, but does not have scroll bars, or any other
control areas.

Dealing with panes is really entirely up to the task program. However, there
are one or two things to bear in mind when using them. If a tool window is
closed, all of its panes must be closed too. Similarly, when a tool window is
opened (an Open_ Window_Request is received), the task must inspect the
coordinates of the main window returned by the Wimp, and use them to open
the pane in the appropriate position.

One bit in a window's definition is used to tell the Wimp that this is a pane.
This is used by the Wimp in two circumstances:

• if the pane gets the input focus, the tool window is highlighted

• when toggling the tool window size, the Wimp must treat panes as
transparent.

There are various optimisations that can be used. If you open the windows in
the right order, unnecessary redraws can be avoided.

Part of the Wimp's job is to manage the system's memory resources. There
are several areas: the screen, system sprites, fonts, the RMA, application
space etc. Many of these are controllable through the Task Manager's bar
display. The user can drag, say, the font cache bar to set the desired size.

The remainder, when all of the other requirements have been met, is called
the free pool. The Wimp can 'grab' memory from this to increase another
area's size, or to start a new application, and extend it when another area is
made smaller, or an application terminates. Because the allocation of memory
is always under the user's control, he or she can make most of the decisions
concerned with effective utilisation.

Two important bars in the Task Manager's display are the 'Free' and 'Next'
ones. These give respectively the size of the free memory pool, and the
amount of memory that will be given to the next application. They can be

The Window Manager: Technical details 1151

1152

dragged to give the desired effect. For example, the user can decrease the
RAM disc slot to increase the 'Free' size, which will in tum allow another
resource, eg the screen size, to be increased. This is only used if the task
doesn't issue an explicit *WimpSlot command, thout;:h most will do so.

Using the memory mapping capabilities of the MEMC chip, the Wimp can
make all applications' memory appear to start at address &8000. This is
called logical memory, and is all the application need worry about. Logical
memory is mapped via the MEMC into the physical memory of the machine.
The smallest unit of mapping is called a page, and its siz.e is typically 8K or
32K bytes. Before giving control to a task rhrou~h Wimp_Poll, the Wimp
ensures that the correct pages of physical memory are mapped into the
application workspace at address &8000.

In general, then, the application need not concern itself with memory
allocation. However, there are times when direct intertJction between a task
and the Wimp's allocation is desirable. For example, a program may need a
certain minimum amount of memory to operate correctly. Conversely, when
running an application might decide that it doesn't need all of the memory
that was allocated to it, and give some back.

The SWI Wimp_SiotSize (SWI &400EC) allow!' the size of the current
task's memory and the 'Next' slot to be read or altered. Sec the description of
that call for details of its entry and exit parnmeters and examples of its use.
The command *WimpSiot uses the call.

A program may need a large amount of memory for a temporary buffer. Just
as it is possible to claim the screen memory usint;: OS_CiaimScreenMemory,
a program can call Wimp_CiaimFreeMemory (SWl &400EE) to obtain
exclusive use of the Wimp's free pool. Only .pr~rams executing in SVC
(supervisor) mode can make use of this memory, as it is protected against user
mode access. Furthermore, while the memory is claimed, the Wimp cannot
dynamically alter the siz.e of other areas, so programs should not 'hog' it for
extended periods (ie across calls to Wimp_Poll).

Finally, just as built-in resources such as RMA size and sprite area size are
alterable by dragging their respective bars, the Task Manager allows the user
to perform the same operation on task bars. This is only possible with the
task's cooperation. When a task starts up, the Task Manager asks it, by
sending a message, if it will allow dynamic sizing of its memory allocation. If

The Window Manager: Technical details

Template files

the program responds, the Task Manager will allow dragging of its bar,
otherwise it won't. See the Wimp_SendMessage (SWI &400E7) action code
Message_SetSiot for details.

To facilitate the creation of windows, a 'template editor', called FormEd, has
been written for the Wimp system. This allows you to use the mouse to design
your own window layouts, and position icons as required. An extensive set of
hierarchical menus provides a neat way of setting up all the relevant
characteristics of the various windows and icons.

Once a window 'template' has been designed, it can be given an identifier
(not necessarily the same as the window title) and saved in a template file
along with any other templates which have been set up and identified. The
Wimp provides a Wimp_OpenTemplate (SWI &40009) call, which makes
it very simple for a task, on start up, to load a set of window definitions. The
task can load a named template from the file, which can then be passed
straight to Wimp_CreateWindow (SWI &400Cl), or it can look for a
wildcarded name, calling Wimp_LoadTemplate (SWI &400DB) repeatedly
for each match found.

Many of the templates used by the system are resident in ROM. They arc
held in the files DeskFS:Templates.*, where * is Filer, NetFiler, Palette,
Switcher or Wimp. You can base your own templates on these by loading a
DeskFS: file into the template editor (FormEd - available with Release 3 of
the Acorn C Compiler), modifying it and re-saving it in your own file. For
example, the palette utility template file contains the 'Save as' dialogue box,
which all applications should use (with a change of sprite name).

It is also possible to override the system's use of the ROM template files by
setting the Wimp$Path variable. This contains a comma-separated list of
prefixes, usually directory names, in which the Wimp will search for the
directory Templates when opening template files. Its default value is
DeskFS:, but you could change it to, say, ADFS::MyDisc.,DeskFS: to make it
look for modified, disc-resident versions of the standard template files first.
Not!! that directory names must end in a dot.

The Window Manager: Technical details 1153

1154

There are two issues associated with the loading of window templates from a
file. These concern the allocation of external resources:

• resolving references to indirected icons

• resolving references to anti-aliased font handles.

In the first case, what happens is that the relevant indirected icon da.ta is
saved in the template file. When the template is loaded in, the task must
provide a pointer to some free workspace where the Wimp can put the data,
and redirect the relevant pointers to it. The workspace pointer will be
updated on exit from the call to Wimp_LoaciTemplate. If there is not enough
room, an error is reported (the task must also provide a pointer to the end of
the workspace). Having loaded the template, the program can inspect the icon
block to determine where the indirected data has been put.

The issue concerning font handles is more difficult to solve. The template file
provides the binding from its internal font handles to the appropriate font
names and sizes. In addition, the Wimp must also have some way of telling
the task which font handles it actually bound the font references to when the
template was loaded. This is so the task can call Font_LoseFont as required
when the window is deleted (or alternatively, when the task terminates).

To resolve this, the task must provide a pointer to a 256-byte array of font
'reference counts' when calling Wimp_LoadTemplate. Each clement must be
initialised to zero before the first call. Font handles received by the Wimp
when calling Font_FindFont are used as indices into the array. Element i is
incremented each time font handle i is returned.

So, when Load_ Template returns, the array contains a count of how many
times each font handle was allocated. On closing the window or terminating,
the program must scan the array and call Font_LoscFont the given number of
times for non-zero entries. As with icon pointers, the program can find out the
actual font handles used by examining the window block returned by
Wimp_LoadTemplate.

It is up to the programmer to decide whether it is sufficient to provide just
one array of font reference counts, so that the fonts can be closed only when
all the windows are deleted (or the task terminates), or whether a separate
array is needed for each window. Of course, considerable space optimisations
could be made in the hmer case if the array were scanned on exit from
Wimp_LoadTemplate and converted to a more compact form.

The Window Manager: Technical details

Relocatable module
tasks

Task initialisation

If a task is confident that its templates do not contain references to anti
aliased fonts, then the array pointer can be null, in which case the Wimp
reports an error if any font references are encountered.

Note that if anti-aliased fonts are used, the program must also rescan its fonts
when Message_ModcChange is received. This involves calling
Font_ReadOefn for each relevant font handle, changing to the correct xy
resolution, and calling Font_FindFont again. The new font handle can be put
back in the window using Wimp_SetlconState.

A program using the Wimp can be loaded from disc into the application
memory (&8000), or may be a relocatable module resident in the RMA
(relocatable module area). In the main, Wimp tasks of both varieties work in
the same way and have similar structures. However, module tasks must
additionally cope with service calls generated at various times by the Wimp.
They must also to be able to terminate when asked to, eg during an *RMTidy
operation.

In this section we describe the special requirements of module tasks, but not
how to write modules from scratch. See the chapter entitled Modules for
details. You may also like to read the sections on Wimp_lnitialise
(SWI &400CO) and Wimp_CloseOown (SWI &40000) before going over
the listings below.

Much of the following is concerned with service call handling. A general, and
very important, aspect of this is register usage. A module service handler can
modify registers RO- R6 that have been explicitly stated to be return
parameters for each individual service call. However, these registers should
not be modified, except to produce a particular effect as defined below.
Badly behaved service code which does not adhere to this can produce bugs
which are very difficult to track down and cause the system to fail in
unpredictable ways.

Tasks are started using a *Command. This is decoded by the module's
command table and the appropriate code to handle the command is called
automatically. This is standard module code, and looks like this:

The Window Manager: Technical details 11 55

1156

;Thls ls pointed to by the entry for the module ' s • CoMmnnd
myCommandCode

STMf'O
MOV
ADR
MOV
SWI
WMf'O

WIMP Vt.R • 200
titleStr

OCB
ALIGN

TASK DCB"TASK"

SP!, /LR) ; Save the link register
R2, RO ;R2 points at COl'f'MAnd tall
Rl, tltleStr;RI points at title strlnq of module
RO , t 2 ; MOdule ' Enter ' re.-.son code
XOS_Module;Snte::- the module as a lanquaqe
SP:, /!'C};ReLJ!"n (In case that fallf'dl

"MyHodule",O;as returned by ·~odc l cs

;This is the module's lanquaqe entry point
start Code

LOR

LOR
T£0
LDRGT
SWIGT
MOVGT
STRGT

R12 , !Rl/) ;Get workspace pointer
claimed in Inlt er.try

RO, taskHandle
RC, 10 ;Arc we already rur.rl"\q?
Rl, TASK ;Yes, so c lose down first
XW!rnp_CloseDown
RO, 10 ;Mark as i nactive
RO, tas~Handle

;Now claim any workspace e tc . required before initlnq thf' Wi mp

; I! all goes we ll , we end up here
MOV RO , fW IMP_VER; (re)start the task
LOR Rl, TASK
ADR R2, tit)eStr
SWI XWimp_Initlallsc
BVS startupf'a!lcd;Tldy up and e xit 1r so~ethlnq went wrong
STR Rl , taskHand l f';Save the non-zero ha"\dlc

Thus when the user enters the appropriate • Command, the module is started
as a language and the start code is called using rhe word at offset 0 in the
module header. It is entered in user mode with interrupts enabled, and Rl2
pointing at its private word.

O n entry, the task checks to see if it is already active. If it is, it closes down
(to avoid running as two tasks at once). It also resets its taskHandle

variable to indicate that it is inactive. It then performs any necessary pre
Wimp_lnitialise code, such as claiming workspace from the RMA. If this
succeeds, it calls Wimp_lnitialisc and saves the returned rask handle.

The Window Manager: Technical details

Service Calls The next section describes those service calls that are of particular relevance
to you when you are writing modules to run under the Window Manager. The
remaining service calls that RISC OS provides are documented in the chapter
entitled Modules.

The Window Manager: Technical details 1157

Service Calls

On entry

On exit

Use

1158

Memory controller about to be remapped

RO =current active object pointer (CAO)
R 1 = Service_Memory

Rl = 0 to prevent re-mapping taking place

Service_Memory
(Service Call & 11)

This is issued when the contents-addressable memory in the memory
controller is about to be remapped, which alters the memory map of the
machine. You should claim this call if you don't want the remapping to take
place.

A module will initially be given the current slot size for its application
workspace starting at &8000. However, modules do not generally need this
area, as they use the RMA for workspace. Therefore, when a task calls
Wimp_Initialise, the Wimp inspects the CAO. If this is within application
workspace, the Wimp does nothing. However, if the CAO is outside of
application space (a module's CAO is its base address in the RMA or
ROM), the Wimp will reduce the current slot size to zero automatically,
except as described below.

Some modules, notably BASIC, do require application workspace. Therefore
the Wimp makes this service call just before returning the application space
to its free pool. A task can object to the remapping taking place by claiming
the call. The Wimp will then leave the application space as it is.

The Window Manager: Service Calls

On entry

On exit

Use

Service_S tart Wimp
(Service Call & 49)

Start up any resident module tasks using Wimp_StartTask

Rl = Service_StartWimp

Rl = 0 to claim call
RO = pointer to* Command to start module

The Desktop will try to start up any resident module tasks when it is called
(using *Desktop or by making the task the start-up language). It does this by
issuing a service call Service_StartWimp (&49). If this call is claimed, the
Desktop starts the task by passing the • Command returned by the module to
Wimp_StartTask. It then issues the service again, and repeats this until no-one
claims it.

A module's service call handler should deal with this reason code as follows:

serviceCode
LOR Rl2 , [Rl2) ; Load workspace pol nter
STHfD SP!, (LR) ;Save link and make Rl4 available
TEO Rl , fSe rvice_StartWimp; Is it service '49?
BEO startWimp ; Yes

WHFD

start Wimp
LOR
TEO
MOVEQ
STREO

; Otherw ise try other services
SP! , (PC I ; Return

Rl4, taskHandlc ; Gct task handle from workspace
Rl4, 10 ; Ar.l I already act ive?
Rl4, 1-1 ;No, so !nit handle to -1

Rl4, taskHandle ; Rl7 relative
ADREO RO, rnyCom~and ; Point RO at co~and to start task
MOVEO Rl, t O ; (see earlie~l a nd claim the service
LDHfD SP!, (PC) ; Return

Note that the taskHandle word of the module's workspace must be zero
before the task has been started. This word should therefore be cleared in the
module's initialisation code. If the task is not already running, the
startWimp code should set the handle to -1, load the address of a command
that can be used to start the module, and claim the call. Otherwise (if
taskHandle is non-zero) it should ignore the call.

The Window Manager: Service Calls 1159

1160

The automatic stan-up process is made slightly more complex by the
necessity to deal elegantly with errors that occur while a module is trying to
start up. If the appropriate code is not executed, the Desktop can get into an
infinite loop of trying to initialise unsuccessful modules.

This is avoided by the task setting its handle to -1 when it claims the
StartWimp service. If the task fails to start, this will still be - 1 the next time
the Wimp issues a Service_StartWimp, and so it will not claim the service.

The Window Manager: Service Calls

On entry

On exit

Use

Service_StartedWimp
(Service Call & 4 A)

Service Reset
(Service Call &2 7)

Request to task modules to set taskHandle variable to zero

Rl = Service_StartedWimp or Service_Reset

Module's taskHandle variable set to zero

A task which failed to initialise would have its raskHandle variable stuck at
the value - 1, which would prevent it from ever starting again (as
Service_StartWimp would never be claimed). In order to avoid this, the two
service calls above should be. recognised by task modules. On either of them,
the task handle should be set to zero:

serviceCode
STMFO sp!, (Rl4}
LOR Rl2, [Rl2) ;Get workspace pointer

TEO
BEO

Rl, tService _StartedWimp;Service &4A?
service_StartedWimp

tryServiceReset
TEO
MOVEO
STREO
LDMFD

Rl, tservice_Reset;Reset reason code?
Rl4, 10 ;Yes, so zero handle
Rl4, taskHandle
SP!, (PC) ;Return

-.

LOR R14, taskHandle ;taskHandle • - 1?
CMN R14, fl
MOVEO Rl4, tO ;Yes, so zero it
STREO Rl4, taskHandle
LDMFD SP!, (PC} ; Return

Service_StartedWimp is issued when the last of the resident modules has
been started, and Service_Reset is issued whenever the computer is soft reset.

The Window Manager: Service Calls 1161

Closing down

1162

Generally a module task will terminate itself in the usual fashion by calling
Wimp_CioseDown just before it calls OS_Exit. This might be in response to
a Quit selection from a menu, or after a Mcssage_Quit has been received.
Modules also have finali sation entry point, and Wimp_CioscDown should be
called from within this:

final Code
STMf'D
LD R

LD R

TEO
LDRGT
SWIGT
MOV
STR

sp!, [Rl4l
i'\12, (R1 /I ; Get workspace pointer
RO, taskHar.d l e;Check task is active
RO , 10
Rl, TASK ; If so, close it down
XWimp _CloseDo'~'>'n

Rl, tO ; alwa ys r.~~r k i t as inactive
Rl , tasl<Hand l e

; perform gene ral finalis a tion code, possibl y according
; to t he value of Rl O {fatalit y indicator) .

LDMfD sp!, {PC} ; Return wi th V and rt~ In t act in
; case an error occurre d

It is important that when Wimp_CloseDown is called from the finalise code,
the task handle is quoted, as the module may not necessarily be the currently
active Wimp task. Additionally, whenever Wimp_CloseDown is called, even
outside of the finalisation code, the taskHandle variable should be cleared

to zero.

The Window Manager: Service Calls

On entry

On exit

Use

Service_WimpCloseDown
(Service Call &53)

Notification that the Window manager is about to close down a task

RO = 0 ifWimp_CioseDown called (i) or
RO > 0 ifWimp_lnitialise called in task's domain (ii)
R2 =handle of task being closed down, (i) and (ii)

RO preserved (i) or {ii), or set to error pointer {ii)

The Wimp passes this service around when someone calls
Wimp_CloseDown. Usually a task knows that it has called
Wimp_CloseDown, so this might not appear to be particularly informative.
However, there are a couple of situations where the Wimp actually makes the
call on a task's behalf. It is on these occasions that the service is useful.

• If a task calls OS_Exit without having called Wimp_CloseDown first, the
Wimp does so on the task's behalf. This can arise when an error is
generated that is not trapped by the task's error handler. The Wimp will
report the error, then call OS_Exit for the rnsk. The task should perform
the operations it would have performed if it had called
Wimp_CloseDown itself, and return preserving all registers. It must not
call Wimp_CloseDown.

• A task might call Wimp_Initialise from within the same domain as the
currently active task. For example, if a program allows the user to issue a
• Command, the user might use it to try to start another Wimp task. The
Wimp will try to close down the original task before starting the new one
by issuing this service with RO>O.

If the original task does not want to be closed down, it should alter RO so that
it contains the pointer to a standard error block. The text Wimp is
currently active is regarded as a suitable message. (The task should

compare the handle in R2 to its own to ensure that it is the task that is being
asked to die.) The call should not be- claimed, in order to allow others to
receive the service, and RO should not be altered except to point to an error.

The Window Manager: Service Calls 1163

1164

If, on return from the service, RO points to an error, the Wimp will return this
to the new task trying to start up (it will also set the V flag). Thus, if the task
is detecting errors correctly, it will abort its attempt to sttJrt up and call
OS_Exit. This will happen if, for example, you try to start the Draw
application from within a task window.

The Window Manager: Service Calls

On entry

On exit

Use

Service_ReportError
(Service Call &57)

Request to suspend trapping of YOU output so an error can be displayed

RO = 0 (window dosing) or I (window opening)

This service is provided so that certain tasks which usually trap YOU output
(eg the YOU module) can be asked to suspend their activities temporarily
while an error window is displayed.

If the state of the trapping module is 'active' and the service call is received
with RO =l, the module should stop trapping and set its state to 'suspended'.
Similarly, if the state is suspended and the service is received with RO=O, the
error window has disappeared and the module should re-enter the active state.

By taking note of this call, tasks running in an Edit window allow the standard
filing system 'up-call' mechanism to continue operating, whereby users are
asked to insert discs which the Filer cannot find in a drive.

The Window Manager: Service Calls 1165

On entry

On exit

Use

1166

Service_Mouse Trap
(Service Call &52)

The Wimp has detected a significant mouse movement

RO = mouse x coordinate
Rl = Service_MouscTrap
R2 = button state (from OS_Mouse)
R3 =time of mouse event (from OS_ReadMonotonicTime)
R4 = mousey coordinate (NB R 1 is already being used~)

It is possible to write programs which record changes in the mouse button
state and pointer position. The recording can be played back later to simulate
the effect of a human manipulating the mouse. This is very useful for setting
up unattended demonstrations.

To save memory or disc space, such programs usually only record the mouse
position when the button state changes, or after a certain time interval, eg ten
times a second. Some Wimp events are dependent on on a change of mouse
position, not button state. It is therefore possible for a mouse recorder
program to miss a critical mouse movement if it doesn't happen to choose the
correct time to make its recording. The replay will then give different results
from the original.

Service_MouseTrap is designed to overcome the problem. Whenever the
Wimp detects a significant mouse movement, eg the pointer moving over a
submenu right arrow, it issues this call. A mouse recorder should include the
data in its output, in addition to any other mouse movements and button events
that it would ordinarily log.

Programs which react to particular mouse movements (eg certain types of
dragging) should themselves generate this event, where there is no mouse
button transition.

A mouse recorder progrnm should also trap lNKEY of positive and negative
numbers.

The Window Manager: Service Calls

On entry

On exit

Use

Service StartFiler
(Service Call & 4 B)

Request to filing system modules to start up

RO = Filer's taskHandle
R 1 = Service_StartFiler

R 1 = 0 to claim call
RO = pointer to * Command to start module

In order to ensure that filing system modules are not started up without the
Filer module, they are started by a different mechanism. Rather than
responding to the Service_StartWimp service call, they wait for the Filer
module to start them up, using Service_StartFiler. The Filer behaves in a
similar way to the Desktop, issuing the Service_StartFiler service call,
followed by Wimp_StartTask, if the service call is claimed.

The Filer will try to start up any resident filing system module tasks when it
is started (by responding to Service_StartWimp). It does this by issuing a
service call Service_StartFiler (&4B).

If this call is claimed, the Filer starts the task by passing the * Command
returned by the module to Wimp_StartTask. It then issues the service again,
and repeats this until no-one claims it.

A module's service call handler should deal with this reason code as follows:

serviceCode
LOR

STMrD
TEO
BEO

LDMrD

start filer
LOR
TEO
MOVEO
STREO
AD REO
MOVEQ

Rl2, [Rl2 1
SP!, [LR)

;Load workspace pointer
;Save link and make Rl4 available

Rl, fService_Startf'iler;Is it service &48?
startfiler ;Yes

;Otherwise try other services
SP!, (PC) ; Return

R14, taskHa ndle;Get task handle from workspace
R14, fO ;Am I already active?
IU4, t - 1 ;No, so init handle to -1

Rl4, taskHandle ;Rl2 relative
RO, myCommand
Rl, 10

;Point RO at command to start task
; (see earlier) and claim the service

LDMrD SP!, (PCI ;Return

The Window Manager: Service Calls 1167

1168

Note that the taskHandle word of the module's workspace must be zero

before the task has been started. This word should therefore be cleared in the
module's initialisation code. If the task is not already running, the StartFiler
code should set the handle to -1, load the address of a command that can be
used to start the module, and claim the call. Otherwise (if taskHandle is
non-zero) it should ignore the call.

The automatic start-up process is made slightly more complex by the
necessity to deal elegantly with errors that occur while a module is trying to
start up. If the appropriate code is not executed, the Desktop can get into an
infinite loop of trying to initialise unsuccessful modules.

This is avoided by the task setting its handle to -1 when it claims the
StartFilcr service. If the task fails to start, this will still be -1 the next time
the Filer issues a Service_StartFilcr, and so it will not claim the service.

Note that the Filer passes its own taskHandle to the module in RO in the
service call, to make it easier for the task to send it Message_FilerOpenOir
messages later.

The Window Manager: Service Calls

On entry

On exit

Use

Service StartedFiler
(Service Call & 4C)

Service Reset
(Service Call &2 7)

Request to filing system task modules to set taskHandle variable to zero

Rl = Service_StartedFiler or Serice_Reset

Module's taskHandle variable set to zero

A task which failed to initialise would have its taskHandle variable stuck at
the value -1, which would prevent it from ever starting again (as
Service_StartFiler would never be claimed). In order to avoid this, the two
service calls should be recognised by the filing system task modules. On
either of them, the task handle should be set to zero:

serviceCode

TEQ Rl , fServ i ce_Startedfiler;Service &4C?
BNE tryserviceRcsct. ;No
LOR R14, taskHandle ; taskHand l e = - 1?
CMN R14, fl

MOVEQ Rl4, 10 ;Yes, so zero it
STREQ Rl4, taskHandle
LDMfD SP! , {PC l ; Ret urn

:ryServiceReset

TEQ Rl , t Service Reset;Reset reason code?
MOVEQ Rl4, tO ; Yes, so zero handle
STREQ Rl4, taskHand l e
LDMfD SP! , !PC) ; Return

Service_StartedFiler is issued when the last of the resident filing system task
modules has been started, and Scrvice_Rcset is issued whenever the computer
is soft reset.

The Window Manager: Service Calls 1169

On entry

On exit

Use

1170

Service_FilerDying
(Service Call &4F)

Notification that the Filer module is about to close down

Rl = Service_FilerDying

Module's taskHandle variable set to zero

If the Filer module task is closed down (eg if the module is *RMKilled, or
the Filer task is quitted from the TaskManager window) the Filer module
tries to ensure that all the other filing system tasks are also closed down, by
issuing this service call.

On receipt of this service call, a filing system task should check to see if it is
active and if it is, it should close itself down by calling Wimp_CioseDown as
follows:

servlceCode

t r ynext

T£0 Rl, fService_FilerDylng
BNE try next
STMFD SP!, I RO-Rl, Rl4}
LOR RO, taskHand l e
CMP RO, fO
MOVN£ Rl4, fO
STRN£ Rl4, taskHandle
LDRGT Rl, taskld
SWIGT XW1mp_ CloseDown
LDMFD SP!, {RO-Rl, PC}A

taskid DCB "TASK"

in workspAce

can't return errors from service calls

worc:l-ollqned

The Window Manager: Service Calls

SWI Calls In the following section, we list all of the SWI calls provided by the
Window Manager module. It is possible to make some generalisations about
the routines, though there arc inevitably exceptions:

• RO is often used to hold or return a handle, be it rask, window or icon.

• All Wimp calls do not preserve RO.

• Other registers are preserved unless used to return results.

• Flags are preserved unless overflow is set on exit.

• Rl is used as a pointer to information blocks, eg window definitions, icon
definitions, Wimp_Poll blocks.

• The contents of a Wimp_Poll block are usually correctly set up for the
most obvious routine to call for the returned reason code. For example,
for an Open_ Window_Request, the block will contain the information
that Wimp_OpcnWindow requires.

• All Wimp routines should not be executed with IRQs enabled due to the
re-enrrancy problems which may occur.

• Wimp routines may be called in User or SYC mode, except for
Wimp_Poll, Wimp_Poiiidle and Wimp_StartTask. These may only be
called in User mode, as they rely on call-backs for their operation.

• As the Wimp uses t,he CallBack handler to do task swaps, it is not
possible for a task to change the CallBack handler under interrupts.
However language libraries can use the CallBack handler by setting it up
when they start and using OS_SctCallBack (SWI & 1 B)

The following SWis can only operate on windows owned by the task that is
active when the call is made, and will report the error Access to window
denied if an attempt is made to access another task's window:

Wimp_Createlcon
Wimp_DcleteWindow
Wimp_Dclctelcon
Wimp_ Open Window
Wimp_CioseWindow
Wimp_RcdrawWindow
Wimp_SctlconState
Wimp_UpdateWindow

except in the icon bar

except in the icon bar
send Open_ Window_Requcst instead
send Close_ Window_Request instead

The Window Manager: SWI Calls 1171

1172

Wimp_GetRectangle
Wimp_SetExtent
Wimp_BiockCopy

This also means that a task cannot access its own windows unless it is a
'foreground' process, ie it has not gained control by means of an interrupt
routine, or is inside its module Terminate entry.

The Window Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Wimp_lnitialise
(SWI & 400CO)

RO = last Wimp version number known to task* 100 (ie at least 200)
Rl ="TASK" (low byte= "T", high byte= "K'' , ie &48534154)
R2 = pointer to short description of task, for use in Task Manager display

RO =current Wimp version number*IOO
R 1 = task handle

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWl is not re-entrant

This call registers a task with the Wimp, and must be called once only when
the task starts up. The following is done when the first task starts up and when
a 'grubby' task exits (ie a task that starts from and returns to the Dektop but
does not use it) and there are more tasks running.

• redefines soft characters &80 to &85 and &88 to &813 for the window
system

• programs function, cursor, Tab and Escape key statuses, remembering
their previous settings

• issues *Pointer to initialise the mouse and pointer system

• uses Wimp_SetMode to set the mode to the configured WimpMode, or
to the last mode the Wimp used if this is different

• sets up the palette.

None

None

The Window Manager: SWI Calls 1173

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

1174

Wimp_Create Window
(swr &400Cl)

R 1 =pointer to window block

RO =window handle

Interrupts arc not defined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call tells the Wimp what the characteristic~ of a window are. You should
subsequently call Wimp_OpenWindow (SWI &40CC5) to add it to the list
of active windows (ones that are to be displayed). The format of a window
block is as follows:

R1+0
R1+4
R1+8
Rl+l2
Rl +16
R1+20
R1+24

Rl+28
Rl+32

R1+33
Rl+34
R1+35

visible area minimum x coordinate (inclu~ive)
visible area minimum y coordinate (inclu~ive)
visible area maximum x coordinate (exclusive)
visible area maximum y coordinate (exclusive)
scroll x offset relative to work area orit:in
scroll y offset relative to work area ori~:in
handle to open window behind (-1 mc;~ns top, - 2 means
bottom)
window flags - sec below
title fore~:round and window frame colour- &FF means that
the window has no control area or frame
title background colour
work area foreground colour
work area back~:round colour- &FF means 'transparent', so
the Wimp won't clear the rccran~:les during a redraw
operation

The Window Manager: SWI Calls

Window flags

Rl+36
Rl+37
R1+38
Rl+39
R1+40
RI+44
R1+48
R1+52
R1+56
R1+60
R1+64
R1+68
R1+70
RI+72
Rl+84
R1+88

scroll bar outer colour
scroll bar inner (Slider) colour
title background colour when highlighted for input focus
reserved - must be 0
work area minimum x coordinate
work area minimum y coordinate
work area maximum x coordinate
work area maximum y coordinate
Title Bar icon flags - see below
work area flags giving button type - see below
sprite area control block pointer (+ 1 for Wimp sprite area)
minimum width of window; NB two-byte quantities
minimum height of window 0,0 means use title width instead
title data- sec below
number of icons in initial definition (can be 0)
icon blocks, 32 bytes each- see Wimp_Crcatelcon
(SWI &400C2)

Note that the entries from R 1 +0 to R 1 + 24 are not used unless
Wimp_GetWindowStatc is called.

Fields requiring further explanation are:

Window flags and status information are held in the word at offsets +28 to
+31.

Bit

0
1
2
3
4

5
6
7
8

Meaning when set

*window has a Title Bar
window is moveable, ie it can be dragged by the user
*window has a vertical scroll bar
*window has a horizontal scroll bar
window can be redrawn entirely by the Wimp, ie there are no user
graphics in the work area. Redraw window requests won't be
generated if this bit is set
window is a pane, ie it is on top of a tool window
window can be opened (or draggeg) outside the screen area
*window has no Back icons or Close icons
a Scroii_Request event is returned when a mouse button is clicked on
one of the arrow icons (with auto-repeat) or in the outer scroll bar
region (no auto-repeat)

The Window Manager: SWI Calls 1175

1176

9 as above bur no auto-repeat on the arrow icons
10 treat the window colour~ given as GCOL numbers instead of standard

Wimp colours. This allows access to colours 0- 254 in 256-colour
modes (255 always has a special meaning)

11 don't allow any other windows to be opened below this one (used by
the icon bar, and the backdrop for pre-RISC OS style applications)

12 generate events for 'hot keys' passed back through Wimp_ProcessKey
if the window is open

13 - I 5 reserved; must be 0

Flags marked * are old-style control icon flags. You should usc bits 24 to 31
in preference.

The five bits bits below arc set by the Wimp and may be read using
Wimp_GctWindowState (SWI &400CB).

16 window is open
I 7 window is fully visible, ie not covered at all
18 window has been toggled to full size
19 the current Open_ Window_Request was caused by a click on the

Toggle Size icon
20 window has the inputfocus

21 - 23 reserved; must be 0

The eight bits below provide an alternative way of determining which control
icons a window has when it is created. If bit 31 is set, bits 24 to 30 determine
the presence of one system icon, otherwise the 'old style' control icon flags
noted above are used. '

24
25
26
27
28
29
30
31

window h1s a Back icon
window has a Close icon
window has a Title Bar
window has a Toggle Size icon
window has a vertical scroll bar
window has a Adjust Size icon
window has a horizontal scroll bar
usc bits 24- 30 to determine the control icons, otherwise usc bits 0, 2,
3 and 7

The Window Manager: SWI Calls

Title bar flags

Title data

A window may only have a quit and/or Back icon if it has a Title Bar, and a if
it has one or two scroll bars. A Toggle Size icon needs a vertical scroll bar or
a Title Bar. We recommend that new applications usc the bit 31 set method
of determining the control icons.

Bits 24 to 30 are also returned by Wimp_GctWindowState, updated to
reflect what actually happened, so you can use this to ensure that the control
icons used by the Wimp are as specified when the window was created, ic it
was a valid specification.

Title bar flags are held in the four bytes +56 to +59 of a window block. They
correspond to the icon flags used in an icon block, described under
Wimp_Createlcon below. They determine how the contents of the Title Bar
are derived and displayed. Note the following differences from proper icon
flags though:

• the Title Bar always has a border, ie bit 2 is ignored

• the title background is filled, ie bit 5 is ignored

• the Wimp redraws the title, ie bit 7 is ignored

• any flags to do with button types, ESGs and selections are ignored.
Dragging on the Title Bar always drags the window.

• if an anti-aliased font, or sprite, is used, you should bear in mind that the
height of the Title Bar is fixed at 44 OS units, or 36 if you subtract the top
and bottom frame lines. Thus only font sizes of about 10 to 12 points can
be accommodated, and fairly small sprites. Also remember that lines
will vary in width according to the screen mode u~d

• bits 24 - 3 1 (when used as text colours) arc ignored; the Ti tie Bar colours
are given in other window definition bytes

So, the title may be text or a sprite, may be indirected (but not writcablc),
usc normal or anti-aliased text, and may be positioned within the Title Bar as
required.

Title data is held in the twelve bytes at + 72 to +83 of a window block. It has
the same interpretation as the icon data bytes described under
Wimp_Createlcon. In summary:

• if text, then up to 12 bytes of text including a terminating control code

The Window Manager: SWI Calls 1177

Window button types

1178

• if a sprite, then the name of the sprite (12 bytes)

• if the Title Bar is indirectcd, then the following three words: a pointer to
a buffer containing the text, a pointer to a validation string (- 1 if none),
and the length of the buffer.

See the section on icon data under Wimp_Crcatclcon (SWI &400C2) for
more details.

The word at offset +26 in a window block is used to determine the 'button
type' of the work area. Only bits 12 to 15 of this word are used. The 16
possible button types arc much as described in the section on icon creation
below. Note though that there is no concept of a window's work area being
'selected' by the Wimp; the user is simply informed of button clicks through
the Mouse_ Click event.

Note that as stated previously, the button type only determines how Select
and Adjust are handled; Menu is always reported. The interpretations of the
button types for windows then are:

Bits 12- 15

0
1
2
3
4
5
6
7
8
9
10

11

12- 14
15

Meaning

ignore all clicks
notify task continually while pointer is over the work area
click notifies task (auto-repeat)
click notifies task (once only)
release over the work area notifies ta~k
double click notifies task
as 3, but can al~ drag (returns button state * 16)
as 4, but can also drag (returns button state* 16)
as 5, but can also drag (returns button state* 16)
as 3
click returns button state*256
drag returns button state* 16
double click rcUJrns button state*!
click returns button state
drag returns button state* 16
reserved
mouse clicks cause the window to g<tin the input focus.

The Window Manager: SWI Calls

Icons

Related SWis

Related vectors

The handles of any icons defined in this call are numbered from zero
upwards, in the same order that they appear in the block. For details of the
32-byte definitions, see the next section.

Note: the Wimp_CreateWindow call may produce a Bad work area
extent error if the visible area and scroll offsets combine to give a visible
work area that does not lie totally within the work area extent.

None

None

The Window Manager: SWI Calls 11 79

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

1180

Rl =pointer to block

Wimp_Createlcon
(SWI & 400C2)

RO =icon handle (unique within that window)

Interrupts are not defined
Fast interrupts arc enabled

Processor is in SVC mode

SWI is not re-entrant

The block contains the following:

Rl+ 0
Rl +4

window handle (or -2 left of icon bar, -1 for right)
icon block

where an icon block is defined as:

+0 minimum x coordinate of icon bounding box
+4 minimum y coordinate of icon bounding box
+8 maximum x coordinate of icon bounding box
+ 12 maximum y coordinate of icon hounding box
+ 16 icon flags
+ 20 12 byres of icon data

leon blocks arc also used in the Wimp_CrearcWindow block and returned
by Wimp_GetWindowlnfo (SWI &400CC).

This call tells the Wimp what the characteristics of an icon are. Once you
have defined the icon, you can only make thef.C change~ to it:

• you can change its flags using the call Wimp_SetlconStatc
(SWI &400CD).

The Window Manager: SWI Calls

Icon flags

• you can change indircctcd text. The icon must then be redrawn using the
call Wimp_SetlconState, leaving the flags unchanged if necessary.

• you can change its text if its button type is I 5 (writcable). The Wimp
docs this for you automatically, handling the caret positioning and text
updating. For further derails, see the sect1ons on Wimp_SetCaretPosition
(SWI &40002), Wimp_GetCaretPosition (SWI &40003), and the
Wimp_Poll Key_Pressed event.

The window handle at Rl +0 may be an application window, or -2 for the left
half of the icon bar (devices), or -1 for the right half of the icon bar
(applications). Note that creating an icon on the icon bar may cause other icons
to 'shuffle', changing their x coordinates.

The bounding box coordinates arc given relative to the window's work area
origin, except that the horizontal offset may be applied to an icon created on
the icon bar. Note that if an icon is writenble, the icon bounding box
determines how much of the string is displayed at once. Typing into the icon
or moving the caret left or right can cause the string to scroll within this box.
The buffer length entry in the icon data determines the maximum number of
characters that can be entered into a wrireable icon. One character is used for
the terminator.

Note that icon strings can be terminated by any chnracter from 0 to 31, and
arc preserved during editing operations by the Wimp. However, in template
files, the terminator must be 13 (Return).

As noted earlier, subsets of these flags are used in Wimp_CrcateWindow
blocks to control how the contents of a window's Title Bar is defined, and the
button type bits are used to determine how clicks within a window's work area
are processed.

The full list of flags for a proper icon is:

Bit

0
I
2
3
4
5

Meaning when set

icon contains text
icon is a sprite
icon has a border
contents centred horizontally within the box
contents centred vertically within the box
icon has a filled background

The Window Manager: SWI Calls 1181

Icon button types

1182

6
7
8
9
10
11
12. 15
16. 20
21
22
23
24. 27
28.31
or

text is an anti-aliased font (affects meaning of bits 24- 31)
icon requires task's help robe redrawn
icon data is indirected
text is right-justified within the box
if selected with Adjust don't cancel others in the same ESG
display the sprite (if any) at half size
icon button type
exclusive selection group (ESG, 0 • 31)
icon is selected by the user and is inverted
icon cannot be selected by the mouse pointer; it is shaded
icon has been deleted
foreground colour of icon (if hit 6 is cleared)
background colour of icon (if bit 6 is cleared)

24 • 31 font handle (if bit 6 is set). Font colours may be passed in an
indirected icon's validation string.

These arc much the same as window button types. However, icons can be
'selected' (inverted) by the Wimp autom<~tically, so there are some
additional effects to those already described for windows:

0
I
2
3
4

5
6
7

8
9

10

II

12. 13
14

ignore mouse clicks or movements over the icon (except Menu)
notify task continuously while pointer is over this icon
click notifies task (auto-repeat)
click notifies task (once only)
click selects the icon; release over the icon notifies task; moving the
pointer away deselects the icon
click selects; double click notifies task
as 3, but can also drng (returns burton state * 16)
as 4, but can also drtJg (returns button state* 16) and moving away
from the icon doesn't deselect it
as 5, but can also drag (returns button state • 16)
pointer over icon selects; moving away from icon deselects; click over
icon notifies task ('menu' icon)
click returns button statc*256 , drag returns button state*16
double click returns button state* I
click selects icon and returns button st::~te
drng returns button srare*16
reserved
clicks cause the icon to gain the caret and irs p::~rent window to
become the input focus and can also drtJg (writeahle icon). For

The Window Manager: SWI Calls

Icon data

example, this is used by the FormEd application
15 clicks cause the icon to gain the caret and its parent window to

become the input focus (writeable icon)

All the above return Mouse_Click events (6), where the button state is:

Bit Meaning when set

0 Adjust pressed
1 Menu pressed
2 Select pressed, or combination of above

A drag is initiated by the button being held down for more than about a fifth
of a second. A double click is reported if the button is clicked twice in one
second and the second click is within 16 OS units of the first. Note that button
types which report double clicks will also report the initial click first.

The icon data at + 20 to + 31 is interpreted according to the settings of three of
the icon flags. The three bits are lndirected (bit 8), Sprite (bit 1) and Text
(bit 0). The eight possible combinations and the eight interpretations of the
icon data are:

1ST Meaning of 12 bytcs/3 words

000 non-indirected, non-sprite, non-text icon
+ 20 icon data not used in this case

001 non-indirected, text-only icon
+20 the text string to be used for the icon, control-terminated

010 non-indirected, sprite-only icon
+20 the sprite name to be for the icon, control-terminated

011 non-indirected, text plus sprite icon
+20 the text and sprite name to be used- not especially useful

100 indirected, non-sprite, non-text icon
+20 icon data not used in this case

101 indirected, text-only icon
+ 20 pointer to text buffer
+ 24 pointer to validation string- see below
+ 28 buffer length

110 indirected, sprite-only icon
+20 pointer to sprite or to sprite name; see +28
+24 pointer to sprite control block, + 1 for Wimp sprite area

The Window Manager: SWI Calls 1183

Validation Strings

A command

pointer
111

+ 28 0 if [+ 20) is a sprite poi ntcr, lcn~rh if it's a sprite name

indirccted, text plus sprite icon
+ 20 pointer to text buffer
+24 pointer to validation string, which can contain sprite name
+ 28 buffer length

Note that the icon bar's sprite area pointer is !let to + 1, so icons there use
Wimp sprites. If you want to put an icon on the icon bar that isn't from the
Wimp area, you must use an indirectcd sprite-only icon, type 110 above.

In Wimp 2.00 it is not possible to set the caret in the icon bar, so writeable
icons should not be used.

An indirccted text icon can have a validation string which is used to pass
further information to the Wimp, such as whar characters can be inserted
directly into the string and which should be passed to the user via the
Key_Pressed event for processing by the applic::trion. The syntax of a
validation string is:

• validation-string::= command {;command}*

• command::= a allow-spec I d char I f hex-digit hex-digit I
I {decimal-number} I s text-srring {,text-string}

• allow-spec::= {char-spec}* {- {char-spec}*}*

• char-spec::= char I char-char

• char::= \- I \; I \ \ I \- I any character orhN than-;

The spaces in the above definition arc for cl::trity only, and a validation string
will normally have no spaces in it.

In simple terms, a validation string- consists of a l'Cries of 'commands', each
starting with a single letter and separated from the following command by a
semicolon. { }* means zero or more of the thing inside the { }. The following
commands arc available:

The {A)IIow command tells the Wimp which characters are to be allowed in
the icon. Cha...-.tcters arc inserred into the string if:

• a key is typed by the user

1184 The Window Manager: SWI Calls

Dcommand

• the key returns a character code in the range 32 • 255

• the input focus is inside the icon

• the validation string allows the character with in the string.

Otherwise:

• control keys such as the arrow keys and Delete are automatically dealt
with by the Wimp

• other keys are returned to the task via the Key_Presscd event.

Each char-spec in the 'allow' string specifics a character or range of
characters; the - character toggles whether they are included or excluded
from the icon text string:

A0-9a-z-dpu allows the digits 0 · 9 and the lower-case letters
a • z, except for 'd', 'p' and 'u'

If the first character following the A command is a - all normal characters
are initially included:

A-0-9 allows all characters except for the digits 0 · 9

If you use any of the four special characters - ; - \ in a char-spec you must
precede them with a backs\ ash \:

A-\-\;\-\\ allows all characters
except the four special ones - ; - \

The (D)isplay command is used. for password icons to avoid onlookers seeing
what is typed. It is followed by a character that is used to echo all allowed
characters:

D* displays the password as a row of asterisks

Note that if the character is any of the four 'special' characters above, you
must precede it by a \ :

D\- displays the password as a row of dashes

The Window Manager: SWI Calls 1185

F command

Lcommand

Scommand

Text plus sprite icons

1186

The (F)ont colours command is used to specify the foreground and
background colours used in text icons with an anti-aliased font. The F is
followed by two hexadecimal digits, which specify the background and
foreground Wimp colours respectively:

Fa3 sets background to 10 (&a hex). and foreground to 3.

This command uses the call Wimp_SetFonr('..olour~ (SWI &400F3). If you do
not use this command, the colours 0 and 7 (black on white) are used by
default.

The (L)inc spacing command is used to tell the Wimp that a text icon may be
formatted. If the text is too wide for the icon it is split over several lines. You
should follow the L with a decimal number giving the vertical spacing
between lines of text in OS units - if omitted, the default used is 40 units. (A
system font character is 32 OS units high.)

The current version of RISC OS ignores the number following the L, so no
number can be specified. However, this option may be implemented in future
versions of RISC OS.

This option can only be used with icons which arc horizontally and vertically
centred, and do not contain an anti-aliascd fonr. The icon must not be
writcable, since the caret would not be positioned correctly inside it.

The (S)prite name command is used to give a text and sprite icon a different
sprite name from the text it contains, for example Sfile_abc. No space

should follow the S, and the sprite name should be no more than 12
characters long.

If a second name is given, separated from the first by a comma, this is used
when the icon is highlighted. If it is omitted, the sprite is highlighted by
plotting it with its original colours exclusive-OR'ed with the icon foreground
colour.

If an icon has both its text and sprite bits (0 and 1) set, then it will contain
both objects. The text must be indirccted, so that the validation string can be
used to give the sprite name(s) to usc (sec the S command above).

The Window Manager: SWI Calls

Related SWis

Related vectors

Three flags in the icon flags are used to determine the relative posttlons of
the text and sprite. These are the Horizontal, Vertical and Right justified bits
(3, 4, and 9 respectively). The eight possible combinations of these bits, and
how they position the sprite and text within the icon bounding box, are as
follows:

HVR Horizontal

000 text and sprite left justified
001 text and sprire right justified
010 sprite at left, text +6 units right of it
011 text at left, sprite at right
100 text and sprite centred
101 text and sprite centred
110 text and sprite centred (text on top)
111 text at right, sprite at left

Vertical

text at bottom, sprite at top
text at bottom, sprite at top
text and sprite centred
text and sprite centred
text at bottom, sprite at top
text at top, sprite at bottom
text and sprite centred
text and sprite centred

The following points should be noted about text plus sprite icons:

• the text part can be writeable, but every time a key is pressed the sprite
will be redrawn and so can flicker

• the text part of the icon always has its background filled

• if the text uses an anti-aliased font, the icon should not have a filled
background, as the drawing of the text's background will obscure the
sprite

• as usual, the whole of the icon area is used to delimit mouse clicks or .,:·
movements over the icon, so clicks cannot be associated separately with
the text and sprite (so clicking over the sprite would still cause the text of
a writeable icon to gain the caret)

An important use of this type of icon is displaying a text plus sprite pair in
the icon bar.

None

None

The Window Manager: SWI Calls 1187

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1188

Rl = pointer to block

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWJ is not re-entrant

Wimp_Delete Window
(SWI & 400C3)

The block contains the following:

RI+O window handle

This call closes the specified window if it is still open, and then removes the
definition of the window and of all the icons within it. The memory used is re
allocated, except for the indirectcd data, which is in the task's own workspace.

None

None

The Window Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Rl =pointer to block

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

The block contains the following:

Wimp_Deletelcon
(SWI & 400C4)

Rl+ 0
Rl+ 4

window handle (- 1 or - 2 for icon bar)
icon handle

This call removes the definition of the specified icon. If the icon is not the last
one in its window's list it is marked as deleted, so that the handles of the
other icons within the window are not altered. If the icon is the last one in the
list, the memory is reallocated.

Note: this call does not affect the screen. You must make a call to
Wimp_ForceRedraw (SWI &400Dl) to remove the icon(s) deleted, passing
a bounding box containing the icons.

None

None

The Window Manager: SWI Calls 1189

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1190

Wimp_Open Window
(SWI & 400C5)

Rl =pointer to block

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

The block contains the following:

Rl+O
R1+4
R1+8
R1+12
Rl +16
R1+20
R1+24
Rl+28

window handle
visible area minimum x coordinate
visible area minimum y coordinate
visible area maximum x coordinate
visible area maximum y coordinate
scroll x offset relative to work area ori~in
scroll y offset relative to work area origin
handle to open window behind (-1 means top of window
stack, -2 means bottom)

This call updates the list of active windows (ones that are to be displayed).
The window may either be a new one being displayed for the first time, or an
already open one that has had its parameters altered.

Note that coordinates (xO,yO,xl ,yl ,scroll x,scroll y) are ALL rounded down to
whole numbers of pixels. This also happens on a mode change automatically.

None

None

The Window Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

R 1 = pointer to block

Interrupts are not defined
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

Wimp_ Close Window
(SWI & 400C6)

The block contains the following:

Rl + 0 window handle

This call removes the specified window from the active list; it is no longer
marked as one to be displayed. The Wimp will issue redraw requests to
other windows that were previously obscured by the closed one.

None

None

The Window Manager: SWI Calls 1191

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

1192

RO =mask

Wimp_Poll
(SWI &400C7)

Rl =pointer to 256 byte block (used for return data)

RO = reason code
Rl =pointer to block (dat<~ depends on reason code rerurncd)

Interrupts are not defined
Fast intcmJpts arc enabled

Processor is in SVC mode

SWI is not re-entr<~nt

This call checks to sec whether certain events have occurred, ;md oversees such
things as screen updating, keyboard and mouse handling, and menu selections.
You must call it in the main loop of any progf<lm you write to nm under the
Wimp, and provide handlers for each reason code it c<~n return.

The following reason cooes may be returned:

Code

0
1
2
3
4
5
6
7
8
9
10

Reason

Nuii_Rcason_ Code
Redraw_ W•ndow_Request
Open_ Window_Rcquest
Clo~_ Window_Request
Pointcr_Lcaving_ Window
Pointer_Enrering_ Window
Mouse_ Click
User_Df<lg_Box
Key_ Pressed
Mcnu_Sclccrion
Scroll_Rcqucst

The Window Manager: SWI Calls

11
12
13- 16
17
18
19

Lose_ Caret
Gain_ Caret
Reserved
Uscr_Mcssage
User_Message_Recorded
User_Message_Acknowledge

The highest priority are types 17- 19, then 1- 6,8,9. The remaining reason
cedes are next and the lowest priority type is 0.

You can disable some of the reason cedes; they are neither checked for nor
returned, and need not have handlers provided. You must do this for as many
codes as possible, especially the Null_Reason_Code, if your task is to run
efficiently under the Wimp. Some of the remaining reason codes can be
temporarily queued to prevent their return at times when they would
otherwise interfere with the task running. I3oth the above are done by setting
bits in the mask passed in RO:

Bit

0

2-3
4
5
6
7
8
9- 10
11
12
13- 16
17
18
19
20-31

Meaning when set

do not return Null_Reason_Code
do not return Redraw_ Window _Request;
queue for later handling
must be 0
do not return Pointer_Leaving_ Window
do not return Pointcr_Entering_ Window
do not return Mouse_ Click; queue for later handling
must be 0
do not return Key_Pressed; queue for later handling
must be 0
do not return Lose_ Caret
do not return Gain_Caret
must be 0
do not return User_Message
do not return User_Message_Recorded
do not return User_Message_Acknowlcdge
must be 0

Note that the bits which are marked 'queue for later handling' above stop the
Wimp from proceeding ie. it stops all other tasks too.

The Window Manager: SWI Calls 1193

Nuii_Reason_Code 0

Redraw_Window_
Request 1

Open_Window_Request 2

1194

As you can see, certain events cannot be mask(.-d out and the task must always
be prepared to handle them. Each reason code has one Wimp SWI that is
most likely to be called in response. The block returned by Wimp_Poll is
formatted ready to be passed directly to this call.

The reason codes are as follows:

This reason code is returned when none of the others are applicable. It should
be masked out whenever possible to minimise the overheads incurred by the
Wimp, so it doesn't have to set-up the task's memory and return control to it,
only to find the task isn't interested anyway.

The returned block contains:

Rl+ 0 window handle

This reason code indicates that some of the window is out of date and needs
redrawing. You should call Wimp_RedrawWindow (SWI &400C8) using
the returned block, and then call Wimp_GetRecrangle (SWI &400CA) as
necessary. See their entries for further details and a scheme ci the code
required.

The returned block contains:

RI+O
R1+4
R1+8
R1 +12
R1 +16
R1+20
R1+24
R1+28

window handle
visible area minimum x coordinate
visible area minimum y coordinate
visible area maximum x coordinate
visible area maximum y coordinate
scroll x offset relative to work area origin
scroll y offset relative to work area origin
handle to open window behind (- 1 means top of window
stack, - 2 means bottom)

This reason code is returned as a result of the Adjust Size icon or the Title
Bar of a window being selected, or as a result of the scroll bars being
dragged to a new position. The dragging process is performed by the Wimp
itself before it returns this reason code to the task .

The Window Manager: SWI Calls

Close_ Window_
Request 3

Pointer _Leaving_
Window 4

Following detection, the Wimp sets five bits that determine the action on the
window. These bits can be read using Wimp GetWindowState
(SWl &400CB) - refer to Wimp_CreateWindow (SWI &400Cl) for more
information.

You should call Wimp_OpenWindow (SWI &400C5) using the returned
block and also call it for any pane windows that are attached to this one,
using the coordinates in the block to determine the pane's position.

The returned block contains:

Rl+ 0 window handle

This reason code is returned when you click with the mouse on the Close icon
of a window.

You should normally call Wimp_CioseWindow (SWI &400C6) using the
returned block. You may also need to issue further calls of
Wimp_CioseWindow to close any dependent windows, eg panes. However, if
you do not want to close the window immediately, you could open an error
box, or ask the user for confirmation.

Programs such as Edit conventionally open the directory which holds the
edited file if its window is closed using the Adjust button . This is done by
calling W imp_GetPointerlnfo when the Close_ Window_Request is received,
and performing the appropriate action.

The returned block contains:

Rl+O window handle

This reason code is returned when the pointer has left a window's visible work
area. You might use it to make the pointer revert to its default shape when it
is no longer over your window's work area. However, it is not recommended
that you use it to make dialogue boxes disappear as soon as the mouse pointer
leaves them.

Note that this event doesn't only occur when the pointer leaves the window's
visible work area, but whenever the window stops being the most visible thing
under the pointer. So, for example, popping up a menu at the pointer position
would cause this event.

The Window Manager: SWI Calls 1195

Pointer_Entering_
WindowS

Mouse_ Click 6

1196

The returned block contains:

Rl+ 0 window handle

This reason code is returned when the pointer has moved onto a window. You
might use it to bring a window to the top as soon as the pointer enters its work
area, or to change the pointer shape when it over the visible work area.

As with the previous event type, Pointer_Entering_ Window doesn't just
happen when the pointer is physically moved into a window's visible work
area. It could occur because a menu is removed or a window is closed,
revealing a new uppermost window.

The returned block contains:

Rl+O
Rl+4
R1+8
Rl+l2
Rl+l6

mouse x (screen coordinates- not window relative)
mousey
buttons (depending on window/icon button type)
window handle (-1 for background, -2 for icon bar)
icon handle (-1 for work area background)

This reason code is returned when:

• the state of the mou!'C burrons has changed, and

• the conditions of the button type have been met, and

• the Wimp does not automatically deal with the change in some other way.

For example:

• if an icon has button type 6, a click with Select will generate this event
with buttons=4, whereas a drag with Adjust will give buttons= 1 foltowed
by another event with buttons= 16

• if the change took place over a window's Close icon, this reason code wilt
not be returned as Close_ Window_Request is used instead

• a click on the Menu button is always reported with huttons=Z

The window and icon handles indicate which window and icon the mouse
pointer was over when the button change took place. Operations such as
highlighting an icon when it is selected and the cancellation of the other

The Window Manager: SWI Calls

User_Drag_Box 7

Key_Pressed 8

selections in the same ESG arc all done automatically by the Wimp. See the
section on button types in Wimp_Creatclcon (SWI &400C2) for details of
the various icon button modes and mouse return codes.

The returned block contains:

Rl+O
Rl+ 4
Rl+ 8
R1+12

drag box minimum x coordinate (inclusive)
drag box minimum y coordinate (inclusive)
drag box maximum x coordinate (exclusive)
drag box maximum y coordinate (exclusive)

This reason code is returned when you release all the mouse buttons to finish
a User_Drag operation. The block contains the final position of the drag box.

A user drag operation starts when the task calls Wimp_DragBox with a drag
type of 5 to 11, usually in response to a drag code returned in a Mouse_ Click
event.

During the user drag operation (particularly with drag type 7), you may wish
to keep track of the pointer position. To do this, call Wimp_GetPointerlnfo
(SWI &400CF) each time you receive a null event from Wimp_Poll. You can
use the coordinates returned to redraw the dragged object (using
Wimp_UpdateWindow (SWI &400C9) of course).

When this reason code is returned the drag is over; you should then stop
reading the pointer information and, if appropriate, redraw the dragged
object in its final position.

The returned block contains:

Rl+O
Rl+4
Rl+8
Rl+l2
Rl + 16
Rl+20
Rl+24

window handle with input focus
icon handle (- I if none)
x-offsct of caret (relative to window origin)
y-offset of caret (relative to window origin)
caret height and flags (see Wimp_SctCaretPosition)
index of caret into string (undefined if not in an icon)
character code of key pressed (NB this is a word, not a byte)

This reason code is returned to tell a task that a key has been pressed while
the input focus belonged to one of its windows. The task should process the
key if possible. Otherwise the task should pass it to Wimp_ProcessKey
(SWI &400DC) so that other tasks can then intercept 'hot key' codes.

The Window Manager: SWI Calls 1197

1198

If the caret is inside a writeable icon, the Wimp automatically processes the
keys listed below, and docs not generate an event:

Printable characters

Delete, <-I
Copy
<-
->
Shift Copy
Shift<
Shift->

Ctrl Copy
Ctrl <
Ctrl->

are inserted into the text, if there is room, and the
icon is redrawn
delete character to left of caret
delete character to right of caret
move left one character
move right one character
delete word (forwards)
move left one word (returns & 1 9C if at left of line)
move right one word (returns & 190 if at right of
line)
delete forwards to end of line
move to left end of I i ne
move to right end of line

'Printed characters' are those printable ones whose codes are in the ranges
&20- & 7E and &80- &FF.

Clashes could occur between top-bit-set characters (obtained by pressing Air
plus ASCII code on the keypad) and special key codes. The Wimp avoids
any such ambiguities by mapping the special keys to these values:

Key Alone +Shift +Ctrl +Ctrl Shift

Escape &18 &IB &IB &IB
Print (FO) &180 &190 &lAO &lBO
FI- F9 &181- 189 &191- 199 &!AI- 1A9 &lB1- 1B9
Tab &18A &19A &IAA &IBA
Copy &18B &19B &lAB &1BB
left arrow &18C &19C &lAC &lBC
right arrow &180 &190 &lAD &lBD
down arrow &18E &19E &IAE &IBE
up arrow &18F &19F &lAF &IBF
Page down &19E &18E &!BE &lAE
Page up &19F &18F &IBF &IAF
FlO- F12 &lCA- ICC &lDA-lDC &lEA- IEC &lFA- &lFC
Insert &lCD &100 &lED &IFD

The Window Manager: SWI Calls

Menu_Selection 9

These are set up by Wimp_lnitialise. Tasks running under the Wimp are not
allowed to change any of these settings. Soft key expansions (outside of
writeable icons) must be performed by the task accessing the key's expansion
string using the key$n variables.

The returned block contains:

R1+0
R1+4
R1+8

item in main menu which was selected (starting from 0)
item in first submenu which was selected
item in second submenu which was selected

terminated by -1

This reason code is returned when the user selects an item from a menu.
Selections can be made by the user clicking on an item with any of the mouse
buttons. Select and Menu are synonymous; Adjust has a slightly different
effect, as discussed below. A press of Return inside a writcable menu item
also generates this event (though not if it is pressed inside a writeable icon
inside a menu dialogue box).

The values in the block indicate which item at each menu level was chosen, the
first item in each menu being numbered 0. An entry of - 1 terminates the list.
No handle is used for menus, so the task must remember which menu it last
used Wimp_ CreateMenu (SWI & 40004) to open.

If the last item specified has submenus (ie was not a 'leaf' of the menu tree)
then the command may be ambiguous, in which case the task should ignore it.
If the command is clear, but not its parameters, then the task may ignore the
command, use default parameters, or use the last parameters set, as is most
appropriate.

There is a difference, from the user's point of view, between choosing an item
with Select and Adjust. In the former case, the selection will also cancel the
menu, causing it to be removed from the screen. In the latter case, the menu
should stay on the screen (a persistent menu). The application achieves this as
follows. Call Wimp_GetPointerlnfo (SWI &400CF) to read the mouse
button state, and save it. After decoding the menu selection and taking the
appropriate action, examine the stored button state. If Select was pressed, just
return to the polling loop.

The Window Manager: SWI Calls 1199

Scroll_ Request 1 0

1200

If Adjust was down, however, re-encode the menu tree (reflecting any changes
that the previous menu selection effected) and call Wimp_CrcateMenu with
the same menu tree pointer that was used to create the menu in the first place.
The next time you call Wimp_Poll, the Wimp will spot the re-opened menu,
and recreate it on the screen. It goes down the tree until the end of the tree is
reached, or the tree fails to correspond to the previous one, or until a shaded
item is reached.

The returned block contains:

Rl+O
Rl+4
Rl+8
Rl+l2
Rl +16
Rl+20
Rl+24
R1+28

Rl+32
R1+36

window handle
visible area minimum x coordinate
visible area minimum y coordinate
visible area maximum x coordinate
visible <~rea maximum y coordin<~te
scroll x offset relative to work <1rc<1 origin
scroll y offset relative to work area origin
handle to open window behind (-1 means top of the window
stack, - 2 means bottom)
scroll x direction
scroll y direction

The scroll directions have the following meanings:

Value

-2
- 1
0
+1
+2

Meaning

Page left/down (click in scroll bar outer <~rea)
Left/down (click on scroll <~rrow)
No change
Right/up (click on scroll arrow)
Page right/up (click in scroll bar outer area)

This reason code is returned if the user clicks in a scroll area of a window
which has one of the 'Scroii_Request returned' bits ~t in its window flags. It
returns the old scroll bar off.~ets and the direction of scrolling requested. The
task should work out the new scroll offsets, store them in the scroll offsets
(Rl +20 and Rl +24) of the returned block, and then call
Wimp_OpenWindow (SWI &400CS) .

The Window Manager: SWI Calls

Lose_Caret 11

Gain_Caret 12

Events 13 - 16: not used

Remember that the coordinates used for scroll offsets are in OS units.
Therefore, if you want to make a click on one of the arrows scroll by, say, one
pixel, you must scale the -1 or 1 returned in the event block by the
appropriate factor for the current mode. For example, in !Edit the text is
aligned with the bottom of the window when scrolling down, and subsequently
moves down by one text line exactly. When scrolling up, the text is aligned
with the top of the window.

This is returned when the window which owns the input focus has changed.
That happens when Wimp_SetCaretPosition (SWI &400D2) is called, either
explicitly, or implicitly by the user clicking on a button type 15 object. The
event isn't generated if the input focus only changes position within the same
window.

The event warns the task which had the caret (and which may well be
retaining it) that something has changed. It can be used to remove a
specialised text-position indicator which does not use the Wimp's caret, or its
appearance could be altered to show this is where the caret would be if the
window still had the input focus.

R1 points to a standard caret block:

R1+0
Rl+4
Rl+8
R1+12
R1+16
Rl+20

window handle that had the input focus (-1 if none)
icon handle (-1 if none)
x-offset of caret (relative to window origin)
y-offset of caret (relative to window origin)
caret height and flags (see Wimp_SetCaretPosition)
index of caret into string (or -1 if not in a writeable icon)

This event is returned to the task which now has the caret, subsequent to a
Wimp_SetCarctPosition. The block pointed to by Rl is the same as above,
except that the window/icon handle is the caret's new owner.

The next three reason codes (17- 19) are concerned with the receipt of user
messages. Events of type 0 to 12 are normally sent directly from the Wimp to
a task in response to some user action. The User_Message reason codes are
more general purpose, and are sent from Wimp to task, or from task to task.
Sec the description of Wimp_SendMessage (SWI &400E7) for more details
about the sending of messages and of the various types of User_Message
actions which are defined.

The Window Manager: SWI Calls 1201

User_Message 17

User _Message_
Recorded 18

1202

One message action that all tasks should act on is Message_Quit, which is
broadcast by the Desktop when the user selects the Exit item from its menu.

The returned block contains:

Rl+O

Rl+4
Rl+8
R1+12

Rl+l6
Rl+20

size of block in bytes (20- 256 in a multiple of four (ie.
words))
task handle of message sender
my_ref- the ~ndcr's reference for this message
your_ref - a previous message's my_ref, or 0 if this isn't a
reply
message action code
message data (dependent on mes.~age action)

This event is returned when another task has sent a message to the current task,
to one of its windows, or to all tasks using a broadcast message. The action
code field defines the meaning of the message, ie how the message data
should be processed by the receiver.

If the message is not acknowledged (because the receiVIng task is no longer
active, or just ignores it) then no further action is rnken by the Wimp.

The block has the same format as that described above under Uscr_Message.
The interpretation of the message action is the same, so the way in which the
receiving task handles these two types should he identical. However, the way
the Wimp responds differs if the message is not acknowledged.

The recetvmg task can acknowledge the message by calling
Wimp_SendMessage with the reason code Uscr_Message_Acknowledge (19)
and the your_ref field set to the my_ref of the original. This will prevent the
sender from receiving its original message back from the Wimp with the
event type 19.

Another way to acknowledge a message (and prevent the Wimp returning it
to the sender) is to send a reply message using rea!'oem code User_Message or
Uscr_Mcssage_Acknowledge, again with the your_ref field set to the original
message's my_ref.

Both types of acknowledgement must take place before the next call to
Wimp_poll.

The Window Manager: SWI Calls

user_Message_
Acknowledge 19

~elated SWis

Related vectors

The format of the block is as above. This event type is generated by the
Wimp when a message sent with reason code User_Message_Recorded was
not acknowledged or replied to by the receiver. The message in the block is
identical to the one sent by the task in the first place.

Note that a task should ignore any messages it does not understand: it must
not acknowledge messages as a ·matter of course. See Wimp_SendMessage
(SWI &400E7) for details.

None

None

fhe Window Manager: SWI Calls 1203

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

1204

Wimp_Redraw W indow
(SWI & 400C8)

R I = pointer to block

RO = 0 for no more to do, non-zero for update according to returned block

Interrupts are not defined
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

The block contains the following:

Rl+O
RI+4
RI+8
RI +12
Rl + 16
RI+20
R1+24
RI+28
RI+32
RI+36
RI+40

window handle
visible area minimum x coordinate
visible area minimum y coordinate
visible area maximum x coordinate
visible area maximum y coordinate
scroll x offset relative to work area origin
scroll y offset relative to work area origin
current graphics window minimum x coordinate
current graphics window minimum y coordinate
current graphics window maximum x coordinate
current graphics window maximum y coordinate

The window handle at +0 is set on entry, usually from the last call to
Wimp_?oll; the rest of the block is filled in by Wimp_RcdrawWindow.

Note that this SWI must be called as the first Wimp operation after the
Wimp_Poll which returned a Redraw_ Window_Request. This means that you
cannot, for example, delete or create any other windows between the
Wimp_Poll and the Wimp_RedrawWindow. If you need to do any special
extra operations in your Wimp_Poll loop, do them just before calling
Wimp_Poll, not afterwards.

The Window Manager: SWI Calls

Related SWis

Related vectors

This call is used to start a redraw of the parts of a window that are not up to
date. These consist of a series of non-overlapping rectangles.
Wimp_RedrawWindow draws the window outline, issues VDU 5, and then
exits via Wimp_GetRectangle, which returns the coordinates of the first
invalid rectangle (if any) of the work area, and clears it to the window's
background colour, unless it's transparent. It also returns a flag saying
whether there is anything to redraw.

The first four words are the position of the window's work area on the screen,
ie they have the same meaning as those words in the Wimp_CreateWindow
(SWI &400Cl) and Wimp_OpenWindow (SWI &400C5) blocks.

The last four words describe an area within the visible work area in screen
coordinates, not work area relative, possibly the whole thing if the window is
not covered. The graphics clip window is set to the returned rectangle. A task
could just redraw its entire work area each time a rectangle is returned.
However, it is much more efficient if the task takes note of the graphics clip
window co_ordinates and works out what it needs to draw.

By using these two sets of coordinates in conjunction with the scroll offsets,
you can find the work area coordinates to be updated:

work x = screen x- (screen xO-scroll x)
work y =screen y- (screen yl-scroll y)

where:

screen xO =
screen yl =
scroll x =
scroll y =

[R1+4]
[Rl + 16]
[Rl +20]
[Rl+24]

The code used to redraw the window was outlined in the section Redrawing
windows. The expressions above in 'parenthesis arc the screen coordinates of
the work area origin.

None

None

The Window Manager: SWI Calls 1205

·=:: ..

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

1206

Wimp_Update Window
(SWI & 400C9)

R 1 = pointer to block- see below

RO and block as for Wimp_RedrawWindow (SWI &400C8)

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

The block contains the following on entry:

window handle Rl+O
R1+4
R1+8
RI+l2
RI+I6

work area minimum x coordinate (inclusive)
work area minimum y coordinate (inclusive)
work area maximum x coordinate (exclusive)
work area maximum y coordinate (exclusive)

This call is similar to Wimp_RedrawWindow. The differences are:

• not all of the window has to be updated; you specify the rectangle of
interest in work area coordinates

• the rectangles to be updated are not cleared by the Wimp first

• this can be called at any time, not just in response to a
Redraw_ Window _Request event

The routine exits via Wimp_GetRectangle (SWI &400CA), which returns the
coordinates of the first visible rectangle (if any) within the work area
specified on entry.

The code for the task to update the window should follow this scheme:

The Window Manager: SWI Calls

Related SWis

Related vectors

SYS"Wimp_UpdateWindow", ,blk TO more
WHILE more

update the contents of the returned rectangle
SYS"Wimp_GetRectangle",,blk TO flag

ENDWHILE

A common reason for calling this is to drag an item across a window. Another
is to draw a user-defined text cursor instead of using the system one.

None

None

The Window Manager: SWI Calls 1207

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1208

Rl =pointer to block

Wimp_GetRectangle
(SWI &400CA)

RO and block as for Wimp_RcdrawWindow (SWI &400C8)

Interrupts arc not defined
Fast interrupts arc enabled

Processor is in SVC mode

SWI is not re-entrant

The block contains the following on entry:

R 1 +0 window handle

This ct~ll is used rcpe;~tedly following a call of either
Wimp_RedrawWindow or Wimp_UpdatcWindow. It returns the details of
the next rectangle of the work area to be drawn (if any). If the call follows
an earlier call to Wimp_RedrawWindow, then the rectangle is also cleared
to the bt~ckground colour of the window. If however it follows a call to
Wimp_UpdateWindow then the rectangle's contents arc preserved.

VDU 5 is asserted as a mode change and in Wimp_RedrawWindow. If you
use VDU 4 text in a window (which can only be done when you are sure that
the character does not need to be dipped) you should reset to YOU 5 mode
before calling Wimp_SetRectanglc or Wimp_Poll.

Note that the window handle will be faulted by the Wimp if it differs from
the one lt~st used when Wimp_RedrawWindow or Wimp_UpdateWindow
was called. This met~ns that a task must dr;Jw the whole of a window before
performing any other operations.

None

None

The Window Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Wimp_Get WindowS tate
(SWI & 400CB)

R 1 = pointer to block

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

The block contains the window handle on entry, and the following on exit:

Rl+O
R1+4
Rl+8
Rl +12
Rl+l6
Rl+20
Rl+24
Rl+28
Rl+32

window handle
visible area minimum x coordinate
visible area minimum y coordinate
visible area maximum x coordinate
visible area maximum y coordinate
scroll x offset relative to work area origin
scroll y offset relative to work area origin
handle of window in front of this one (or - 1 if none)
window flags - see Wimp_ Create Window (SWI &400Cl)

This call returns a summary d the given window's srnte.

You can usually find out the window's coordirmtcs without using this call,
since Wimp_GetRectangle returns the window coordinates anyway. This call
is most useful for reading the window flags, for example to find out if a
window is uncovered.

None

None

The Window Manager: SWI Calls ~209

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1210

Wimp_GetWindowlnfo
(SWI & 400CC)

Rl = pointer to block

Interrupts arc not defined
Fast interrupts arc enabled

Processor is in SVC mode

SWI is not re-entrant

The block contains the following on entry:

R 1 +0 window handle

The block contains the following on exit:

R 1 +0 window handle
R1 +4 window block- sec Wimp_CrcnrcWindow (SWI &400CI)

and Wimp_Creatclcon (SWI &400C2)

This call returns complete details of the given window's state, including any
icons that were created after the window, using Wimp_Crcatclcon.

None

None

The Window Manager· SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Rl =pointer to block

The icon's flags are updated

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

The block contains the following:

Wimp_SetlconState
(SWI & 400CD)

Rl+O
R1+4
R1+8
Rl +12

window handle (-1 or -2 for icon bar)
icon handle
EOR word
clear word

This call sets the given icon's tlag word as follows:

new-state = (old-state AND NOT clear-word) EOR EOR-word

The way each bit of the icon flags is affected is controlled by the state of the
corresponding bits in the EOR word and the Clear word:

Setting of Effect
CE

00 preserve the bit's status
01 toggle the bit's state
10 clear the bit
11 set the bit

For example, say you wanted to change an icon's button type (bits 12- 15) to
10 (%1010 binary). You would set the dear-bits to 1 and the EOR bits to the
new value:

The Window Manager: SWI Calls 1211

Related SWis

Related vectors

1212

Clear=
EOR =

% 1111 000000000000
%I 0 I 0000000000000

The screen is automatically updated if necessary, so the call can be used to
reflect a change in a text icon's contents. If you change the justification of a
text icon using this call, and the icon owns the caret, you should also call
Wimp_SetCaretPosition (SWI &40002) to make sure that it remains
positioned in the text correctly.

None

None

The Window Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

R 1 = pointer to block

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

Wimp_GetlconState
(SWI & 400CE)

On entry the block contains the following:

RI+O
Rl+ 4

window handle
icon handle

On exit the block contains the following:

R I +0 window handle
R I +4 icon handle
R 1 +8 32-byte icon block - sec Wimp_Crcarclcon {SWI &400CZ)

This call returns details of the given icon's state.

If you want to search for an icon wi th particular flag settings {for example to

find out which icon in a group has been selected), you should usc
Wimp_ Whichlcon (SWI &40006).

None

None

The Window Manager: SWI Calls 1213

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

1214

Wimp_GetPointerlnfo
(SWI & 400CF)

R 1 = poi ntcr to block

Interrupts arc not defined
Fast interrupts arc enabled

Processor is in SVC mode

SWI is not re-entrant

On exit the block contains the following:

mouse x
mousey
button state

Rl+O
R1+4
Rl+8
R1 + 12
R1+16

window handle (- 1 for background, -2 for icon bar)
icon handle (sec below)

This call returns information about the position of the pointer and the
instantaneous state of the mouse buttons. It en:Jblcs the task to find out where
the mouse pointer is independently of the buttons being pres.'iCd or released,
for example for dragging purposes.

The mouse button state (returned in Rl +8 to R 1 +I 1) can only have bits 0, I
and 2 set:

Bit Meaning if set

0 Righthand button pressed (Adjust)
1 Middle button pressed (Menu)
2 Lefthand button pressed (Select)

If the mouse is over a user window (window handle >=0) then rhe icon handle
will be either a valid non-negative value for a user icon, or one of the
following system values:

The Window Manager: SWI Calls

Related SWis

Related vectors

Value

-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
- II
- 12
- 13

None

None

The Window Manager: SWI Calls

Icon

work area
Back icon
C lose icon
Title Bar
Toggle Size icon
scroll up arrow
vertical scroll bar
scroll down arrow
Adjust Size icon
scroll left arrow
horizontal scroll bar
scroll right arrow
the outer window frame

1215

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

1216

Wimp_DragBox
(SWI & 400DO)

Rl <= 0 to cancel drag operation, otherwise
Rl = pointer to block

Interrupts are not defined
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

On entry the block contains the following:

Rl+O
Rl + 4
Rl+ 8
Rl +12
Rl+l6
Rl +20
RI+24
R1+28
Rl+32
Rl+36
Rl +40
R1+44
R1+48
Rl +52

window handle (for drag types I • 4 only)
drag type
minimum x coordinate of initial position of drag box
minimum y coordinate of initial position of drag box
maximum x coordinate of initial position of drag box
maximum y coordinate of initial po1>irion of drag box
minimum x coordinate of parent box (for types 5- II only)
minimum y coordinate of parent box (for types 5 - II only)
maximum x coordinate of parent box (for types 5- II only)
maximum y coordinate of p<~rent box (for types 5- 11 only)
R 12 value for user routine (for t)•pe1> 8 - II only)
address of draw box routine (for types 8- 11 only)
address of remove box routine (for types 8- 11 only)
address of move box routine, or<= 0 if there isn't one (for
types8-IJ only)

The coordinates are passed as screen coordin<Jtes. ie. bottom-left inclusive and
top-right exclusive.

This call initiates a dragging operation. It is typically called as a result of a
Mousc_Ciick event which has reported a drag-type click (ie Select or Adjust
held down for longer than about !/5th of a second). A drag spans calls to
Wimp_Poll, so the task must maintain information about what is being

The Window Manager: SWI Calls

Types 1 - 4

dragged, etc. Usually the coordinates arc not required until the final dr<Jg
event occurs, at which point the Wimp returns them. Sometimes
Wimp_GctPointerlnfo should be called in Wimp_Poll null events to mck
the pointer (especially for type 7 below). A drag is terminated (and
reported) when the user releases all of the mouse buttons.

The drag is confined to the 'parent box' specified, or to an area computed by
the Wimp for types 1 - 4. The action depends on the drag type:

Drag type Meaning

1 drag window position
2 drag window size
3 drag horizontal scroll bar
4 drag vertical scroll bar
5 drag fixed size 'rotating dash' box
6 drag rubber 'rotating dash' box
7 drag point (no Wimp-drawn dragged object)
8 drag fixed size user-drawn box
9 drag rubber user-drawn box
10 as 8 but don't cancel when buttons arc released
11 as 9 but don't cancel when buttons arc released

These are the 'system' types since they relate to picking up a window,
changing its size and scrolling it respectively. In these cases, the bounding box
for pointer movement is worked out auromatically by the Wimp. For
example, type 2 drags are confined to the defined maximum and minimum
sizes of the window.

Bits in the WimpFlags CMOS configuration parameter determine the way in
which these drags update the screen. There arc four bits, 0- 3, corresponding
to drag types 1 - 4. If the bit is clc~r, then dragging is indicated by a dashed
outline box, similar to that used in types 5 and 6 below. An
Open_ Window_Request event is generated when the mouse button is released
to allow the task to update appropriate parts of the dragged window. If the
WimpFlags bit is set, continuous update is required, and

Open_ Window_Requests are generated for every mouse move.

The Window Manager: SWI Calls 1217

Types 5-7

Types 8- 11

1218

These drag types are useful if you want to allow the user to, for example,
pick up a window which docs not have a Title Bar (and so is usually
unmoveablc). You could detect clicks in a region of within, say, 32 OS units
from the top of the visible work area and instigate a drag type 1 when these
occur.

These arc 'user' types, where the task decides what the significance of the
dragging will be. In these cases you supply the coordinates of the parent box.
The box being dragged is constrained to this area. For types 5 and 6 the
initial box position is used to draw a box with a dashed border which cycles
round.

For type 5 boxes, the relative positions of the mouse pointer and the box arc
kept constant, so moving the mouse moves the box roo.

For type 6, the relative positions of the bottom right corner of the box and the
pointer arc kept constant, so moving the mouse will increase or decrease the
size of the box. Generally you would arrange the initial box coordinates such
that this corner is at or ncar the pointer position reported in the drag-click
event. You can alter the moveable corner to the left by reversing the initial x
coordinates, and to the top by reversing the initial y coordinates.

In the case of type 7, where there is no dashed box to be dragged, the initial
drag box position is ignored and the mouse coordinates are constrained to the
bounding box.

These types give the maximum flexibility for dragging objects around the
whole screen. Use drag type 7 and Wimp_UpdateWindow to drag an object
within a window. They arc, though, somewhat more complex to use than the
previously described types.

First the application must provide the addresses of three routines which draw,
remove and move the user's drag item (it doesn't have to be a box). If no move
routine is supplied (fR I +52] <= 0), the Wimp will usc the remove and draw

routines to perform the operation.

Note that the user code must not be in application space, but in the RMA.
This is because the Wimp doesn't know ro page the task in when this code is
required.

The user code is called under the following conditions:

The Window Manager: SWI Calls

On entry

On exit

SVC mode (so use X-type SWis and save R14_SVC before hand)
RO = new minimum x coordinate
Rl =new minimum y coordinate
R2 = new maximum x coordinate
R3 = new maximum y coordinate
R4 = old minimum x coordinate (for move routine only)
R5 =old minimum y coordinate (for move routine only)
R6 = old maximum x coordinate (for move routine only)
R7 = old maximum y coordinate (for move routine only)
R 12 = value supplied in Wimp_DragBox call

RO- R3 actual box coordinates (normally preserved from entry)

The user routines would draw, remove or just move (ie remove and redraw)
their drag object according to the coordinates passed. These coordinates are
derived by the Wimp from mouse movements.

The graphics window is also set up by the Wimp. The user routines must not
change this, or draw outside it.

While these drags are taking place, the Wimp still performs its rotating
dashed box code, so the routines can take advantage of this. Programming of
the VDU dot-dash pattern is performed by the Wimp, so all the user
routines have to do is call the appropriate dot-dash line PLOT codes.

The move routine has to deal with two cases: whether the box has moved or
not. If the box has moved (ie RO- R3 are not identical to R4- R7), then the
move routine must exclusive-OR once using the old coordinates to remove the
box, then EOR again with the new coordinates to redraw it. If the box hasn't
changed, the the Wimp will have programmed the dot-dash pattern so that a
single EOR plot will give the desired shifting effect of the pattern, so this is
what the routine should do.

Of course, the foregoing is only applicable to dragged objects which use the
dash effect. If you are dragging, say, a sprite, then the move routine only has
to do anything when the coordinates have changed, viz restore the background
that the sprite overwrote, then save the new background and replot the sprite.
When no move has taken place, the routine could do nothing (or change the
sprite for an animation effect etc.)

The Window Manager: SWI Calls 1219

Related SWis

Related vectors

1220

None

None

The Window Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Wimp_ForceRedraw
(SWI &400Dl)

RO =window handle (-1 means whole screen)
Rl =minimum x coordinate of area to redraw
R2 = minimum y coordinate of area to redraw
R3 = maximum x coordinate of area to redraw
R4 =maximum y coordinate of area to redraw

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call forces an area of a window or the screen to be marked as invalid,
and to be redrawn later using Redraw_ Window_Request events.

If RO is -1 on entry, then R1 - R4 specify an area of the screen in absolute
co_ordinates. If RO is not -1, then it indicates a window handle, and Rl - R4
specify an area of the window relative to the window's work area origin.

This call could be used

• to reconstruct the screen if for some reason it has been corrupted

• to reinstate a particular area after, for example, an error box has been
drawn over the top of it

• to redraw the screen after redefining one or more of the soft characters,
which could affect any part of the screen.

Two strategies are possible when the task is required to change the contents of
a window. These are:

• call this routine, which causes the specified area to be redrawn later

• call Wimp_UpdateWindow (SWI &400C9), followed by the necessary
graphic operations (and calls to Wimp_GetRectangle (SWI &400CA)).

The Window Manager: SWI Calls 1221

Related SWis

Related vectors

1222

The second method is genernlly quicker, but involves more code.

None

None

The Window Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Wimp_SetCaretPosition
(SWI &400D2)

RO =window handle (- 1 to tum off and disown the caret)
Rl = icon handle (-1 if none)
R2 = x-off<;et of caret (relative to work area origin)
R3 = y-offset of caret (relative to work area origin)
R4 = height of caret (if -1, then R2, R3, R4 are calculated from RO,Rl,RS)
RS = index into string (if -1, then R4, RS are calculated from RO,R 1 ,R2,R3

R2 and R3 are modified to exact position in icon)

RO - R5 = preserved

Interrupts are not defined
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

This call removes the caret from its old position, sets up the data for its new
position, and redraws it there. Subsequent calls to Wimp_RedrawWindow
and Wimp_UpdateWindow will cause the caret to be automatically redrawn
by the Wimp, unless it is marked as invisible.

R4 and R5 can only be set to -1 if the icon handle passed in R1 is non
negative.

Some of the values may be calculated:

• If R4 (the height) is -1, the Wimp calculates the x and y coordinates of
the caret and its height (R2, R3, R4) from the data in RO, R1 and R5. This
is only possible if R 1 contains an icon handle.

• Similarly, if R5 (the index) is -1, the Wimp calculates the index into the
string and the caret height (R4, RS) from RO- - -R3.

The Window Manager: SWI Calls 1223

Related SWis

Related vectors

1224

In each case, the height of the caret is determined from the bounding box of
the font used in the icon (for the system font, a height of 40 OS units is used).
The caret's coordinates refer to the pixel at the bottom of the vertical bar.
Note that the icon's bounding box and whether it has an outline are also
considered.

The font height also contains some flags. Its full dc~ription is:

bits 0- I5 height in OS units (0- 65535)
bits 16- 23 colour (if bit 26 is set)

Bit Meaning when set

24 u~e YOU 5-type caret, else use anti-alin~cd caret
25 the caret is invisible
26 usc bits 16 - 23 for the colour, else caret is Wimp colour 11
27 bits 16-23 arc untranslatcd, else they arc a Wimp colour

If bit 27 is set, then bit 26 must be set and the caret is plotted by EORing the
logical colour given in bits 16 - 23 onto the screen. For the 256-colour modes,
bits 16 - 17 are bits 6- 7 of the tint, and bits 18 · 2'3 arc the colour.

If bit 27 is clear, then the caret is plotted such that the Wimp colour given (or
colour II) appears when the background is Wimp colour 0 (white). The
Wimp achieves this by EORing the actual colour for Wimp colour 0 and the
caret colour together, then EORing this onto the screen.

Esoteric note: to ensure that the caret is plotted in a given colour on a non
white background, you must do the following:

• usc Wimp_ReadPalette (SWI &400ES) to obt:tin the real logical colours
associated with your background and caret (byte 0 o(the entries)

• EOR these together

• put the result in bits 16- 23 and set bits 26 and 27

None

None

The Window Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Wimp_GetCaretPosition
(SWI & 400D3)

R1 =pointer to block

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call returns details of the caret's state. The block contains the following:

Rl+O
Rl+4
Rl+8
R1 + 12
R1+16
Rl+20

window handle where caret is (- 1 if none)
icon handle (- 1 if none)
x-offset of caret (relative to work area origin)
y-offset of caret (relative to work area origin)
caret height and flags or -1 for not displayed
index of caret into string (if in a writeable icon)

The height and flags returned at R 1 + 16 are as described under
Wimp_SetCaretPosition (SWI &400D2).

None

None

The Window Manager: SWI Calls 1225

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

1226

Wimp_CreateMenu
(SWI & 400D4)

R I = -I means close any active menu, or
R I = pointer to menu block
R2 = x coordinate of top-left corner of top level menu
R3 = y coordinate of top-left corner of top level menu

Interrupts arc not defined
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

The menu block conrains the following:

RI+O
RI+I2
Rl +13
RI + 14
RI +15
Rl +16
Rl+20
Rl+24
Rl+28

menu title (if a null string, then the menu is untitled)
menu title foreground and frame colour
menu title background colour
menu work area foreground colour
menu work area background colour
width of following menu items
height of following menu i terns
vertical g;~p between items
menu items (each 24 bytes):

bytes 0- 3

Bit

0
I

2
3

menu flags:

Meaning when set

display a tick to the left of the item
dotted line following (separates
sections)
item is writctthle for text entry
generate a message when moving to

The Window Manager: SWI Calls

7
all others

the submenu
this is the last item in this menu
not used; must be zero

bytes 4- 7 submenu pointer(>= &8000) or
window handle (1 - &7FFF) (- 1 if none)
bytes 8- 11 menu icon flags - as for a normal icon
bytes 12 - 23 menu icon data (12 bytes) - as for a normal

icon

This call is used to create a menu structure. The top level menu is initially
displayed by the Wimp. Having made this call, the task must return to its
normal polling loop. While the task calls Wimp_Poll, the Wimp maintains
the menu tree, until the user clicks with any of the mouse buttons. If the click
was outside the menus, then the Wimp closes all the menus and behaves as if
they had not been there. If the mouse is clicked inside a menu, then a
Menu_Selection reason code is returned from Wimp_Poll, along with a list
of selections.

Note that the menu structure must remain intact as long as the tree is open.
The Wimp does not take a copy, but uses it directly.

Pressing Return while the caret is inside a writcable item is equivalent to
pressing a mouse button, ic it selects that item.

A menu is basically a window whose work area is entirely covered by the
menu items. The work area colour bytes at R 1 + 14 and R 1 +IS are therefore
not generally used unless the 'gap between items' is non-zero; they arc
overridden by the items' icons colours. The window has a Title Bar if the
string at R1 +0 is non-null, otherwise it is untitled. The maximum length of the
title string is the smaller of 12 and (item-width DIY 16). ie. it cannot be
indirected. It should be terminated by a control code if the length is less than
12.

The menu will be automatically given a vertical scroll bar if it is taller than
the current screen mode.

A menu item is a text icon whose bounding box is derived from width and
height given at Rl + 16 and R I+ 20. Thus all entries in a menu are the same
size. They are arranged vertically and lie horizontally between a 'tick' icon on
the left and an arrow (submenu indicator) icon on the right, if present.

The Window Manager: SWI Calls 1227

The menu item flags can alter the appear:~ncc of each item, eg by telling the
Wimp to display the tick, or a separating d;~shcd line beneath it. To shade an
item, set bit 22 of the icon flags.

If the submenu pointer for an item is not -I, then it points to a similar data
structure describing a submenu. An arrow is displayed to the right of the
menu item; if the user moves the mouse pointer over this, then the submenu
automatically pops up. Generally, submenu titles arc the same as the parent
item's text, or can be a prompt like 'Name:'.

The submenu pointer can be a window handle instead. Such a window is
known as a dialogue box or dbox for short. In this case, the window is opened
(as if it were a menu) when the mouse pointer moves over the arrow. The first
writeable icon in the window is given the input focus. You cannot close a menu
window by clicking in it or pressing Return. Instead you should give it an 'OK'
icon and treat clicks over that as a selection. The menu can then be closed
using Wimp_CreateMenu with R I =-1.

If you want Return to make a selection, use the key-pressed event.

Cancelling a menu-window can be achieved by clicking outside of the menu
structure, or by providing a 'Cancel' icon for the user to click on. In the first
case, no Close_ Window_Rcquest is returned for the window; it is closed
automatically by the Wimp.

When a menu window is closed, the caret is auromatically given back to
wherever it was before the window was opened.

Bit 3 of the menu flags changes the submenu behaviour. If it is set, then
moving over the right arrow will cause a McnuWarning message to be
generated. The application can respond as it sees fit, usually by calling
Wimp_CreateSubMcnu (SWI &400E8) to display the appropriate object.
Note that in this case the submenu pointer in the menu structure does not have
to be valid, but it is passed to the application in rhc message block anyway.
The submenu pointer is important if Wimp_DcccxlcMenu will be used later
on.

Many of the iconic properties of menu items can be controlled, using the icon
flags word and icon data bytes. Below is a list of the aspects of an icon that a
menu item may or may not exhibit:

• it can contain text. Indeed it must in order to be u~ful (bit 0 must be set)

1228 The Window Manager: SWI Calls

• it can contain a sprite, but see note below

• it can have a border, but this isn't particularly useful

• the text is always centred vertically (bit 4 ignored), but the horizontal
formatting bits (3 and 9) are used

• the background should be filled (bit 5 set)

• the text can be anti-aliased

• the item is drawn only by the Wimp (bit 7 ignored)

• the icon be indirected- useful for long writeable item strings

• the button type is always 9 and the ESG is always 0 (bits 12- 20
ignored). Use the menu flags to make an item writeable.

• the selected bit (21) isn't readable as the icon is 'anonymous'. The task
hears about the final selection through the Menu_Selection event

• the shaded bit (22) is useful for disabling certain items. However, such
items' submenu arrows can't be followed, so you should only shade leaf
items

• the deleted bit (23) is irrelevant

• the colours/font handle byte (bits 24 - 3 L) should be set as appropriate.

The icon data contains either the actual text (0 to 12 characters, control-code
terminated if less than twelve) or the three indirccrcd icon information words.
A validation string can naturally be used for writeable items.

A menu item can only usefully contain a sprite if it is a sprite-only (no text)
indirected icon. This allows for a sprite control block pointer to be given in
the middle word of the icon data. Typically this is +I for a Wimp sprite, or a
valid user-area pointer.

If the task can create more than one menu, it musr remember which menu is
displayed, as the Wimp does not return this when a selection has been made.
It must also scan down its data structure to determine which submenus the
numbers relate to, before it can decide what action to take.
Wimp_DecodeMenu (SWI &40005) can help with this.

The Window Manager: SWI Calls 1229

Related SWis

Related vectors

1230

It is recommended that tasks use a 'shorthand' for defining menus, which is
translated into the full form required by the Wimp when needed. But menus
must be held in semi-permanent data structures once created, since the Wimp
accesses them while menus are open.

Note that if a menu selection is made using Adjust, it is conventional for the
application to keep the menu structure open afterwards. What happens is that
the Wimp marks the menu tree temporarily when a selection is made. The
application should call Wimp_GetPointerlnfo to see if Adjust is pressed. If
so, it should call Wimp_CreateMcnu before returning to Wimp_Poll, which
causes the tree to be re-opened in the same place.

The menu structure may be modified before re-opening, in which case any
changes are noted by the Wimp, for example if menu entries become shaded.
If the application docs not call Wimp_CreareMenu, then the Wimp will
delete the menu tree on the next call to Wimp_Poll, as the tree was marked
temporary when the selection was made.

See the Application Notes section for inform<~tion about the standard colours
and sizes u~d for menus.

None

None

The Window Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Wimp_DecodeMenu
(SWI &400D5)

Rl =pointer to menu data structure
R2 = pointer to a list of menu selections
R3 =pointer to a buffer to contain the answer

buffer updated to contain menu item text, separated by '.'s

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call converts a numerical list of menu selections to a string containing the
text of each successive menu item, eg Display. Small icons for a typical
Filer menu selection.

None

None

The Window Manager: SWI Calls 1231

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1232

RO = window handle

Wimp_Whichlcon
(SWI & 400D6)

Rl =pointer to block to contain the list of icon handles
R2 = bit mask (bit set means consider this bit)
RJ = bit settings to match

block at R 1 updated to contain a list of icon handle words, terminated by -1

Interrupts arc not defined
Fast interrupts are enabled

Processor is in SVC mode

SWl is not re-entrant

This call compares the flag words of all of the icons belonging to the given
window with the pattern given in R3. Each icon whose flags match has its
handle added to the block pointed to by R 1.

The mask in R2 is used to determine which bits are to be used in the
comparison. The icon's handle is added to the list if (icon-flags AND bit-mask)
= (bit-settings AND bit-mask). For example:

SYS "Wimp_ Whichicon",window,buffer,l<<21,1<<21

On exit a list of icon handles whose selected bit (21) is set will be in the
buffer. Similarly, to see which is the first icon with ESG number 1 that is
selected:

SYS "Wimp_ Whichicon",window,buffer,&003F0000,&00210000

!buffer now contains the handle of the required icon, or - I if none is selected.

None

None

The Window Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

RO = window handle
R 1 = pointer to block

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

On entry, the block contains:

Wimp_SetExtent
(SWI &400D7)

Rl+O
Rl+ 4
Rl+ 8
Rl+ 12

new work area minimum x
new work area minimum y
new work area maximum x
new work area maximum y

This call sets the work area extent ot the specified window, and usually
causes the window's scroll bars to be redrawn (to reflect the new total size of
window). The work area extent may not be changed so that any part of the
visible work area lies outside the extent, so this call cannot change the current
size of a window, or cause it to scroll.

It is usual to make this call when a document h>as been extended, eg by text
being inserted into a word-processor.

Note that you must set the extent to be a whole number of pixels. If not,
strange effects can occur, such as the pointer moving beyond its correct
bounding box. If you do this, the Wimp automatically readjusts the extent on
a mode change.

None

None

The Window Manager: SWI Calls 1233

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Wimp_SetPointerShape
(SWI &400D8)

RO = shape number (0 for pointer off)
Rl =pointer to shape data (- 1 for no change)
R2 =width in pixels (must be multiple of 4)
R3 =height in pixels
R4 = active point x offset from top-left in pixels
R5 = active pointy offset from top-left in pixels

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

The shape data is a series of bytes giving the pixel colours for the shape. Each
row of the shape is given as a whole number of bytes (eg 3 bytes for a I 2-
pixel wide shape). Bytes are given in left to right order. The least significant
two bits of each byte give the colour of the leftmost pixel in that group of
four (ie it looks backwards as you write it down in binary).

In new programs, you should now use the call Wimp_SpriteOp
(SWI &400E9) with R0=36 (SetPointerSh<'lpe) instead of this one. The
following principles still apply though.

This convention should be used when programming the pointer shape under
the Wimp:

• shape 1 is the default arrow shape (set-up by *Pointer)

• to use an alternative, define and use shape 2

• when the pointer leaves the window where it was changed, it should be
reset to shape I.

1234 The Window Manager: SWI Calls

Related SWis

Related vectors

The reason codes Pointer_Entering_ Window and Pointer_Leaving_ Window
returned from Wimp_Poll are very useful for deciding when to reprogram
the pointer shape.

If you want to use Wimp_SpriteOp for all pointer shape programming, and
wish to avoid using *Pointer, you can use the Wimp sprite ptr_default to
program the standard arrow shape. Note however that ptr_default does
not have a palette, so you would have to reset the pointer palette too if your
pointer shape changed it.

None

None

The Window Manager: SWI Calls 1235

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1236

Wimp_Open Template
(SWI &400D9)

R 1 =pointer to template pathname to open

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This causes the Wimp to open the template file ~h·en, and to read in some
header information from the file. Only one template file may be open at a
time; this is the one used by Wimp_LoadTemplate (SWI &400DB) when that
SWI is called.

None

None

The Window Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWl is not re-entrant

Wimp_Close Template
(SWI &400DA)

This closes the currently open template file.

None

None

The Window Manager: SWI Calls 1237

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

1238

Wimp_LoadT em plate
(SWI &400DB)

R 1 = pointer to user buffer for template
R2 =pointer to workspace for indirccted icons
R3 = pointer to end of workspace
R4 = 256-byte font reference array (-1 for no fonts)
RS =pointer to (wildcarded) name to match (must be 12 bytes word-aligned)
R6 = position to search from (0 for first call)

R2 =pointer to remaining workspace
R6 =position of next entry (0 if no match found)
The template is at R I
The font array is updated if fonts were used
The string at RS is overwritten by the actual name (so at least 12 bytes must
be available there)

Interrupts are not defined
Fast interrupts arc enabled

Processor is in SVC mode

SWI is not re-entrant

The space required by the buffer passed in R 1 is 88 bytes for the window, 32
bytes for each icon and room for all indirccted data. This indirected data is
then copied by the Wimp into the area pointed to by R2.

Window templates arc created by the template creation utility (FormEd) .
They arc stored in a file, and each template has a name associated with it.
Because the search name may be wildcardcd, it is possible to search for all
templates of a given form (eg dialog*) by calling Wimp_LoadTcmplate with
R6=0 the first time, then using the value passed back for subsequent calls. R6
will be returned as 0 on the call after the last template is found. As the
wildcarded name is overwritten by the actual one found, it must be re
initialised before every call and must be big enough to have the template
name written into it.

The Window Manager: SWI Calls

Related SWis

Related vectors

The indirccted icon workspace pointer is provided so that when the window
definition is read into the buffer addressed by R 1, its icon fields can be set
correctly. An indirected icon's data is read from the file into the workspace
addressed by R2, and the icon data pointer fields in the window definition
are set appropriately. R2 is updated, and if it becomes greater than RJ, a
Window definition w9n't fiterrorisgi\'Cn.

The font reference count array is used to overcome the problem caused with
dynamically allocated font handles. When a template file is created, font
information such as size, font name etc is stored along with the font handle
that was returned for the font in FormEd. When a template is subsequently
loaded, the Wimp calls Font_FindFont and replaces references to the
original font number with the new handle. It then increments the entry for that
handle in the reference array. This array should be initialised to zero before
the first call to Wimp_LoadTemplate.

When a window is deleted, for all font handles in the range l · 255 you
should call Font_LoscFont the number of times given by that font's reference
count. This implies that a separate 256-byte array is needed for each template
loaded. However, this can be stored a lot more compactly (eg using font
handle/count byte pairs) once the array has been set up by
Wimp_LoadT emplace.

An alternative is to have a single reference count array for all the windows in
the task, and only call Font_LoseFont the appropriate number of times for
each handle when the task terminates.

None

None

The Window Manager: SWI Calls 1239

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1240

RO =character code

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

Wimp_ProcessKey
(SWI &400DC)

This call has two uses. The first is to make the Wimp return a Key_Presscd
event as though the character code passed in RO was typed by the user. It is
useful in programs where a menu of charncters corresponding to those not
immediately available from the keyboard is presented to the user, and
clicking on one of them causes the code to be entered as if typed.

The second use is to pass on a keypress that a task does not understand, so
that other applications (with the 'hot key' window flag set) may act on on it.
The key is passed (via the Key _Pressed event) ro each eligible task in tum,
from the top of the window stack down. It stops when a task fails to call
Wimp_ProcessKey (because it recognises the key), or until the bottom
window is reached.

For this to work, it is vital that a task always p:-tsscs on unrecognised key
presses using Wimp_ProcessKey. Conversely, if the program can act on the
key stroke, it should not then call Wimp_ProcessKey, as this might result in a
single key stroke causing several separate actions.

As a last resort, if no task acts on a function key press, the Wimp will expand
the code into the appropriate function key string and insert it into the
writeable icon that owns the caret, if any.

None

None

The Window Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Wimp_CloseDown
(SWI &400DD)

RO =task handle returned by Wimp_lnitialisc (only required ifRl ="TASK")
Rl ="TASK" (sec Wimp_lnitialisc &400CO)

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call must be made immediately before the task terminates by calling
OS_Exit. If this was the only extant task, the Wimp will reset the soft key
and mode settings to cl)eir original values (ie as they were before
Wimp_Initialise was first called). Any application memory used by the task
will be returned to the Wimp's free pool.

If the task handle is not given, then the Wimp will close down the currently
active task, ie the one which was the last to have control returned to it from
Wimp_poll. This is sufficient if the task is loaded in the application
workspace (as opposed to being a rclocatablc module).

Module tasks should always pass their handle to Wimp_CioseDown, as there
is no guarantee that the module in question is the active one at the time of the
call. For example, a task module would be required to close down in its 'die'
code, which may be called asynchronously wirhout control passing to the
module through Wimp_roll.

A Wimp_CioscDown will cause the service call WimpCioscDown (&53) to
be generated. See the section Rclocatable module tasks for details.

None

None

The Window Manager: SWI Calls 1241

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1242

Wimp_StartTask
(SWI &400DE)

RO =pointer to* Command to be executed

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call is used to start a 'child' task from within another program. The text
pointed to by RO on entry can be any * Command which will cause a Wimp
program to be executed, eg BASIC -quit myProg.

The Wimp will create a new 'domain' or environment for the task and calls
OS_CLI to execute the command. If the new task subsequently calls
Wimp_lnitialise and then Wimp_Poll, control will return to caller of
Wimp_StartTask. Alternatively, control will return when the new task
terminates through OS_Exit (which QUIT in BASIC c:1lls).

This call is used by the Desktop and the Filer to start new tasks.

Note that you can only call this SWI:

• if you arc already a 'live' Wimp task, and have gained control from
Wimp_lnitialisc or Wimp_Poll.

• you arc in USR mode.

None

None

The Window Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Wimp_ReportError
(SWI &400DF)

RO =pointer to standard error block, see below
Rl = flags, see below
R2 =pointer to application name for error window title (< 20 characters)

Rl = 0 if no key click, 1 if OK selected, 2 if Cancel selected

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

The format of a standard error block is:

RO+O error number
R0+4 zero-terminated error string

This call provides a built-in means for reporting errors that may occur during
the running of a program. The error number and its text is pointed to by RO.
The control code-terminated string pointed to by R2 is used in the Title Bar of
the error window, optionally preceded by the text Error from .

The flags in R 1 on entry have the following meanings:

The Window Manager: SWI Calls 1243

Related SWis

Related vectors

1244

Bit Meaning when set

0 provide an OK box

provide a Cancel box
2 highlight Cancel (or OK if bit i~ cle:~red)
3 if the error is generated while a tcxt·stylc window is open

(eg within a call to Wimp_CommandWindow), then don't
produce the prompt Press SPACE or click mouse to
continue, but return immediately

4 don't prefix the application name with Error from in the
error window's Title Bar

5 if neither box is clicked, return immediately with R I =0 and
leave the error window open

6 select one of the boxes according to hits 0 and 1, close the
window and return

7 · 31 reserved; must be 0

If neither bit 0 or I is set, an OK box is provided anyway. Bits 5 and 6 can be
used to regain control while the error window is still open, for example to
implement time-outs (for example, the disc insert box, which polls the disc
drive to see if a disc has been inserted), or usc keypresses to stand for clicks
on either of the boxes. Note though that the Wimp should not be re-entered
while an error window is open, so you should always call Wimp_ReportError
with bit 6 of Rl set before you next call Wimp_Poll, if you are using bit 5 in
this way.

Wimp_ReportError causes the service WimpReportError {&57) to be
generated. Sec the section Relocatable module ta~ks for details.

Note that Escape currently always returns I (ie OK clicked), instead of

whichever box is highlighted.

None

None

The Window Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Wimp_Get WindowOutline
(SWI & 400EO)

R 1 = pointer to a five-word block

The block is updated

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

On entry, Rl +0 contains the window handle; on exit the block is updated thus:

Rl+O
Rl+4
Rl+8
Rl +12
Rl +16

window handle
minimum x coordinate of window bounding box
minimum y coordinate of window bounding box
maximum x coordinate of window bounding box
maximum y coordinate of window bounding box

The Wimp supplies the xO,yO inclusive, xl, yl exclusive coordinates of a
rectangle which completely covers the specified window, including its border.
This call is useful when you want, for example, to set a mouse rectangle to the
same size as a window.

Note that this call will only work after a window is opened, not just created.

None

None

The Window Manager: SWI Calls 1245

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

1246

RO = mask (sec Wimp_roll)

Wimp_Pollldle
(SWI &400El)

Rl = pointer to 256 byte block (used for return data; ~ee Wimp_Poll)
R2 =earliest time for return with Nuli_Reason_Code event

sec Wimp_Poll (SWI &400C7)

Interrupts are not defined
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

This call performs the same task as Wimp_Poll. However, the caller also
specifics an OS_ReadMonotonicTime-type time on entry. TI1e call will not
return before then, unless there is a non-null event to be processed.
Effectively the caller can 'sleep', not being woken up until the specified time
has passed or until it has some action to perform. This gives more processing
time to other tasks.

Having performed the appropriate action upon return, the task should add its
'time-increment'; (cg 100 for a one-second granularity clock) to the previous
value it passed in R2 and C(lll Wimp_Pollldle again.

Note that if the -Wimp is suspended for a while (eg. the user goes into the
command prompt) and then returns, it is possible for the current time to be
much later than the 'earliest return' time.

For this reason, it is recommended that (for cx(lmplc) a c lock task should
cater for this by incorpornting the following structure:

SYS " OS ReadMonotonicTime " TO newtime
WHILE (newtime - oldtime) > 0

oldtime=oldtime+lOO
ENDWHILE
REM Then pass oldtime to Wimp_ Pollidle

The Window Manager: SWI Calls

Related SWis

Related vectors

None

None

The Window Manager: SWI Calls 1247

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1248

R 1 = poi nrcr to an icon block (sec below)

Interrupts arc not defined
Fast interrupts arc enabled

Processor is in SVC mode

SWI is not re-entrant

Wimp_Plotlcon
(SWI & 400E2)

This call can be used to plot an icon in a window during a window redraw or
update loop. The icon doesn't exist as part of the window's definition. Instead,
the data to be used to plor the icon is passed explicitly through Rl. The
format of the block is rhe same as that used by Wimp_Creatclcon
(SWI &400C:2), except that there is no window h;mdle associated with it (this
being implicitly the window which is currently hein~ redrawn or updated):

Rl+O
Rl +4
Rl+S
Rl+l2
R1+16
Rl+20

minimum x coordinate of icon b0uncling box
minimum y coordinate of icon bounding box
maximum x coordinate of icon bounding box
maximum y coordinate of icon oounding box
icon flags
icon data

Sec Wimp_Createlcon for details about these fields.

None

None

The Window Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

RO = mode number

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

Wimp_SetMode
(SWI &400E3)

This call changes the display mode used by the Wimp. It should not be used
by applications (which should be able to work in any mode), unless
absolutely necessary. Its main client is the palette utility, which atlows the
user to change mode as required.

In addition to changing the mode this catt resets the palette according to the
number of colours in the new mode, repro~rams the mouse pointer
appropriately and re-attocates the screen memory to usc the minimum
required for this mode. In addition, the screen is rebuilt (by asking atl tasks
to redraw their windows) and tasks are informed of the change through a
Wimp_Pott message.

Notes: the new mode is remembered for the next time the Wimp is started,
but does not affect the configured Wimp mode, so this witt be used after a
hard reset or power-up. If there is no active task when Wimp_SetMode is
called, the mode change doesn't take place until Wimp_lnitialise is next
catted.

None

None

The Window Manager: SWI Calls 1249

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1250

Wimp_SetPalette
(SWI &400E4)

Rl =pointer to 20-word palette block

R 1 = preserved

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

The block pointed to by R 1 contains the following on entry:

Rl+O
R1+4
RI+8

R1+56
R1+60
R1+64
Rl+68
R1+72
Rl+76

Wimp colour 0 RGI3 value
Wimp colour I RGI3 value
Wimp colour 2 RGB value

Wimp colour 14 RG13 value
Wimp colour 15 RGB value
border colour RGB value
pointer colour 1 RGB value
pointer colour 2 RGB value
pointer colour 3 RGB value

Each RGB value word hai' the format &RRGGRROO, ie. bits 0 · 7 are reserved,
and should be 0, bits 8 · 15 are the red value. bits 16 · 23 the green and bits
24-31 the blue, as used in a YOU 19,1,16,r,g,b command. The call, whose
main user is the palette utility, issues the appropriate palette VDU calls to

reflect the new values given in the 20-word block. In modes other than 16-
colour ones, a remapping of the Wimp's colour translation table may be
required, necessitating a i'crcen redraw. It is up to the user of
Wimp_SetPalette to cause this to happen (the palette utility does). Tasks are
informed of palette changes through a message event rcn1rned by Wimp_Poll.

None

None

The Window Manager: SWI Calls

On entry

On exit

'nterrupts

Processor Mode

Re-entrancy

'Jse

Related SWis

Related vectors

Wimp_ReadPalette
(SWI &400E5)

Rl =pointer to 20-word palette block

R 1 = preserved

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

The 20-word block is updated in the format described under
Wimp_SctPalette (SWI &400E4). However, the bottom byte of the first 16
entries contains the logical colour number that is used for that Wimp colour.
This is the same as the Wimp colour in 16-colour modes. In 256 colour modes,
bits 0 and 1 are bits 6 and 7 of the tint, and bits 2- 7 arc the GCOL colour.

Applications can usc this call to discover all of the current Wimp palette
settings.

None

None

rhe Window Manager: SWI Calls 1251

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1252

Wimp_SetColour
(SWI & 400E6)

RO = colour and GCOL action (~e below)

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

The format ofRO is as follows:

Bits Meaning

0 - 3 Wimp colour
4 - 6 GCOL action
7 0 for foreground, I for background

This calls is used to set the current graphics foreground or background colour
and action to one of the 16 standard Wimp colours. As described earlier,
these map into ECF patterns in monochrome modes, four grey-level colours in
four-colour modes, the available colours in 16-colour modes, and the clo~st
approximation to the Wimp colours in 256-colour modes.

After the call to Wimp_ScrColour, the appropri:He GCOL, TINT and (in two
colour modes) ECF commands will have been issued. The Wimp uses ECF
pattern 4 for its purposes.

None

None

The Window Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Wimp_SendMessage
(SWI &400E7)

RO = reason code (as returned by Wimp_?oll- often 17, 18 o r 19)
Rl =pointer to message block
R2 = task handle of destination task, or

R2 = window handle; message sent to window's creator, or

RZ = - 2 (icon bar) and
R3 = icon handle; message sent to icon's creator, or

R2 = 0; broadcast message, sent to all tasks, including the originator

R2 = task handle of destination task (except for broadcast messages)
the message is queued
the message block is updated (reason codes 17 and 18 only)

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

All messages within the Wimp environment arc generated using this call. The
Wimp uses it internally to keep tasks informed about various events through
their Wimp_Pollloop.

User tasks can also generate these types of message, with reason codes in the
range 0 to 12. On entry, R I should point to a block with the format described
under Wimp_Poll (SWI &400C7). For example, if you send an
Open_Window_Request to a task (R0=2), you should point R1 at a
Wimp_OpenWindow (SWI &400C5) block.

More often though, Wimp_SendMessage is used by tasks to send events of
type User_Message to one another. These differ from the 'system' types, in
that the Wimp performs some special actions, eg filling in fields of the
message block, and noting whether a reply has been received.

The Window Manager: SWI Calls 1253

1254

There arc three variations, depending on the rea~on code in RO on entry. The
first two, User_Mes~age and User_Message_Recorded (17 and 18), send a
message to the destination task(s). The latter expects the message to be
acknowled~:cd or replied to, and if it isn't the Wimp returns the message to
the sender. (See Wimp_Poll event codes 17, 18 and 19.)

Reason code User_Messat:e_Acknowledgc (19) is used to acknowledge the
receipt of a message without actually generating an event at the destination
task. The receiver copies the my_ref field of the messat:e block into the
your_ref field and returns the message using the task handle of the sender
given in the message block. If you acknowledge a broadcast message, it is not
passed on to any other tasks.

The formnt of a user mess:1ge block is:

R1+0
R1+4
RI+8
Rl+l2
Rl+16
Rl+20

length of block, 20 • 256 byres, a whole number of words
not used on entry
not used on entry
your_ref (0 if this is an original me~~age, not a reply)
message action
message d(lta (format depends on the message action)

Note that the block length should include any string that appears on the end
(eg pathnames), including the terminating ch<tracter, and rounded up to a
whole number of words.

On exit the block is updated as follows:

R I +4 task handle of sender
Rl +8 my_ref (unique Wimp-ceneratcd non-zero positive word)

Thus the receiver of the mes.c;af.!e will know who ~nt the mes~gc (useful for
acknowlcdr;ements) and will also have a reference that can be quoted in
replies to the sender. Naturally the sender can also use the~ fields once the
Wimp has filled them in.

Note that you can use Uscr_Mes~<.~ge_Acknowlcdge to discover the task
handle of a given window/icon by calling Wimp_SendMessage with R0=19,
your_ref = 0, and R2/R3 the window/icon h~mdlc(~) . On exit R2 will contain
the task handle of the owner, though no me~~age would actually have been
sent.

The Window Manager: SWI Calls

Message actions

System messages

Message_ Quit 0

Message_DataSave 1 -
Message_RAMTransmit 7

Message_PreOuit 8

The following is a description of the currently defined mc.c;sage actions. Some
of these are system types, others are generated by particular modules (most
notably the Wimp). Any other module or application can send its own private
messages, as required. A mo::lule is allowed to usc its SWI chunk number as
a base for the message action values. If you require a message action chunk
and do not have a SWI chunk allocated, contact Acorn Computers Customer
Support.

On receiving this broadcast message a task should tidy up (close files, de
allocate memory etc) and close down by calling Wimp_CioseOown
(SWI &40000) and OS_Exit. The task doesn't have any choice about closing
down at this stage. Any objections (because of unsaved data etc) should be
lodged when it gets the Message_PreQuit (8) described below.

See the section entitled Data transfer protocol for details of these messa~e
actions.

This broadcast message gives applications the ch:mce to object ro a request to
close down, if for example they hove modified data which has not been saved.
If the task does not mind terminating, it should ignore this message, and
eventually a Message_Quit will be received.

To object to the potential closedown, the task should acknowledge the
message by calling Wimp_ScndMessage with:

RO = User_Message_Acknowledgc (19)
R 1 = as returned by Wimp_Poll
Rl + 12 = Rl +8 (ie my_ref copied into your_ref)

Following this, the task should display a dialogue box ~iving the user the
chance to either save or discard files, as he sees fit.

Note that if the user subsequently selects OK (ie. di~card the data and quit
anyway), the task must restart the closedown sequence by issuing a key
pressed event (Ctri-Shift-FI2) to the task which sent it the PrcQuit message:

The Window Manager: SWI Calls 1255

1256

SYS "Wimp_GetCaretPosition",,bll<
blk! 24=&1F'C
SYS "Wimp_SendMessage",S,blk,qultsender

where quitsender Is read from sender field of orlqinal PreQuit message .

The Task Man3ger uses the Quit and PreQult ~easagr.s w~r.n the user selects the Exl t
option from Its menu. The way In which this works (In p8oudo-BASIC) Is aa fol l ows :

REM in CASE statement Cor Wlmp_Po l l event t ype ..•
WHEN Men u_Sclection : PROCdccodeMen u
IF' menuChoiceS "Exit " THEN

REM send the PreQuit and reMember my_rer
SYS "Wimp_SendMessaqe", User_Message_Recorded,PrcQuitBi ock, O
PreQuitRcf • PreQultBiock! 8

END IF'
WHEN User_Mcssaqe_Acknow lcdqc

REM got one of our messages bac~ . Is It the PreOult onl'?
IF' pollBlock!8 • PreQu!tRef THEN

REM no-one objected to PrcQuit so s a te to Issue quit
SYS"Wimp_SendMessagt:!" , User_Message_Recorded,qultBiock,O
quitRef•quitBlock!8

ELSE REM Is ll the quit one then?
REM if so , C! Xi t the Oes~top
IF' pol1Blk! 1 6•~essnge_Qult AND poll8lk!8• qultRF!f Tfl!': :-1 quit

END IF

WHEN User Message , User_Message Recordea
REM if someone else did a quit , then terminate desktop
IF pollBlk!16• Messaqe_QuiL AND pollBlk !8<>qultRe f TIIF:N quit

In English , rhe Task Manager is.~ues a PrcQuir broadcast when rhe Exit item is
selected from its menu. If this is returned by the Wimp {because no other
task objected), the Task Manager goes ahead and issues a Quit broadcast.
When this comes back unacknowledged. the Task Manager checks the
reference and quits if it is correct {as all other rnsks would already have
done).

The Task Manager must also be aple to respond to the key-pressed event
(Ctrl-Shift-FI2) &lFC.

Tasks should automatically resr-.. m the quit procedures as described earlier.

Finally, if the Task Manager ever gets a Quit that it didn't originate, it will
close itself down.

The Window Manager: SWI Calls

Message_PaletteChange
9

Flier messages

Message_FilerOpenDir
&400

Message_FilerCioseDir
&401

This broadcast message is issued by the Palette utility. It should not be
acknowledged. The utility generates it when the user finishes dragging one of
the RGB bars for a given colour, or when a new palette file is loaded.

If a task needs to adapt to a change in the physical colours on the screen, it
should respond to this message by changing any of its internal tables (colour
maps etc), and then call Wimp_ForceRedraw to ensure that its windows are
redrawn with the new colours. Note though that the palette utility
automatically forces a redraw of the whole screen if any of the Wimp's
standard colours change their logical mapping, so applications don't have to
take further action.

This message is not issued when the Wimp mode changes;
Message_ModcChange (&400Cl) reports this, so 1<1sks interested in colour
mapping changes should recognise this message too.

A task sends this message ro a Filer task. It is a request to open a new
directory display. The data part of the message block is as follows:

R1+20
R1+24
R1+28

filing system number
must be zero (reserved for flags)
full name of directory to view, zero-terminated

The string given at Rl +28 must be a full specification of the directory to open
including filescrver (if appropriate), disc name, and pathname starting from
$, using the same format as the names in Filer windows. Send the message as
a broadcast User_Message. If the directory name is invalid (eg the filing
system is not present), a Wimp_ReportError error will be generated by the
Filer.

Note that the Filing System modules (eg. ADFSFiler) do not use a broadcast,
but instead discover the Filer's task handle by means of the
Service_Startfiler protocol. Sec the section on Rclocatable Module tasks for
further details.

This message takes the same form as the previous one. All open directory
displays whose names start with the name given at R I +28 are closed.

The Window Manager: SWI Calls 1257

NetFiler message

Message_Notify &40040

Wimp messages

Message_MenuWarning
&400CO

1258

The NetFiler sends this broadcast message to enable an application to

display the text of a *Notify command in some pleasing way. If no-one
acknowledges the message, NetFiler simply displays the text in a window
using Wimp_ReportError, with the string Message from station

xxx. xxx in the Title Bar.

Information about the sender, and the text of the notify, are contained in the
message block, as follows:

R1+20
Rl+21
R1+22
Rl +23
Rl +24
R1+25
Rl+26
Rl+27

sending station number
sending station network number
LSB offivc-bytc real time on receipt of message
second byte of time
third byte of rime ·
fourth byte of time
MSB of five-byte real time on receipt of message
message text, terminated by a zero byte

So if you want to do something with the notify and prevent the NetFiler from
displaying it, copy the my_rcf field into the your_ref field and send the
message back using Wimp_SendMessage User_Mcssage_Acknowledge (19) .

The Wimp sends this message when the mouse pointer travels over the right
arrow of a menu item to activate a submenu. The menu item must have its
'generate message' bit (3) in the menu flags set for this to happen, otherwise
the Wimp will just open the submenu item as normal. (The submenu pointer
must also be greater than zero in order for this mess:1ge to be sent.)

In the message block arc the values required by Wimp_CreateSubMenu
(SWI &400E8) on entry. The task may use these. or may choose to take some
other action (cg create a new window and open that as the submenu).

R1+20
Rl +24
Rl +28
Rl +32

submenu pointer from menu item
x coordinate of top left of new submenu
y coordinate of top left of new submenu
main menu selected item number (0 for first)

The Window Manager: SWI Calls

Message_ModeChange
(&400C1)

Message_ Tasklnitialise
&400C2

Rl+36 first submenu selected item number

Rl + ... - 1 to terminate list

After the three words required by Wimp_CrcateSubMenu is a description of
the current selection state, in the same format rhar would be returned by the
Menu_Selection event. This information, in conjunction with the task's
knowledge of the menu srructure, is sufficient to work out the path taken
through the menu so far.

Wimp_SetMode (SWI &400E3) causes this message to be sent as a
broadcast. It gives tasks a chance to update their idea of what the current
screen mode looks like by reading the appropriate parameters using
OS_ReadVduVariables (SWI &31). (Though applications should need to
know as little about the display's attributes as possible to facilitate mode
independence.)

You should not acknowledge this message.

After sending the mes.~age, the Wimp generates an Open_ Window_Request
event for each window that was active when the mode change occurred. This is
because going from a wider to a narrower mode (eg 16 to 12) may require the
horizontal coordinates of windows to be compressed to fit them all on to the
new display. The whole screen area is also marked invalid to force a redraw
of each window's contents.

You should take care if, on a mode change, you modify a window in a way
that involves deleting it and then recreating with different attributes. This will
result in the handle of the window changing just after the Wimp scans the
window stack and generates the Open_ Window_Requcst for it, but before it
is delivered from Wimp_Poll, and the Wimp wilt usc the wrong handle. In
this situation, you should internally mark the window as 'to be recreated' on
receipt of the ModcChange message, and then when you receive the
Open_ Window_Request for that window, carry out the delete/recreate/open
action then.

This message is broadcast whenever a task calls Wimp_lnitialise. It is used
by the Task Manager to maintain its list of active tasks. Information in the
message block is as follows:

The Window Manager: SWI Calls 1259

Message_ TaskCioseDown
&400C3

Message_SiotSize
&400C4

Message_SetSiot
&400C5

1260

R1+4

Rl+20
Rl+24
Rl +28

new task handle (so it appears that rhc new task sent the
message)

CAO (current active object) pointer of new task
amount of application memory u5Cd hy the task
task name, as given to Wimp_lnitiali5C, zero-terminated

This performs a similar task to the one above, keeping the Task Manager (and
any other interested parties) informed ahour the state of a task. It is
generated by the Wimp on the task's behalf when it calls Wimp_CioseDown.
If a program 'accidentally' ca11s OS_Exit before calling Wimp_CloseDown,
the Wimp will perform the latter action for it. The message block is standard
except for

Rl +4 dying task's handle

ie the Wimp makes it look as though the task sent the message itself.

This broadcast is issued whenever Wimp_SiorSize is called. Again, its
primary client is the task manager, enabling that pwgram to keep its display
up to date. The message block looks like this:

R1+4

Rl+20
Rl+24

handle of rhe rask which owns the current slot

new current slot size
new next slot size

As with most broadcast message~. you should not acknowledge this one.

This message has two uses. First it allows the Task Manager to discover if an
application can cope with a dynamically varying slot size. Second, it is used
by the Task Manager to tell a task to change that size if it can.

The messar:e block contains the following:

new current slot size Rl+20
Rl+24 handle of task whose slot should be ch;mged

The receiver should check the handle at R I+ 24, and the size at R 1 + 20. If the
handle is not the task's, it should do nothing (ie n0 t~cknowledgement).

The Window Manager: SWI Calls

Message_ TaskNameRq
&400C6

Message_ TaskNamels
&400C7

Data transfer protocol

If the slot size is big enough for the task to carry on running, it should set RO
to this, R1 to - 1 and call Wimp_SiotSize (SWI &400EC). It should then
acknowledge the message.

If the slot size is too small for the task to carry on running, it should not call
Wimp_SiotSize, but should acknowledge the message if it wants to continue
to receive these messages. If ever a Message_SetSiot is not acknowledged, the
Task Manager makes that task an undraggable one on its display.

You should be prepared to receive negative values for the slot size (which of
course you shouldn't pass to Wimp_SiotSizc), so do a proper signed
comparison when checking the value in R 1 + 20.

This forms the first of a pair of messages that can be used to find the name of
a task given the handle. An application should broadcast this message. It will
be picked up by the Task Manager, if running. The Task Manager will
respond with a TaskNamels message (see below) . The message block should
contain the following information:

Rl+ZO handle of task whose name is required

The Task Manager responds to a TaskNameRq message by sending this
message. The message block contains the following:

Rl+ZO
Rl+24
Rl+28

handle of task whose name is required
task's slot size
task's Wimp_lnitialise name, zero-terminated

The principle user of this message-pair is the !Help application in providing
help about ROM modules.

The message-passing system is central to the transfer of data around the
Wimp system. This covers saving fi les from applications, loading files into
applications, and the direct transfer of data from one application to another.
The last use often obviates the need for a 'scrap' (cut and paste) mechanism
for intermediate storage; data is sent straight from one program to another,
either via memory or a temporary file.

The Window Manager: SWI Calls 1261

Saving data to a file

Data transfer code uses an environment vari;~ble called WimpSScrap to

obtain the name of the file which should be used for temporary storage. This
is set by the file ! System.! Boot , when a directory display containing the

! System directory is first displayed. Applications attempting data transfer
should check that WimpSScrap exists. If it doesn't, they should report the
errorWimpSScrap not defined.

Four main message types exist to enable pros:rams to support file/data
transfer. The protocol which uses them has been designed so that a save to file
operation looks very similar to a data transfer to another application.
Similarly, a load operation bears much similarity to a transfer from another
program. This minimises the amount of code th:n has to be written to deal
with all possibilities.

The messages types arc:

Message_DataSavc 1
Mcssage_DataSaveAck 2
Mes.~age_DataLoad 3
Mcssage_DataLoadAck 4

There are three others which have associated uses: Message_DataOpcn,
Message_RamFetch and Mcssage_RamTransmit. Before describing the
message types in detail, we describe the four data transfer operations.

Note that all messages except for the initiating one should quote the other
side's my_ref field in the message's your_ ref field, flS is usual when replying.

This is initiated through a Save entry in a task's menu. This item will have a
standard dialogue box, with a 'leaf' name and a file icon which the user can
drag to somewhere on the desktop, in this ca~e a directory window. The
following happens:

• The user releases the mouse button, terminating the drag of the file icon;
the application receives a Uscr_Drag_Box event.

• The application calls Wimp_GetPointerlnfo {SWI &400CF) to find out
where the icon was dropped, in terms of its coordinates and window/icon
handles.

• The application sends a DataSave mes.~age with the file's leafname to the
Filer using this information.

1262 The Window Manager: SWI Calls

Saving data to another
~pplication

Loading data from a file

• The Filer replies with a DataSaveAck mess;~ge, which contains the
complete path name of the file .

• The application saves the data to that file.

• The application sends the mess;~ge DataLoad to the Filer.

• The Filer replies with the message DataLoadAck.

The last two steps may seem superfluous, but they are important in keeping
the application-Filer and application-application protocol the same.

This is initiated in the same way as a Filer save. The following happens:

• The user releases the mouse button, terminating the drag of the file icon;
the application receives a User_Dtag_Box event.

• The application calls Wimp_GetPoinrcrlnfo to find out where the icon
was dropped, in terms of its coordinates and window/icon handles.

• The application sends a DataSave message with the file's leafname to the
destination application using this information.

• The destination application replies with a DaraSaveAck message, which
contains the pathname <Wimp$ Scrap>.

• The application saves the data to that file (which the filing system
expands to an actual pathname}.

• The application sends the mes.<;age DataLoad to the destination task.

• The external task loads and deletes the scrap file.

• The external task replies with the message DataLo<tdAck.

You can see now that the saving task doesn't need to know whether it is
sending to the Filer or something else. In its initial DataSave message, it just
uses the window/icon handles returned by Wimp_GetPointerlnfo as the
destination task (in R2/R3} and the Wimp docs the rest. It must, if course,
always use the pathname returned in the DataSaveAck message when saving
its data.

This is very straightforward. A load is initiated by the Filer when the user
drags a file icon into an application window or icon bar icon.

• The Filer sends the DataLoad message to the npplic:Jtion.

The Window Manager: SWI Calls 1263

Loading data from
another application

Message_DataSave 1

1264

• The application loads the named file and replies with a DataLoadAck
message.

The receiving task is told the window and icon handles of the destination.
From this it can decide whether to open a new window for the file (the file
was dragged to the icon bar) or insert it into an existing window.

This is simply the case of saving data to another application, but from the
point of view of the receiver:

• The external task sends a DataSave message to the application.

• The application replies with a DaraS:weAck message, quoting the
pathname <Wimp$Scrap>.

• The external task saves its data to that file.

• The external task sends the message DataLoad to the application.

• The application loads and deletes the file <Wimp$Scrap>.

• The application replies with the message DaraLoadAck to the external
task.

Again, the receiver can decide what to do with the incoming data from the
destination window and icon handles.

The messages used in the above descriptions are described below. Messages
I and 3 are generally sent as User_Mcssage_Recorded, because they expect
a reply, and types 2 and 4 are sent as Uscr_Message, as they don't. The
message blocks are designed so that a reply can always use the previously
received message's block just by altering a couple of fields.

When receiving any message, allow for either rypc 17 or 18. ic. don't rely on
any sender using one rype or rhe other.

The data part of the message block is as follows:

Rl+20
R1 +24
R1+28
Rl+32

destination window handle
destination icon handle
destination x coordinate (screen coordinates, ie not relative
destination y coordinate to the window)

The Window Manager: SWI Calls

Message_DataSaveAck 2

Message_Dataload 3

Rl+36
R1+40
Rl+44

estimated siz.c of data in bytes
file type of clara
proposed leafname of data, zero-terminated

The first four words come from Wimp_GctPointcrinfo. The rest should be
filled in by the saving task. In addition to the usual &xxx fllc types, the
following arc defined for use within the data transfer protocol:

&1000
&2000
&ffffffff

directory
application directory
un-typed file (ic had load/exec address)

The message block is as follows:

Rl +12

Rl+20
Rl+24
Rl +28
Rl+32
Rl+36
Rl+40
R1+44

my_ref field of the DataSave message

destination window handle
destination icon handle
destination x coordinate
destination y coordinate
estimated size ci data in bytes; - I if file is 'unsafe'
file type of data
full pathnamc of data (or <WimpS Scrap>), zero-terminated

The words at +20 to +32 arc preserved from the DataSave message. If the
receiver of the file (ie the sender of this message) is not the Filer, then it
should set the word at + 36 to -I. This tells the file's saver that its data is not
'secure', ie is not going to end up in a permanent file. In tum the saver will
not mark the flle as unmodified, and will not u~ the returned pathname as
the document's window title.

The Filer, on the other hand, will not put - 1 in this word, and will insert the
file's full pathname at +44. The saver can mark its data as unmodified (since
the last save) and use the name as the document window title.

From the foregoing descriptions you can sec that this message is used in two
situations, firstly by the Filer when it wants an application to load a file, and
secondly by a task doing a save to indicate that it has written the data to
<WimpSScrap>. The message block looks like this:

The Window Manager: SWI Calls 1265

Message_DataloadAck 4

Memory data transfer

1266

R1+12

R1+20
R1+24
R1+28
Rl +32
R1+36
R1+40
R1+44

my_ref from DataSaveAck messa~:c, or 0 if from Filer

destination window handle
destination icon handle
destination x coordinate
destination y coordinate
estimated size of data in bytes
file type
full path name of file, zero terminated

The receiver of this message should check the file type and load it if
possible. After a successful load it should reply with a
Message_DaraloadAck.

If the sender of this message does not receive an acknowledgement, it should
delete <Wimp$Scrap> and generate an error of the form Data transfer
failed: Receiver died.

R\+12

R1+20
R\+24
R1+28
Rl +32
R1+36
R1+40
R1+44

my_reffrom Daraload mes.o;age

destimuion window handle
destination icon handle
destination x coordinate
destination y coordinate
estimated size of data in bytes
file type

full pathname offile, zero terminated

Effectively, the file-loading task just chan,::es the message type to 4 and fills
in the your_ref field, then sends back the previous Dataload message to its
originator.

The foregoing descriptions rely on the usc of the Wimp scrap file. However,
task to ~~sk transfers can be made much quicker by transferring rhe data
within memory. The save and load protocols arc modified as below to cope
with this.

Saving data to another :1pplic<~rion (memory)

The Window Manager: SWI Calls

This is the same as previously described until the Dat<JSave message. Then:

• The external task replies with a RAMFetch message.

• The application sends a RAMTransmit message with data.

• The external task replies with another RAMFerch message.

• The last two steps continue until all the data has been sent and received.

Loading data from another application (memory)

• The external t<Jsk sends a DataSave message to the application.

• The application replies with a RAMFetch message.

• If this isn't acknowledged with a RAMTran1'mit, use the <Wimp$Scrap>
fi le to perform the operation, otherwise ...

• Get and process the data from the RAMTransmit buffer.

• While the RAMT ransmit buffer is full:
Send a RAMFerch for more dat<J
Get and proce!'s the data from the RAMTransmit buffer.

So if the first RAMFetch message is not acknowledged (ie it gets returned as
a User_Message_Acknowlcdge), the data receiver should revert to the file
transfer method. If any of the subsequent RAMFetches are unanswered (by
RAMTransmits), the transfer should be aborted, but no error will be
generated. This is because the sender will have already reported an error to
the user.

The data in;elf is transferred by the sender calling Wimp_ T ransferl31ock
(SWI &400FI) just before it sends the RAMTransmit message. Sec the
description of that call for derails of entry and exit conditions.

The termination condition for the saver generating RAMTr:msmits and the
loader sending RAMFctchcs is that the buffer is not full. This implies that if
the amount of dat<J sent is an exact multiple of the buffer size, there should
be a final pair of messages where the number of bytes sent is 0.

Here arc the message blocks for the rwo messages:

The Window Manager: SWI Calls 1267

Message_RAMFetch 6

Message_RAMTransmit 7

1268

Rl+12

Rl +21)
R1+24

my_ref field of DataSave/RAMTransmit message

buffer address for Message_RAMT mnsmit
buffer length in bytes

This is sent as a User_Message_Recorded so that a lack of reply to the first
one results in the file transfer protocol being used instead, and a lack of
reply to subsequent ones allows the transfer to be abandoned. No error
should be generated because the other end will have already reported one. A
reply to a RAMFetch takes the form ci a RAMTransmit from the other task.
The receiver should also generate an error if it can't process the received data,
eg if it runs out of memory. This should also cause it to stop sending
RAMFetch messages.

When allocating its buffer, the receiver can usc the estimated data size from
the DataSave message, but it should be prepared for more data to actually
be sent.

Rl+IZ

Rl+20
Rl +24

my _ref field of RAM Fetch message

buffer address from RAMFetch mes~:-~ge
number of bytes written into the buffer

A data-saving task sends this message in response to a RAMFetch if it can
cope with the memory transfer protocol. If the number of byres transferred
into the buffer (using Wimp_ T ransferi3lock) is smaller than the buffer size,
then this is the last such message, otherwise there is more to send and the
receiver will send another RAMFerch message.

All but the last messages of this type should be sent as
User_Message_Recorded types. If there is no acknowledgement, the sender
should abort the data transfer and stop sending. It may also give an error
message. The last message of this type (which may also be the first if the
buffer is big enough) should be sent as a User_Message as there will be no
further RAMFetch from the receiver to act as acknowledgement.

The Window Manager: SWI Calls

The DataOpen Message

Message_DataOpen 5

Related SWis

Related vectors

This message is broadcast by the Filer when the user double-clicks on a file.
It gives active applications which recognise the file type a chance to load the
file in a new window, instead of having the Filer launch a new copy of the
program.

The message block looks like this:

Rl+ZO
RI+24
R1+28
RI+32
Rl+36
R1+40
RI+44

window handle of directory display containing file
unused
x-offset of file icon that was double clicked
y-offset of file icon
0
file type
full path name of file, zero-terminated

The x and y-offsets can be used to display a 'zoom-box' from the original icon
to the new window, to give a dynamic impression of the file being opened.

If the user double-clicks on a directory with Shift held down, this message
will be broadcast with the file type set to &1000.

The application should respond by .loading the file if it can, and
acknowledging the message with a Message_LoadDataAck. If no-one loads
the file, the Filer will *Run it.

Note that once the resident application has decided to load the file, it should
immediately acknowledge the Data Open message. This is so that if the load
fails with an error (eg. Memory full), the Filer will not then try to *Run the
file. This would only result in another error message a'nyway.

None

None

The Window Manager: SWI Calls 1269

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1270

Wimp_CreateSubMenu
(SWI &400E8)

Rl = pointer to submenu block
R2 = x coordinate of top left of submenu
R3 = y coordinate of top left of submenu

Interrupts arc not defined
Fast interrupts ;Jre enabled

Processor is in SVC mode

SWI is not re-entrant

This call is made when a message type MenuWarning (&400CO) is received
by an application. This message is sent by the Wimp when a submenu is
about to be accessed by the pointer moving over the right-pointing arrow of
the parent menu.

The contents of Rl • R3 arc obtained from the three words at offsets +20 to
+28 of the message block. However, the submenu pointer docs not have to be
the same as that given in this block (which is just a copy of the one given in the
parent menu entry when it was created by Wimp_CreateMenu). For example,
the application could c reate a new window, and use its handle instead.

None

None

The Window Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Wimp_SpriteOp
(SWI & 400E9)

RO =reason code (in the range 0- &FF, see OS_SpriteOp (SWI &2E))
Rl not used
R2 = pointer to sprite name
RJ ... OS_SpriteOp parameters

R1 ... OS_SpriteOp results

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call allows operations on Wimp sprites, without having to specify the
Wimp's sprite area pointer. Sprites are always accessed by name (ie &100 is
added to the reason code given); pointers to actual sprites are not used. Only
read-type operations are allowed, except that you may use the reason code
MergeSpritcfile (11) to add further sprites to the Wimp area.

The Wimp first tries to access the sprite in the the RMA part of its sprite
pool. If it is not found there, it tries the ROM sprite area. If this fails, it
returns the usual Sprite not found message.

None

None

The Window Manager: SWI Calls 1271

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1272

RO =base of ROM sprite area
Rl =base ofRMA sprite area

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

Wimp_BaseOfSprites
(SWI &400EA)

This can be used to find out the actual addresses of the two areas that make
up the Wimp sprite pool, for usc with OS_SprireOp. Note that the the RMA
area may move around, eg after a sprite file has been merged with it. In view
of this, you should use Wimp_SpritcOp if possible.

None

None

The Window Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

RO =window handle

Wimp_BlockCopy
(SWI &400EB)

Rl =source rectangle minimum x coordinate (inclusive)
R2 =source rectangle minimum y coordinate (inclusive)
R3 = source rectangle maximum x coordinate (exclusive)
R4 = source rectangle maximum y coordinate (exclusive)
R5 =destination rectangle minimum x coordinate
R6 =destination rectangle minimum y coordinate

RO - R6 = preserved

Interrupts are not defined
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

All coordinates arc relative to the window's work area origin. The call copies
a block of work area space to another position. The Wimp does as much on
screen work as it can, using the YOU block copy primitive, and then
invalidates any areas which must be updated by the application itself. The
call is useful for performing insert/delete operations in editors.

Note that if any of the source area contains icons, their on-screen images will
be copied, but their bounding boxes will not automatically be moved to the
destination rectangle. It is up to the application to move the icons explicitly
(by deleting and re-creating then) so that they are redrawn correctly.

If the source area contains an ECF pattern, eg representing Wimp colours in a
two-colour mode, and the distance between the source and destination is not a
multiple of the ECF size (eight pixels vertically and one byte horizontally),
then the copied area will be 'out of sync' with the existing pattern.

Note that this call must not be made from inside a Wimp_RcdrawWindow
or Wimp_UpdateWindow loop.

The Window Manager: SWI Calls 1273

Related SWis

Related vectors

1274

None

None

The Window Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

RO = new size of current slot (-1 to read size)
Rl =new size of next slot (-1 to read size)

RO = size of current slot
R 1 = size of next slot
R2 = size of free pool

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

Wimp_SlotSize
(SWI &400EC)

Tasks can usc this call to read or set the size of the current slot, ie that in
which the task is executing, and the next slot (for the next task to start up). It
also rerums the (possibly altered) size of the Wimp free pool.

If a task wants to alter its memory, it should set RO to the required amount
and R 1 to -1. Note that the next slot size docs not actually have any effect
until the next new task is run. It is simply the amount of the free pool that is
allocated to a new task by default . No tasks should set their current slot size -
normally, a new task will call *WimpSiot, which then calls Wimp_SiotSize.

On exit from Wimp_SiotSize, the OS_ChangeEnvironment variables
MemoryLimit and ApplicationSpaceSize are updated. Note that it is not
possible to change the application space size if this is greater than
MemoryLimit. This is the situation when, for example, Twin loads at &80()(X)

and runs another task at &8000, setting that task's memory limit to &80000.

Wimp_SiotSize does not check that the currently active object is within the
application workspace, or issue Memory service calls, so it should be used
with caution. The same applies to *WimpSiot which uses this SW!.

The Window Manager: SWI Calls 1275

Related SWis

Related vectors

1276

Possible ways in which this call could be used are:

• the run-time library of a language could provide a system call to set the
currcnr slot size using Wimp_SlotSizc. An example is BASIC's
END=&xxxx construct, which allows a program to adjust its HIMEM
limit dynamically.

• a program could usc Wimp_SlotSiz.c to give itself a private heap above
the area used by the host language's memory allocation routines. This
only works if the run-time library routines read the Mcmorylimit value
once, when the program is started. Edit uses this method to allocate
memory for its text files.

None

None

The Window Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

RO =

Rl =

R2 =

R6=
R7 =

Wimp_ReadPixTrans
(SWI &400ED)

&Oxx if sprite is in the system area
&lxx if sprite is in a user area and R2 points to the name
&2xx if sprite is in a user area and R2 points to the sprite
0 if the sprite is in the system area
I if the sprite is in the Wimp's sprite area
otherwise a pointer to the user sprite area
a pointer to the sprite name (RO = &Oxx or & 1 xx) or
a pointer to the sprite (RO = &2xx)
a pointer to a four-word block to receive scale factors
a pointer to a 2, 4 or 16 byte block to receive translation table

R6 block contains the sprite scale factors
R 7 block contains a 2, 4, or 16 byte sprite translation table

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWl is not re-entrant

The siz.e of the table pointed to by R7 depends on the sprite's mode. Note
that sprites cannot have 256 colours.

The format of the R6 block is:

R6+0
R6+4
R6+8
R6+12

x multiplication factor
y multiplication factor
x division factor ·
y division factor

All quantities arc 32-bits and unsigned.

The format of the R 7 block is:

The Window Manager: SWI Calls 1277

Related SWis

Related vectors

1278

R7+0
R7+1

R7+14
R7+15

colour to store sprite colour 0 as
colour to store sprite colour I as

colour to store sprite colour 14 as
colour to store sprite colour 15 as

The purpose of this call is to discover, for a given sprite, how the Wimp
would plot it if it was in an icon to give it the most consistent appearance
independently of the current Wimp mode. The blocks set up at R6 and R7 on
exit can be passed directly to the above mentioned sprite plotting calling.

Scale factors depend on the mode the sprite was defined in and the current
Wimp mode. The colour translation table is only valid for sprites defined in
1, 2 or 4-bits per pixel modes. The relationships between the sprite colours
and the Wimp colours used to display them are:

Sprite bpp Colours used

1 Colours 0 · I ->Wimp colours 0, 7
2 Colours 0 · 3 - >Wimp col0urs 0, 2, 4, 7
4 Colours 0 · 15 ->Wimp colours 0 · 15
8 Translation table is undefined

So sprites defined with fewer than four bits per pixel have their pixels
mapped into the Wimp's grcyscalc colours.

Use ColourTrans if you want to plot the sprite usin~: the best approximation
to its acnml colours. This works for sprites in a 256-colour mode as well.

None

None

The Window Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Wimp_ClaimFreeMemory
(SWI &400EE)

RO = l to claim, 0 to release
Rl =amount of memory required

Rl =amount of memory available (0 if none/already clt~imcd)
R2 =start address of memory (0 if claim failed because not enough)

Interrupts arc not defined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call is analogous to OS_ClaimScrcenMemory (SWI &41). It allows a
task to claim the whole of the Wimp's free memory pool (the 'Free' entry on
the Task Manager display) for its own use. There arc restrictions however: the
memory can only be accessed in processor supervisor (SVC) mode, and while
it is claimed, the Wimp can't usc the free pool to dynamically increase the
size of the RMA etc. For the second reason, tasks should not hang on to the
memory for any longer than absolutely necessary. They should also avoid
calling ccxle which is likely to have much to do with memory allocation, eg
which claims RMA space. In o ther words, do not call Wimp_roll while the
free pool is claimed.

None

None

The Window Manager: SWI Calls 1279

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

1280

Wimp_CommandWindow
(SWI &400EF)

RO = operation type, sec below

Interrupts are not defined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call opens a text window in which normal VDU 4-type output can be
displayed. It is useful for runnin~; old-fashioned, text-based programs from
within the Wimp environment. The exact action depends on RO as follows.

RO > 1 RO is treated as a pointer to a text strin~. Thi10 is used as the title for
the command window. However, the command window is not opened
immediately; it is just marked as 'pcndin~·. It docs not
become 'active' until the next call to OS_ WriteC. When this occurs,
the window is opened and the YOU 4 text viewport is set to the same
area on the screen.

RO = 1 The command window s~tus is set to 'active'. However, no drawing on
the screen occurs. This is used by the ShellCLJ module so that if
Wimp_RcportError is called, the error will be printed rexn1ally and
not in a window.

RO = 0 The window is closed and removed from the screen. If any output was
generated between the window bcin~: opened with RO > l and this
call being made, the Wimp prompts with Press SPACE or
click mouse to continue before re-building the screen.

RO =-I The command window is closed without any prompting, regardless of
whether it was used or not.

The Window Manager: SWI Calls

Related SWis

Related vectors

The Wimp uses a command window when starting new tasks. It calls
Wimp_CommandWindow with RO pointing to the command string, and then
executes the command. If the task was a Wimp one, it will call
Wimp_Initialise, at which point the Wimp will close the command window
with RO = -1. Thus the window will never be activated. However, a text-based
program will never call Wimp_lnitialise, so the command window will be
displayed when the program calls OS_ WriteC for the first time.

Certain Filer operations which result in commands such as *Copy being
executed also use the command window facility in this way.

Wimp_ReportError (SWI &400DF) also interacts with command windows. If
the window is active, the error text will simply be displayed textually.
However, if the command window is pending, it is marked as 'suspended' and
the error is reported in a window as usual.

None

None

The Window Manager: SWI Calls 1281

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1282

RO =colour

Interrupts arc not defined
Fast interrupts arc enabled

Processor is in SVC mode

SWI is not re-entrant

RO on entry has the following form:

Bits Meaning

Wimp_T extColour
(SWI & 400FO)

0-3 Wimpcoloud0 - 15)
7 0 for foreground, I for background

This call is the text colour equivalent of Wimp_SctC'..olour (SWI &400E6). It
is used to set the text foreground or background colour to one of the 16
standard Wimp colours. As text can't be displayed using ECF patterns, only
solid colours are used in the monochrome modes.

Wimp_ TcxtColour is used by Wimp_CommandWindow (SWI &400EF)
and on exit from the Wimp. It can be called by applications that wish to
display YOU 4-typc text on the screen in a special window.

None

None

The Window Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

RO = handle of source task
Rl =pointer to source buffer

Wimp_T ransfer Block
(SWI &400Fl)

R2 = handle of destination task
R3 =pointer to destination buffer
R4 = bufferlength

Interrupts are not defined
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

A block of memory is copied from the source task's address space to the
destination task. The buffer addresses and the length are byte aligned, ie the
buffers don't have to start on a word boundary or be a whole number of
words long.

This call is used in the memory data transfer protocol, described in the
section about Wimp_ScndMessage (SWI &400E7). The Wimp ensures that
the addresses given are valid for the task handles, and generates the error
Wimp transfer out of range if they arc not.

None

None

The Window Manager: SWI Calls 1283

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1284

RO = information item index

RO = information value

Interrupts arc not defined
Fast interrupts arc enabled

Processor is in SYC mode

SWI is not rc-cntrnnt

Wimp_ReadSyslnfo
(SWI & 400F2)

This call is used to obtain information from the Wimp which is not readily
available otherwise. The value in RO on entry indicates which item of
information is required; its value on exit is the flppropriate value. Currently
defined values for RO arc:

RO Meaning

0 number of active tasks

As the call can be used rcg·ardless of whether Wimp_lnitialise has been
called yet, it can be used to sec if the progrnm is running from within the
desktop environment (RO > 0 on exit) or l'imply from a command line (RO=O).
Note that even if a program is activated from the Task Manager's command
line (Fl2) facility, RO will be greater than zero.

None

None

The Window Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Wimp_SetFontColours
(SWI & 400F3)

R I = font background colour
R2 = font foreground colour

Interrupts are not defined
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

This call sets the anti-aliascd font colours from the two (standard Wimp)
colours specified. It calculares how many intermediate colours can be used,
and makes the appropriate Font Manager calls. It takes the display mode
into account, so that using this call instead of setting the font colours directly
saves the application quite a lot of work.

You should not assume the font colours arc as you left them across calls to
Wimp_Poll, as another task may have called Wimp_SetFontC'..olours before
you regain control. Conversely, you don't have to preserve the colours before

·you change them, as no-one else will be expecting you to.

This call is less powerful than ColourTrans_SctFontColours (SWI &4074F),
in that it assumes that Wimp colours 0-7 form a grey-scale sequence.

None

None

The Window Manager: SWI Calls 1285

*Commands

Syntax

Parameter

Use

Example

Related commands

Related SWis

Related vectors

1286

*Configure WimpMode
Sets the default mode for the Desktop

*Configure WimpMode <number>

<number> the display mode that the Desktop should use after a power-
up or h:nd reset

This configuration parameter is used to set the default mode that the Desktop
will usc when the machine is first switched on, or after a hard reset. If you
leave the Desktop and then re-enter it before powering on again or pressing
Ctrl Break, the mode used is the one that was last used by the Desktop.

*Configure WimpMode 15

*Status WimpMode

Wimp_SetMode

None

The Window Manager: *Commands

Syntax

Parameter

Use

Examples

Related commands

Related SWis

*Configure WimpFlags
Sets the drag style and noisiness for the Wimp.

*Configure WimpFlags <number>

<number> a value between 0 and 31, as follows:

Bit Meaning when set

0 window position drags arc continuously redrawn
1 window resizing drags are continuously redrawn
2 horizontal scroll drags arc continuously redrawn
3 vertical scroll drags are continuously redrawn
4 no beep is generated when an error box appears

The effect of clearing bits 0- 3 is that the drag operation is performed using
an outline, and the window is redrawn at the end of the drag.

This configuration parameter allows the user to control aspects of the Wimp's
operation. Generally, all of bits 0- 3 will be either set or cleared, depending
on whether the user requires continuous updates or outline dragging. Bit 4
controls the action of the standard Wimp error reporting window.

*Configure WimpFlags 0
*Configure WimpFlags 15

*Status WimpFlags

Wimp_?oll, Wimp_OpcnWindow, Wimp_ReportError

fhe Window Manager: •commands 1287

Syntax

Use

Examples

Related commands

Related SWis

Related vectors

1288

*DeskFS
Selects the DesktOp filing system

*DeskFS

The desk filing system is a read-only one which contains some useful window
template files used by sysrem utilities. DcskFS files can be catalogued,
loaded and opened for input. They arc u~ually accessed through the
DeskFS: file system prefix: WimpSPa th defaults to DeskFS:

*DeskFS
*Copy DeskFS:Templates.Wimp ADFS:Templates.Wimp

*DeskTop
*Set Wimp$ Path

Wimp_ Open Template, Wimp_LoadTcmplate, Wimp_ Close Template

None

The Window Manager: ·commands

Syntax

Parameters

Use

Examples

Related commands

Related SWis

Related vectors

*Desktop
Starts up the Wimp Desktop.

*Desktop [<command> I -File <pathname>]

<command> a *Command that will be passed to Wimp_StartTask after
the Desktop starts up

<pathname> a text file, each of whose lines will be passed to
Wimp_StartTask when the desktop starts up

The Desktop provides an environment in which Wimp programs can operate.
When called, it automatically starts resident Wimp task modules such as the
filers, the palette utility and the Task Manager. Irs optional parameters also
allow further tasks to be automatically started.

The Desktop may also be configured as the default language, using the
command:

*Configure Language 4

*Desktop
*Desktop !FormEd
*Desktop -F DTFiles

*DeskFS, *Dcsktop_Filer, *Dcsktop_ADFSFiler et al.

Wimp_StartTask

None

The Window Manager: ·commands ~289

Syntax

Parameters

Use

Related commands

Related SWis

Related vectors

1290

*Desktop_ADFSFiler
*Desktop_Palette

*Desktop_Filer
*Desktop_N etFiler

*Desktop_RAMFSFiler
*Desktop_T askManager

Commands to initialise ROM-resident Desktop utilities

As above

None

These commands are provided for the usc of the Desktop, in order to start up
the various tasks that appear automatically on the icon bar. Because it is only
possible to start a new t<~sk using a command lime, rhese have to be present.
However, they arc not for users to type, and an attempt to start, say, the
palette utility outside of the Desktop will yield the error message Use
•Desktop to start the Palette utility.

•Desktop

Wimp_StartTask

None

The Window Manager: *Commands

Syntax

Parameter

Use

Example

Related commands

Related SWis

Related vectors

*Filer CloseDir
Closes a directory display on the Desktop

*Filer CloseDir <dirname>

<dirname> the full path name of a directory who!'e directory display is to

be closed.

This command can be used to close a directory display window and any sub
directories. Ordinarily the display would have be opened by an earlier
*Filer_OpenDir command, but it can actually be used to close any open
display.

The <dirname> must exactly match a leading sub-string of the title of the
directory displays that are to be closed. That is, it must include filing system,
drive name and a full path from $. The case of letters is not significant, but
the Filer uses lower case for filing system names.

This call must be able to close all directory displays that match the specified
sub-string.

You can only use this command from within the desktop environment, or
within a Desktop 'startup' or boot file.

*Filer CloseDir adfs::app1Disc.$.progs.basic

*Filer_OpenDir

None

None

The Window Manager: *Commands 1291

Syntax

Parameter

Use

Example

Related commands

Related SWis

Related vectors

1292

*Filer_OpenDir

Opens a directory display on the Desktop

*Filer_OpenDir <dirname>

<dirname> the full path name of a directory who1>c directory display is to
be opened.

This command can be used to open a directory di~play window.

If the display is already open, it simply stays open; no new display appears.
For this to work though, <di rname> must exactly match the title of the
directory display that is already open. That i~. it must include filing system,
drive name and a full path from $. The case of letters is not significant, but
the Filer uses lower case for filing system names.

If the name is even slightly different from an already open one (eg you omit
the $. after the drive name), it will be treated as a different directory. This
can result in two displays looking at the same directory. However, if you don't
use a proper full pathname, problems can occur when you nm applications
from within the directory, since they usc their p<~thnames to reference files
within themselves.

You can only usc this command from within the desktop environment.

*Filer_OpenDir adfs::applDisc.$.progs.basic

*Filer_CioseDir

None

None

The Window Manager: ·commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

*IconSprites
Merge a sprite file into the Wimp sprite area

*IconSprites <pathname>

<pathname> the name of the sprite file ro load

This command merges the specified sprite file with those already loaded in
the Wimp's shared sprite area. Sprites in this area are used automatically by
certain Wimp operations, and because all applications can access them, the
need for multiple copies of sprite shapes can be avoided.

*IconSprites <Obey$Dir>. !Sprites

Wimp_SpritcOp

None

The Window Manager: ·commands 1293

Syntax

Parameters

Use

Examples

Related commands

Related SWis

Related vectors

1294

*Pointer
Displays or hides the mouse pointer

*Pointer [011]

None the pointer shape is defined to be the standard arrow shape (held in
the Wimp sprite ptr_dcf;lUlt) and the sprite colours arc programmed
to be their default values. The pointer is displ::~ycd.

0 the pointer is hidden.
1 this is the same as omitting the parameter.

The *Pointer command is u!'ed for ensuring rhat the pointer is set to its
default colours and shape. It can also be used to hide the pointer. Pointer
shape number 1 is used by the *Pointer comm<~nd. Wimp programs that re
program it should use shape 2. Shapes 3 and 4 arc used by the Hourglass
module.

*Pointer
*Pointer 0

None

Wimp_SetPointerShape, Wimp_SprircOp

None

The Window Manager: *Commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

*Status WimpFlags
Display the WimpFlags configuration parameter.

*Status WimpFlags

None

Displays the current WimpFiags configuration; see *Configure WimpFiags.

*Status WimpFlags

*Configure WimpFlags

None

None

The Window Manager: ·commands 1295

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

1296

*Status WimpMode
Display the WimpMode configuration paramc.:tcr.

*Status WimpMode

None

Displays the current WimpModc configuration; sec *C'.-0nfigurc WimpModc.

*Status WimpMode

*Configure WimpMode

None

None

The Window Manager: ·commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

*Wimp Palette

*WimpPalette <pathname>

<pathname> a file of type &FED (Palette).

The file is used to set the Wimp's colour palette. Typically the file would
have been saved using the Desktop's palette utility. An attempt to use a file
other than type &FED with this command yields the message E~~o~ in
palette file. The RunType for Palette files is *WimpPalette %0, so a

new palette may be set-up from the Desktop simply by double-clicking on
the file's icon.

If no task is currently active, the palette is simply stored for later usc.
Otherwise it is enforced immediately. Palette files can be read in either of
two formats:

As a list ofRGB bytes corresponding to Wimp colours 0- 15, then
the border colour and then the three pointer colours.

2 As a complete VDU sequence, again corre~ponding to Wimp colours
0- 15, the border colour and the pointer colours. Typically an entry
would be 19,colour,R,G,B.

Type (1) is read for compatibility with Arthur, but since the palette utility
always saves files in format (2), this should be used in preference.

*WimpPalette g~eyScale

None

Wimp_SetPalette

None

The Window Manager: ·commands 1297

Syntax

Parameters

Use

Examples

Related commands

Related SWis

Related vectors

1298

*W impS lot

Sets the size of application space

*WimpSlot [- min) <size> (K] ([- max) <size> [K)]

-min <size>

-max <size>

the minimum application workspace size, in bytes or
Kilobytes, that the current Wimp application
requires. This switch must be given.
the maximum amount of application space that the
current Wimp application requires. If omitted, there
is no maximum. ie. this switch is optional.

This command is typically used by *Obey files called !Run, which the Filer
uses to launch a new Wimp application. It calls Wimp_SiotSize to try to set
the application memory slot for the current task to be somewhere between the
limits specified in the command.

If there are fewer than -min bytes free, the error Application needs at
least <min>K to start up is generated.

Otherwise, if the current slot is less than the - min value, then the slot size will
be set to -min bytes. If it is already between the - min and - max values, then
the slot size is unaltered. If -max is supplied, and the current slot size is
greater than the -max value, then it will be reduced to - max bytes.

The slot size that is set by this command will also apply to the application
that the *Obey file finally invokes.

*WimpSlot 32K
*WimpSlot -min 150K -max 300K

*Wimp Task

Wimp_SlotSize

None

The Window Manager: •commands

Syntax

Parameter

Use

Example

Related commands

Related SWis

Related vectors

*Wimp Task
Starts up a new task (from within another task)

*WimpTask <command>

<command> *Command which is used to start up the new task

The *WimpTask command simply passes the supplied command to the SWI
Wimp_StartTask. It can only be called from active Wimp tasks (ie ones that
have called Wimp_lnitialise).

*WimpTask myProg

*WimpSiot

Wimp_StartTask

None

fhe Window Manager: • Commands 1299

Application
Notes

General principles

Consistency

Quality

In this section we gather together various points which will enable you to write
more effective programs running under the RISC OS Wimp. The section is
aimed at readers who now have a good undersrnnding of the Wimp calls, but
want to ensure that they usc them in the most effective ways.

Much of what is said below is to do with consistency and standards. Providing
the user with a consistent, reliable interface is the first step towards
producing a powerful environment, <Jnd one th<~t the user will want to work
with instead of just being forced ro.

Other topics covered include moJe-indcpcndcnce, usc of colour, case of usc,
the icon bar and dialogue boxes.

The multi-tasking Wimp emphasises th;Jt applic<Jtions work together for the
user of the machine:

• They co·opernte in sharin!; the m<.~chinc.

• They look ha1monious.

• Their user interfuccs arc similar.

• The whole is more important than a single application.

When porting applications into the desktop environment, check that they work
well with d1e existing applications and utilities. Strive to ensure that the
habitual user of the desktop environment and the Appplications Suite
programs will find your program easy to usc, and natural to learn.

It is much better to write a small program that docs something simple, and
docs it well, than a sprawling mass that crnshcs occasionally. With a view to
this:

• Do not bypass operating system interfaces or access hardware devices
directly.

• Do not peek and poke par.:e zero locations (the hardware vectors etc), or
kernel workspace.

1300 The Window Manager: Application Notes

Responsiveness

Colour

Ease of use

Compatibility

Such tricks may well not work on future mnchine and operating system
upgrades. Acorn will pursue a policy of continuous improvement and
expansion for its product lines: build your software to last.

RISC OS runs on extremely fast machines, and this speed can be used to
make the system easier to usc and more productive. The system software has
been written very carefully so that all of this performance is delivered to be
used by the application, rather than being swallowed up within the opcrnting
system. Fast, smooth scrolling and redraw arc worth striving for as they make
effective and productive use of an application much easier.

Covering a wide range of screen modes cnn seem troublesome when
constructing an application, but it allows a wide price-range for the end u~r.
who can choose between resolution and cost. Animated bright colour graphics
can help make a progrnm easier to understand and to use. Not relying on
screen size allows your program to move easily to new better screens and
modes when they become avaih.1ble.

This is what WIMP systems arc about most of all. All of the various
elements described here are ultimately designed to make the computer easier
and more pleasant to use, over a wide range of user experience and practice.
An application should be:

• easy to learn

• easy to re-learn

• easy to use productively.

These things can conflict with each other, and with other things (eg system cost,
program size, program development time, backwards compatibility). Design
is not easy, and not all users agree.

The following points should noted, to ensure that your application is
compatible with fun1rc version~ of the Wimp and behaves as well as it can
with pre-version 2.00 Wimps.

• Reserved fields must be ~et to 0, ie reserved words must be 0, and all
reserved bits unset.

The Window Manager: Application Notes 1301

Terminology

Mouse terms

Files

1302

• Unknown Wimp_Poll reason codes, message actions etc must be ignored -
do not generate errors.

• Applications should check Wimp version number, and either adapt
themselves if the Wimp is too old, or report an error to the current error
handler (using OS_GenerareError).

• Beware of giving errors if window handles arc unrecognised as they may
belong to another task and it is sometimes legal for their window handles
to be returned to you (eg by Wimp_GetPointerlnfo) .

• Wimp tasks which arc modules must obey certain rules (see the section
Relocatable module tasks).

• Tasks that can receive Key_Pressed events must pass on all unrecognised
keys to Wimp_ProcessKcy. Failure to do so will result in the 'hot key'
facilities not working.

Remember that the primary users of RISC OS are users and not
programmers: consistent terminology, and the avoidance of jargon, are
important in order to make RISC OS friendly. l'cc<Jusc RISC OS is not solely
a desktop operating system (eg the user has access to the command line
interpreter, and non-windowing <!pplications such as BASIC) some jargon
inevitably slips through, but this should always be minimised.

Press press a button down
Release release a button
Click press and relc<Jsc
Drag press and move the mouse, o r press for more than 0.2s
Double click press,rclease,prcss,rclcasc within Is without moving the
mouse
Choose
Type
Select

what you do to a menu entry
what you do to keys on the keyboard
Change an object's state by clicking on it

It is a common fault to confu~ 'press' and 'click', and to talk about 'selecting'
menu entries.

The model of files and filing systems presented within the RISC OS Desktop
is that files arc always manipulated by their full pathname, including the
filing system name, disc title, ere. This l!ives e:-~ch file in the system a unique
name. There is no concept of 'current directory', so you should not refer to, or

The Window Manager: Application Notes

Application Resource
files

rely on, its being set. Every effort is made to ensure that people never have to
type a full pathname, but they do have to sec and (more or less) understand
them.

Heavy usc is made of file types. All files should be typed and date-stamped,
rather than being of the older load/exec address form (but be prepared to
encounter these, and respond correctly).

Never build absolute drive numbers or absolute file names or absolute filing
system names into your program. Check your program working from floppy,
Winchester, and Econet, and en~urc that installation is easy.

Applications in the multi·t<~sking world arc typically represented as a
directory whose name begins with ! , eg ! Draw. When referring to these
applications in this document, however, we leave the ! off the name. The Filer
provides various mechanisms to help such applications, so that the program
and its resources can be treated as a single unit and installation etc is
straightforward.

Resources of any form can be held within an application directory. There arc
several standard types, some of which arc discussed in more detail below.
Common resource files arc:

! Boot *Run by the Filer when it first dispbys the application
directory

! Run *Run by the Filer when the user double-clicks on the
application directory

! Sprites Passed to *IconSprites by the ! Boot file, or the Filer
! RunimageThe executable code of a program
TemplatesThe application's window templarc file
Sprites The application's private sprite file

If an application is intended for international usc then all textual messages
within the program should be placed in a sept~rate text file, so that they can
be replaced with those of a different language. It may be unhelpful for the
application to read such messages one by one, however, as this forces the user
of a floppy disc-based system to have the disc containing the application
permanently in the drive. Error messages should all be read in when the
application starts up, so that producing an error message docs not cause a
Please insert disc title message to appcnr first.

The Window Manager: Application Notes 1303

Shared resources

The !Appl. !Boot file

1304

Note that Obey$0ir and obey files arc important here. Applications must
always be invoked with their full pathnames, so that Obey$0ir is set
correctly. For example, if a resource file is accessed later when the current
directory has changed, using a full path name means it will work OK.

Resources may also be updated by the program during the course of
execution. For instance, if an application has user-settable options which
should be preserved from one invocation of the program to the next, then
saving them within the application directory means that the user does not have
to worry about separate files containing such data. As a source of user
settable options this technique is preferable to reading an environment string,
since with the latter system the user has to understand how to set up a boot
file.

Some resources are of gencrJl interest to more than one program. Typical
examples include fonts, and modules that provide general facilities. Such
resources should be placed in rhe System application (whose ! Boot sequence
sets a variable System$Path) or in a separate application such as Fonts.

It should be noted that the use of shared resources makes applications
slightly harder to install, so check carefully that error mes.~ages are helpful
if the shared resources cannot be located.

The rules above may break down for large applications. Some applications
occupy more than one floppy disc, with swapping required during operation.
It is difficult to give precise guidelines for such programs, because their
requirements vary so widely. The rules above, however, will be used for many
smaller programs and so will be reasonably familiar to users. Larger
programs should be designed and organised to fit within the same general
philosophy, so that users find them easy to install, understand and operate.

The key resource names that arc built in to the system are as follows. The
application directory is presumed to be called '!Appl' in the examples below.

This is the name of a file which is *Run when the application directory is first
'seen' by the Filer. It is usually an Obey file, ie a list of commands to be
passed to the command line interpreter (see the *Obey command for derails).
Here is a list of commands executed by a typical ! Boot file, the one for
Draw:

The Window Manager: Application Notes

The !Appl. !Sprites file

IconSprites <Obey$Dir>. !Sprites
Set Alias$@RunType_AFF Run <Obey$Dir>. !Run %%*0
Set File$Type_AFF DrawFile

The actions of these arc to respectively

• load the sprite file for the application into the Wimp sprite area. The
Filer does this automatically if there is no ! Boot file, provided that the
sprite file is called !Sprite.

• set the run-type for files created by the application, so that double
clicking on them in the Filer runs Draw on the file. Note the use of %% so
that the substitution takes place when the file is nm, not when the ! Boot
file is obeyed.

Note that *Set ... means that the current value of Obey$Dir is copied into
the private variable, ie it is expanded immediately, so if it changes later
to Alias$.. , the variable will not change.

• set up a name for files created by Draw, for use in Full Info filer
displays.

The Filer only runs ! Appl. ! Boot if the sprite called ! appl does not
already exist in the Wimp sprite pool (sprite names are lower case). This
prevents repeated delays from re-executing ! Boot files (or even re
exammmg application directories). However, it relies on the various
applications seen by the Filer having unique names, eg if you have more than
one System directory then only the first one 'seen' will be used.

This is the name of a sprite file. For an application ! Appl this can provide a
sprite called ! appl which is used by the Filer when displaying the directory,
and also a sprite named sm! appl for use in small-icon displays.

! Sprites can also provide sprites that relate to data files controlled by this
application, in small and large form (using sprite names file_ttt and
small_ttt, with ttt being the hex identity of the file type). See Editor
icons below for rules about the appearance of sprites.

Note that these are merged into the Wimp's shared sprite pool using
*IconSprites. Private sprites should be contained in !Appi.Sprites, and be
loaded into a private sprite area by the application.

The Window Manager: Application Notes 1305

1306

The Draw ! Sprites file cont"dins the followin~:::

! draw The !Draw application directory, Large icons and icon bar
sm! draw The !Draw application directory, Small icons and Full info
file_aff Draw files, Large icons
small_affDraw files, Small icons and Full info

If your application creates or uses one of the standard file types, you may not
have to provide a file_ttt icon for it. The following are provided in the
Wimp sprite ROM area:

Sprite

file bbc
file feb
file fee
file fed
file ff6
file ff7
file ff8
file ff9
file ffa
file ffb
file ffc
file ffd
file ffe
file fff
file dir
file XXX

Type

BBCROM
*Obey
Template
*Palette
Font
BBCfont
*Absolute
*Sprite
*Module
*BASIC
Utility
*Data
*Command
*Text
*Non-application directory (folder)
*Un-typed Ooad/exec address) file

Sprites with a * also have small format versions in the Wimp sprite area.
Those which haven't can be scaled to half size to achieve the Full info
representation. There are also application and small_app icons for
applications which don't have a sprite called !appl.

The standard size for the larger size sprite is 68 OS units square. This is to
give them a consistent appearance in Filer windows and on the icon bar. For
mode 12 (the usual mode used to define sprites), this size converts to 34

The Window Manager: Application Notes

The !Appi.!Run file

pixels wide by 17 pixels high. The small sprites arc half this size: 34 OS
units square. Exact sizes are less critical for these ones; typically a mode 12
small sprite will be 16- 19 pixels wide by 9 high.

Check the appearance of sprites in two, four, sixteen and 256-colour screen
modes; the Wimp will do its best to translate from mode 12 colours to those
available. Note that icon sprites must not be defined in 256-colour modes (the
Wimp can't currently cope with these because of colour translation
limitations).

Sprites for document files (file_ttt) conventionally have a square black
(colour 7) border four OS units wide. (That is, vertical lines are two pixels
wide and horizontal ones arc one pixel high, if the sprite is defined in mode
12.)

Sprites for devices (eg printers, disc drives) conventionally have a grey (5)
outline and cream (12) body. ! appl sprites are conventionally not square (so
require a transparency mask) and are related visually to the file ttt
sprites used to represent the files that they edit.

This is the name of a file which is *Run when the application directory is
double clicked. 1t is usually an Obey file. Here is what !Draw.!Run docs:

WimpSlot -min 260K -max 260K
RMEnsure FPEmulator 2.60 RMLoad System:Modules.FPEmulator
RMEnsure FPEmulator 2.60 Error You need FPEmulator 2.60
or later

also RMEnsure SharedCLihrary arul ColourTrans modules

Set Draw$Dir <Obey$Dir>
Set Draw$PrintFile printer:
Run "<Draw$Dir>.!Runimage" %*0

The action of these commands is to respectively

• call *WimpSiot to ensure that there is enough free memory to start the
application.

Draw, like many applications, knows exactly how much memory it should
be loaded with. It acquires more memory once executing (without the
knowledge of the lan~ua~c system underneath) by calling SWI

The Window Manager: Application Notes 1307

Wimp_SiotSize. Paint, Drnw and Edit all mainrnin shifting heaps above
the initial start-up limit, ensuring that exrrn memory is always given back
to the central system when it is not needed.

Applications can also arrange to have the user control dynamically how
much memory they should have, by dragging the relevant bar in the Task
Manager display. See Message_SetSiot for details.

• ensure that any soft-loaded modules that the application requires are
present, using *RMEnsure. If your call to *RMEnsure can load a module
from outside your application directory then you should call it twice, to
ensure that the newly l o::~dcd module is indeed recent enough. If the
*RMLoaded module comes from your ::~pplication directory, one
*RMEnsure is sufficient.

• set an environment variable called Drnw$0ir from Obey$0ir. (Note that
you should not usc the v::~riable ObeySDir as another macro could quite
likely change the setting of Obey$Dir, so it is safer to make a copy.) This
allows Draw to access its ::~pplication directory once the program itself is
running, enabling it to access, for example, template files by passing the
pathname <Draw$Dir>. Templates to Wimp_OpenTemplate. In
general you should usc the variable ApplSPath if the application is
called ! Appl.

• set another environment variable. Different ::~pplications will have their
own requirements.

• run the executable image file. !Runlmage is rhe conventional name of the
actual program. It is also used by the Filer to provide the date-stamp of
an application in the Full info display. Note th::~t this time there is only a
single % to mark the parnmeter, as the parameters passed to the *Obey
command must be substituted immediately.

Other possible actions that may occur within !Run files are

• execute !Boot. This will usually have been done already, but in the
presence of multiple applications with the same name the !Boot file of a
different one may have been seen first. This can be done explicitly using
a command such as *Run <Obey$Dir>.!Boot, or you could just edit the
!Boot file into the !Run file.

1308 The Window Manager: Application Notes

Memory

• if shared system resources are used then ensure that System$Path is
defined, and produce a clean error message if it is not. For example:

*If "<System$Path>" = '"'Then Error 0 System resources cannot be found

• loading a module can take memory from the current slot size, so the
*WimpSiot call must be called after loading modules. If you do it both
before and after, you avoid loading modules in the case where the
application definitely won't fit anyway.

However, some applications wish to ensure that there is also some free
memory after they have loaded, for example if they use the shifting heap
strategy outlined above. Such applications may call *WimpSiot again
just before executing ~Runlmage, with a slightly smaller slot setting, to
leave just the right amount in the current slot while at the same time
ensuring that there is some memory free.

It should be emphasised that the presence of multiple applications with the
same name should be thought of as an unusual case, but should not cause
anything to crash. Also, complain 'cleanly' if your resources can no longer be
found after program startup.

One point to note here is that when an application is starting up from its *RtJn
file, if a screen mode change is to take place, you must call *WimpSlot 0 0
before the change and reset the slot size afterwards.

In a multi-tasking environment, memory should be used sparingly. Most
simple applications require a fixed amount of memory, which can be
arranged using a !Run file that specifies exactly the right *WimpSiot size.

Applications with more complex requirements can arrange to call
Wimp_SiotSize at nm-timc to take (and give back) memory. BASIC
programs may use the END=&xxxx construct to call Wimp_SlotSize.

C programs should call Wimp_SlotSize directly or use 'flex' (available with
Release 3 of the Acorn C Compiler), which provides memory allocation for
interactive programs requiring large chunks of store.

If Wimp_SlotSize is used directly, the language run-time library (and
malloc()) will be entirely unaware that this is happening and so you must
organise the extra memory yourself. A common way of doing this is to provide

The Window Manager: Application Notes 1309

Graphics

Mode independence

1310

a shifting heap in which only large blocks of variable size data live. By
petfonning shifting on this memory, pages can be given back to the Wimp
when documents are unloaded.

Important:

• Do not reconfigure the machine.

• Do not kill off modules to get more workspace.

Such sequences are quite likely to be hardware-dependent and OS version·
dependent.

Programs should work in all screen modes in which the Wimp works. Read
the current screen mode rather than setting it when your program is loaded,
and call OS_ReadVduVariables (SWI & 31) to obtain resolution, aspect
ratio etc instead of building these into the program.

At the very least, the program should not crash in inappropriate modes, but
should display a message in its window, eg 256-colour modes only, as
appropriate. Mode 0 is not usually useful, but it is worth making it work if
you possibly can. You should make Mode 23 work for users with big
monochrome screens. Also, try a square pixel mode (e.g. mode 9). Also check
in modes 13, 15, 16 18, 19 and 20.

The Wimp broadcasts a message when the mode changes, so any mode·
specific data can be changed at that point.

Think of an OS graphics unit as being a constant unit of measurement, rather
than a fraction of the width of the screen. The standard assumption is that
there are 180 OS-units to the inch, even though this may in fact vary between
physical screens. 'Device-independent' should be interpreted as meaning 'the
same sire in OS units in any mode' rather than 'the same fraction of the screen'.

Mode 16 is highly non-square, ie the aspect ratio is wrong. Do not try to
correct for this automatically, it is an inevitable consequence of trying to fit a
great deal of text onto a standard monitor. Some monitors C;:tn in any case be
adjusted to make the pixels square.

The Window Manager: Application Notes

Colours

Redrawing speed

Programs uninterested in colours must also check operation in 256-colour
modes, eg some EOR (exclusive OR) tricks do not work quite the same. For
instance, see Wimp_SetCaretPosition for a description of how the Wimp
draws the caret using EOR plotting. Clock uses a similar trick for the second
hand of the clock. As another example, Edit uses EORing with Wimp colour 7
(black) to indicate its selection, bur redraws the text in 256-colour modes.

In two-colour modes the Wimp uses ECF patterns for Wimp colours I to 6
(grey levels). Note that certain EOR-ing tricks do not work on these, and that
use ofWimp_CopyBiock can cause alignment problems for the patterns.

Use Wimp_SetColour rather than GCOL. You should also consider using the
ColourTrans module (see below) if your pro~m deals with absolute
colours. Do not change the palette, but read and use the existing one.

Many programs choose to render graphics in 'true' (RGB triplet) colours, and
use the current palette to give as close an approximation as possible to the
colour they intend. This approach to colour has the enormous benefit that it is
not tuned to the limitations of today's hardware.

The palette utility produces a broadcast message when the user changes the
palette settings, allowing such programs to repaint for the new palette. A
module called ColourTrans (used by Paint and Draw) gives the closest
setting possible to a given RGI3 value. This module is currently provided in
RAM in Release 2.0 of RISC OS in !System.Modules.Colours, but may be
moved into ROM in later releases of the OS.

A technique used on some systems is to remember the bit-map behind a menu
or dialogue box when popping it up, to make removing it faster. This is not
possible in a multi-tasking environment because a window from a separate
task may be changing in the background. Rather than doing this, concentrate on
making redraw fast. One available technique for this is to use sprites to
remember the contents of a window which are difficult to redraw quickly.

Extensive use of icons within dialogue boxes puts most of the onus of
redrawing onto the Wimp, relieving the application writer of that particular
burden. It should only be necessary to process redraw events for dialogue
boxes when they contain complex user graphics.

The Window Manager: Application Notes 1311

Other points

The Mouse

Select and Adjust

1312

Another important technique for speeding up redraw is the usc of source-level
dipping. During redraw and update, the Wimp always informs the
application program of the current clipping rcct:mgle. The redraw of icons,
and of objects in the Draw application is fast b!.'causc this rectangle is used as
a rapid test for the rejection of many redraw operations. For an example of
how to use this technique, sec the Patience program.

Do not use the system sprite pool (sprite area p0inter=O in window blocks) in
production programs, build a user one or usc the Wimp area (pointer= 1) if
appropriate. The system sprite pool is present under RISC OS for backwards
compatibility with the Acorn Master, and to help the construction of very
simple programs.

Some program developers feel very strongly that a program should be able
to take over the entire screen, without any scroll bars ere. It is perfectly
possible for a program to do this and still benefit from the multi-tasking
environment, as long as this is treated as a specific mode of operation (chosen
by a menu entry saying 'Fill screen', for insttlncc), and the program can also
operate in a window. This facility can easily he implemented by opening a
window the size of the screen, on top of all others. If you set its 'backdrop'
bit, then this will also stop ;my windows from going behind yours. Some
programs may even have special properties that only operate when in this
mode, eg animation implemented using direct writing to the screen. The desire
for this mode of operation, however, should not alone lead you to abandon the
multi-tasking world entirely.

The mouse has three buttons, called Select (left), Menu (middle) and Adjust
(right).

The button actions should follow those of the Filer, Edit and Draw, namely:

• Select is used to make an initial selection

• Adjust is used to toggle clements in and our of this selection and to add
extra selections without cancelling the current ones

This is the origin of the names for the buttons.

The Window Manager: Application Notes

Double clicks

The mouse pointer

Menus

Basic operation

Always usc Select as the 'primary' button of rhe mouse, used for pomnng at
things, dragging etc. Adjust is used for less common or less obvious functions,
or for slight variations and speedups. If you have no useful separate oper-.1tion
in any particular context, then make Adjust do nothing rather than duplicating
the functionality of Select : this is all part of training the user to usc Select
first.

Another technique for speedups and vanat1ons on mouse operations is to look
at the setting of the Shift key when the mouse event occurs. Such combinations
should never be necessary to the operation of a program, cg a user
experimenting with your progr<~m should not be expected to try all such
combinations.

The Wimp automatically detects double clicks, typically used to mean 'open
object'. It should be noted that a double click causes a single click event to be
sent to the program first. Some other systems avoid this, which may appear to
simplify the task of programming but leads to reduced responsiveness to
mouse operations (because the application doesn't get to hear about the first
click until the WIMP system is sure it's not a double click). A double click
should in any case be thought of as a consolidation of a single click.

If you set your own pointer shapes, use pointer sh;~pe 2 for them. Set it back
to pointer 1 (the srandard generic arrow) using *Pointer on a
Pointer_Lcaving_ Window event. Pointers 3 and 4 arc used by the hourglass.

Do not use pointer colour 2, as it behaves improperly on high resolution
monochrome screens (it alternates between black and transparent).

Menus are accessed via the middle mouse button, referred to as Menu. As a
general rule an application should provide a single menu tree within a
window, rather than a collection of little menus that require the user to point
at a specific place in the wind0w before pressing Menu. The problem with
the latter approach is that it is hard for the user to determine the complete set
of commands available.

The Window Manager: Application Notes 1313

Menu format

Making menu choices

1314

(This is known as the 'closure' principle. The user should be able to guess
what your program can do, and discover fairly rapidly what it can't do,
without having to search everywhere for hidden menus etc.)

It is reasonable for entries in the menu to be context-sensitive. In general such
portions of the menu depend either on the object indicated by the pointer
when Menu is pressed (cg in the Paint file window, Filer directory displays),
or on a selected object or objects (cg in Edit, and again Filer directory
displays). Where options are not available due to the context of the menu,
they should be shaded, rather than omitted.

The standard attributes for menus are

• the title says 'Appl' (the application name) rather than 'Appl Menu'

• the title is black (7) on a grey (2) background

• the body is black on a white background (0)

• items arc 44 OS-units high

• items have initial letters capitalised and arc in lower case o therwise

• there is no separation between items

• text is left-justified (except for keyboard equivalents, see Keystrokes
below)

• items use the system font

Try not to make non-leaf menus too wide: reducing the horizontal travel
necessary helps rapid choice in nested menus. Open the menu initially 64 OS
units to the left of the actual button press, in order to aid this.

Do not make non-leaf items sh;~ded (unsclcctablc). This helps the user to
understand the complete set of operations avail;~hlc at :my time.

A button press on a non-leaf should have no effect (other than removing the
menu tree), or should duplicate functionality that is avaihtble elsewhere.

Pressing Select or Menu on a menu entry 1ihould should choose the current
menu item, closing the menu tree.

The Window Manager: Application Notes

Icon bar menus

Dialogue Boxes

Basic operation

Dialogue box format

Pressing Adjust on a menu entry should cause the relevant action to be
performed, but the menu to remain - sec Wimp_CreateMcnu for details on
how to implement persistent menus.

Menus produced from the icon bar (sec below) should be moved up a little
before opening, so that the relevant menu bar entry is still visible. The base
of the menu should be 96 OS units from the bottom of the screen, so it doesn't
obscure icon bar sprites. The menu should be horizontally aligned so that the
lefthand edge of the menu is 64 OS units to the left of the point where the
mouse click occurred.

The simplest way to provide dialogue boxes is as leaves of the menu tree. If
the necessary windows arc permanently created and linked to the menu data
structure, then the Wimp will handle all opening and closing automatically.

Alternatively, the menu tree can be arranged so that the application is
informed (by a message from the Wimp) when the dialogue box is being
opened; this allows any computed data to be delayed until the last minute.
For a large program with many dialogue boxes this is preferable, as the
Wimp has a limit on the number of windows in existence between all tasks.

This form of dialogue box can be visited by the user without clicking on
mouse buttons, just like traversing other parts of the menu tree. This is
possible because redraw is typically much faster than on previous systems, so
popping up the dialogue box and then removing it does not cause a significant
delay.

The standard attributes for di;Jio,:::uc box windows arc:

• title is black (7) on a grey (2) background

• title highlight (input focus) background is also grey (1)

• body is black (7) on a grey (I) or white (0) background

• writcable icon fields arc black (7) on white (0), with a border

• action buttons are black (7) on cream (12), with a border

The Window Manager: Application Notes 1315

Dialogue box controls

Writeable icons

1316

I • dialogue boxes do not have Close icons

Dialogue boxes match the colouring of menus, to show that they are part of
the menu tree. If the dialogue box is large and has fill-in fields then usc
colour 1 as the window background rather than 0. Large expanses of white
background can make fill-in fields harder to see.

The 'About this program' dialogue box is a useful convention. Provide an
'Info' item at the top of the application's menu, and make the dialogue box its
submenu. You should also have the 'Info' item at the top of the menu that you
produce when the user clicks with Menu on your icon bar icon. Use Edit's
template file to obtain an exact copy of the standard layout used in the
Applications Suite programs.

If a menu operation leading to a dialogue box has a keyboard short-cut,
Wimp_CreateMenu should be used to initially open the dialogue box, rather
than Wimp_OpenWindow (although Wimp_OpcnWindow should still be
used in response to an Open_ Window _Request event). This will ensure that it
has the same behaviour concerning cancellation of the operation etc as when
accessed through the menu tree.

There are various common forms of icon that occur within dialogue boxes, the
most common forms arc described here to improve consistency between
applications.

Writeable icons are used for various forms of textual fill-in field. They
provide validation strings so d1at specific characters can be forbidden.
Alternatively arbitrary filtering code can be added to the application to
ensure that only legal strings (within this particular context) are entered.

Oxle should be added to the handling of each dialogue box for the following
keystrokes. It is not possible for the Wimp to do this, because it doesn't know
the right ordering to use. ·

Down-arrow

Up-arrow

move to the next writeablc icon within the dialogue
box, or to the first if currently at the last.

move to the previous wrireable icon within the
dialogue box, or to the last if currently at the first.

The Window Manager: Application Notes

Action icons

Option icons

Return move to the next writeable icon within the dialogue
box, or perform the default 'go' operation for this
dialogue box if currently within the last writeable
icon.

When moving to a new writeable icon, place the caret at the end of the
existing text of the icon. See Wimp_SetCaretPosition for details of how to do
this.

This term refers to 'buttons' on which the user clicks on in order to cause some
event to occur, typically the event for which the parameters have just been
entered in the dialogue box. An example is the OK button in a 'Save as'
dialogue box.

The best button type to use is 7 (Menu), with non-zero ESG. This will cause
the button to invert while the pointer is over it {like a menu item), and for a
button press to be reported.

It is sometimes appropriate to provide keyboard equivalents for action
buttons. For instance, if the dialogue box is available via a function key as
well as on the menu (S<.-c Keystrokes below) then adding key equivalents for
action icons may mean that the entire dialogue box can be driven from the
keyboard. A conventional usc of keys is:

• Return - in the last writeable icon. 'Go' - perform the obvious action
initiated by filling in this dialogue box.

• Escape- cancel the operation; remove the dialogue box. Note that Escape
is dealt with by the Wimp automatically in this case, as the dialogue box
was opened using Wimp_CrcateMenu.

• F2, FJ etc to Fll - if the action icons are arranged positionally at the top
or bottom of the dialogue box in a simple row, then define F2, FJ etc as
positional equivalents of the action buttons, ie F2 activates the left-most
one, FJ the next etc. Note that Fl is normally reserved by convention to
'get help', so it should be used to provide help, or do nothing. Similarly,
Fl2 should remain a route to the CU.

This term refers to 'switches', which can either be on or off.

The best icon to use is a text plus sprite one. The text has the validation string
Soptoff, opt on, where the sprites opt off and opt on are defined in the
Wimp ROM sprite area. The HVR bits of the icon flags (3, 4 and 9) are set

The Window Manager: Application Notes 1317

Radio icons

Static dialogue boxes

1318

to 0,1 and 0 respectively (see Wimp_Creatclcon). This gencr<~tcs a box to the
left of the text, with a star within it if the 0ption is on (ic the icon is selected).
The button type is 11.

The ESG can be zero to make Select and Adjust both toggle the icon state, or
non-zero (and unique) to make Select select and Adju~t toggle the icon state.

The Filer's menu item Access dialogue box for a parricul<~r file, uses this
type of control (with ESG=O).

This term refers to a set of options where one, and only one, of a set of icons
can be selected.

The text plus sprite form is again best, using the validation string
Sradiooff, radioon from the Wimp sprite area, and a non-zero ESG
shared by all the icons in the group, to force exclusive selection. If required,
the icons can have their 'adjust' bit set to enable Adjust to toggle the st<~te
without deselecting the other icons.

A static dialogue box is opened using Wimp_OpcnWindow rather than
Wimp_CreateMenu. A static dialogue box marches normal ones in colours,
but has a Close icon.

One common form of use is a 'tool' dialogue box. This typically consim
entirely of action icons, and is used in preference to a submenu because
typically it is used to switch rapidly between the tool box and the pointer.
Examples are the Colour and Tool window!i in Paint. These arc activated (for
a given sprite) using menu entries 'Show colours' t~nd 'Show tools'.

Another example is the Draw 'Shapes' window which appears on the left of
the drawing window. Selecting from this dialogue box acts as a short cur to
choosing from the Draw menu.

A further reason to use a static dialogue box is that it may be appropriate to

attach menus to a dialogue box. Yet another is that it is not possible to drag
an icon (eg from a Filer directory display) into a menu tree dialogue box
from another application, because as soon as the drag starts the menu tree is
cancelled.

The Window Manager: Application Notes

The Icon bar

Icon bar dimensions

The window manager provides an icon bar facility to allow tasks to register
icons in a central place. It appears as a thick bar at the bottom of the screen,
containing filing system and device icons on the left, and application icons on
the right.

When an application is loaded, it registers an icon on the icon bar using
Wimp_Createlcon with window handle =-1 (or -2 for devices). The icon is
typically the same as the one used to represent the application directory
within the Filer, ie !Appl.

If there are so many icons on the icon bar that it fills up, the Wimp will
automatically scroll the bar whenever the mouse pointer is moved close to
either end of the bar.

When the mouse is clicked on one of the icons, the Wimp returns the
Mouse_Ciick event (with window handle = -2) to the task which created the
icon originally. Similarly, Wimp_GetPointerlnfo returns -2 for the window
handle when the pointer is over (either part of) the icon bar.

When Wimp_Creatclcon is called to put an icon on the bar, the Wimp uses
the x coordinates of the icon only to determine its width, and then positions
the icon as it sees fit. However, for reasons of flexibility , it does not vertically
centre the icon, but actually uses both the y coordinates given to determine the
icon's position. This means that applications must be aware of the 'standard'
dimensions of the bar, in order to position their icons correctly.

There are two main types of icon which are put onto the icon bar: those
consisting simply of a sprite, and those consisting of a sprite with text written
underneath (sec Wimp_Crcatelcon for details). The diagram below
summarises the rules governing the positioning of such icons, with y
coordinates in terms of the icon bar work area origin:

The Window Manager: Application Notes 1319

Keystrokes

Gaining the caret

1320

+68--

0--

,---- ---·· ·· ·· ··············------.,

Sprite
only

Sprite

Text

L__ ______ ••••••••••••••••••• ------'

Lower coordinates are inclusive, and upper coordinates are exclusive.

+92
+84
(max)

+20
+16

-16

-24

Note that there are two 'baseline' positions: one for sprites with text
underneath at - 16, and one for those without at 0. The overall effect is better
if most of the sprites are of a similar size, since otherwise there is a conflict
berwt:en wanting the sprites to line up on the baseline, and wanting to centre
them vertically.

The general rule is that sprites with text underneath them should always be
positioned on the baseline (y=-16), whereas sprites without text can safely be
vertically centred (although if they arc close to 68 OS units high, it is better to

put them on their baseline, y=O) .

When you gain the caret, do not automatically re-open your window on top of
all others. Also, a window should generally only gain the caret if the user
clicks inside it - the exceptions being menus and dialogue boxes, which
should give the caret back to the previous owner when they close. This is done
automatically by the Wimp for menus and menu dialogue boxes.

A converse to the first point is that when a window is popped to the front of
the window stack, do not automatically gain the caret; again, obtaining the
caret should only be a result of the user clicking in the work area or on a
writeable icon.

The Window Manager: Application Notes

Unknown keystrokes

Shortcuts

Special characters

If you receive a keystroke that you do not understand or use, hand it back
using Wimp_ProccssKey. This allows other windows to provide hot key
operations that work anywhere, it also allows the Wimp to do function key
expansion in the last resort.

Keyboard speedups for menu operations arc useful to expert users.
Reminders of their existence should be placed right-justified in parentheses
in the relevant menu entry. The following arc examples of the abbreviations
that should be used:

Crrl-X
FJ
Shift-FJ
Ctrl-FJ
Ctrl-Shift-FJ
Ctri-Ait-Shift-FJ

control character
function key
shifted function key
control function key
control shifted function key
control, Alt and Shift plus key

Use function keys for most speedups. Use ctrl-Z, crri-X, ctri-C and and ctrl-V
for operations that refer to a 'selected' object or objects. Standard menu text
for these would be:

Copy (Ctri-C)
Move (Ctrl-V)
Delete (Ctri-X)
Clear (Ctrl-Z)

to caret or pointer
to caret or pointer

ie de-select

This allows an experienced RISC OS user to access these operations
extremely rapidly.

There arc also some other keyboard shortcuts, that should be available for
expert users. For example:

Fl
Ctri-Alt-F12, Alt <nnn>

help
select keyboard driver for a particular
country

Use Alt as a shifting key rather than as a function key. Different forms of
international keyboards have standardised the usc of Alt for entering
accented characters.

The Window Manager: Application Notes 1321

Editors

Terminology

1322

Do not forbid the use of top-bit-set characters in your program, as many
standard accented characters arc available in the ASCII range &AO- &FF.
The Wimp clearly distinguishes between these characters and the function
keys, which are returned as codes with bit 8 set.

Due to their frequent polling, Wimp programs do not normally need to usc
escape conditions. The Wimp sets the Escape key to generate an ASCII ESC
(&1 B) character. If you perform a long calculation without calling
Wimp_Poll, you may set the escape action of the machine to generate escape
conditions (using *FX 229,0), as long as you set it back again (using *FX 229,1
and then *FX 124) before calling Wimp_Poll.

An editor is a program that presents files of a particular format as abstract
objects which the user can load, edit, save, and print. Text editors, word
processors, spreadsheets, draw programs are all editors in this context. Their
data files are referred to as documents.

Each document being edited is typically displayed in a window. Such
windows arc referred to as editor windows.

Most editors record, for each document currently being edited, whether the
user has made any adjustments yet to the document. This is known as an
updated flag.

Some editors arc capable of editing several documents of the same type
concurrently, while others can edit only one object at a time. Being able to
edit several documents is frequently useful, and removes the need for
multiple copies of the program to be loaded. Such programs are referred to
here as multi-document editors. Edit, Draw and Paint are all multi-document
editors, while Maestro and FormEd are not.

The title of an editor window is conventionally the pathname of the current
document, centred, with a following • (preceded by a space) if updated. The
window's minimum size field can be set to ensure tht~t the title length docs not
restrict the window's minimum size. Usc <untitled> if the document has not
yet been saved or loaded. If there arc multiple views of the same document
then append n to this, where n is the number of views of this document that

exist.

The Window Manager: Application Notes

'Nindow colours

Editor icons

3tarting an editor

Standard editor window colours arc:

• title is black {7) on a grey (2) background

• title highlight (inputfocus) background is cream (12)

• scroll bar outer colour is dark grey (3)

• scroll bar inner colour is ligh t grey {1)

Editors use RISC OS file types to distinguish which application belongs to
which file. Application ! Boot files should define Alias$@RunType_ttt
and File$Type_ttt variables, and ! appl, sm! appl, file_ttt and
small_ttt sprites (in the Wimp sprite area), as described earlier. File
types are allocated by Acorn Customer Support.

The user interface of RISC OS concerning loading and saving documents is
rather different from that of other systems, because of the permanent
availability of the Filer windows. This means that there is no need for a
separate 'mini-Filer' which presents access to the filing system in a cut-down
way. Although this may feel unusual at first to experienced users of other
systems, it soon becomes natural and helps the feeling that applications are
working together within the machine, rather than as separate entities.

Icons that appear on the icon bar should have bounding boxes 68 OS units
square. Icons with a different height are strongly discouraged, as they will
have their top edges aligned within the Filer Large icon display. A wider icon
is permissible, but the size above should be thought of as standard. If the
width is greater than 160 OS units then the edges will not be displayed in the
Filer Large icon display.

Icons arc often displayed half size to save screen space. The Filer will use
sm! appl and small_ttt if these are defined. or scaled versions of ! appl
and file ttt if not.

The standard ways to start an editor are to:

• double-click on the application icon within the directory display, or

• double-click on a document icon within the directory display

rhe Window Manager: Application Notes ~323

1324

The action taken in the first case is to load a new copy of the application (by
running its !Run file). The only visible effect to the user is that the application
icon appears on the icon bar. So when you start up with no command line
arguments, use Wimp_Createlcon to put an icon containing your !app sprite
onto the icon bar, then enter your polling loop quietly.

In the second case, create the icon bar icon, load the specified document and
open a window onto it. This typically occurs by the activation of the run-type
of the document file, which in turn will invoke the application by name with
the pathname of the document file as its single argument.

For example, the run-type for a Draw file (type &AFF) is:

*Run <disc>. !Draw. !Run %*0

where <disc> is the name of the disc on which the Draw application resides.
So when the user double-clicks on a type &AFF file, the Filer executes
*Run pathname, which in turn executes <disc>. ! Draw. ! Run pathname.

Typically, the !Boot file of the application sets up the run-type for its data
files when the application is first seen by the filer. In the case of Draw, the
boot file says:

*Set Alias$@RunType_AFF
*Run <Obey$Dir>. !Run %%*0 Sec Application Resource

Files for details

When a document icon is double-clicked, and a multi-object editor of the
appropriate type is already loaded, it is not necessary to reload the
application. 1n this case, the active application will notice the broadcast
message from the Filer announcing that a double click has occurred, and will
open a window on the document itself. For details, see Message_DaraOpen in
the section on Wimp_SendMessage (SWI &400E7).

A further way of opening an existing document is to drag irs icon from the
Filer onto the icon bar icon representing the editor. In this case, a DataLoad
message is sent by the Filer to the editor, which can edit the file. This form is
important because it specifies the intended editor precisely. For instance if
both Paint and FormEd are being used (both can edit sprite files) then
double-clicking on a sprite file could load inro either.

The Window Manager: Application Notes

Creating new documents

Editing existing
documents

Newly opened windows on documents should be horizonrally centred in a
mode 12 screen, and should not occupy the entire screen. This emphasises thnt
the application does not replace the existing desktop world, but is merely
added to it. Subsequent windows should not totally obscure ones that this
application has already opened. Use a -48 OS unit y offset with each new
window.

In a multi-document editor, clicking on the editor icon on the icon bar creates
a new, blank document in a newly opened window. If arguments arc required
in creating a new document, it may also be appropriate to use a dialogue box
during the course of this process. If a style sheet is required (eg for a DTP
program) then it may be appropriate to usc a sratic dialogue box, and drag
the style sheet from the Filer.

The window created from the loading or creation of a document should be no
larger than about 700 OS units wide by 500 high. The first window should be
centred horizontally and vertically on the screen. Open subsequent windows
48 OS units lower than the previous one, but if this would overlap the icon bar
then return to the original starting p05ition. The initial size and position of
windows should be user-configurable, by editing a tempbte file .

In a single-document editor, clicking on the editor icon on the icon bar creates
a new, blank document if there is not already a document londed. If there is
already a document loaded, this moves the document window to the front of
the window stock, in case it has been obscured by other windows.

The 'About this file' dialogue box provides useful information about a file
being edited. Provide it at the top of the menu in a file window, or within a
'Mise' submenu (if there are other miscellaneous menu entries to collect). See
the Edit template file for the htyout of this dialogue box.

To open an existing document, double-click on the document in the Filer. This
will cause a broadcast DataOpen message from the Filer, so if your editor
can edit multiple documents it can intercept this and load the document into
the existing editor.

To insert one document into another, drag the icon for the file to be inserted
into the open window of the target document. The Filer will then send a
message to that window, giving the type and name of the file dragged. The

The Window Manager: Application Notes 1325

Saving documents

target (if the file is of a type that can be inserted) can now read the file. If
the file is not of a type that can be inserted in this document then the editor
should do nothing, ie it should not give an error.

More details of these operations can be found in the section on
Wimp_SendMessage (SWI &400E7).

To save a document, provide a dialogue box as follows.

The dialogue box consists of a sprite icon, a writeable icon, and an action icon.
The best way to obtain the correct colours and dimensions is to load the
template file DeskFS: Templates. Palette into FormEd, change the
writeable icon text and sprite name appropriately and resave the template
into your application's template file.

This is the standard equivalent of the 'mini-Finder' in other systems. If there is
no pathname, then invent a simple leaf name, eg TextFile in Edit, so that
just dragging will not cause a filing system error.

The user can now:

press Return or click on OK to save in the already n<Jmed file
(clicking on the menu entry that leads to this dialogue box should
have the same effect)

2 edit the path name as desired using the keyboard

3 drag the icon into a directory display

4 press Escape to cancel the operation.

1326 The Window Manager: Application Notes

(1) is used when saving an already saved document. (3) is used when
specifying a destination directory for the save. (2) is used when editing the
leaf-name of the file. Typically, it is necessary to do (2) and (3) when first
saving a file, and (1) thereafter.

When (l) happens, the application should check that the proposed name docs
at least contain one '.' character. This prevents a common error in beginners,
who just see the proposed leaf name, and attempt to select OK immediately.
The error message To save, drag the file icon to a directory
display should be used for this case.

When a drag occurs, send a message to the window (and icon, to cope with the
icon bar) where the drag ends, saying that you want to save the file. The
window (if it is a directory display) will reply with the full pathname. Save
the file using this name. The filename filed for the writeable icon should be
up to 255 characters long with a '-<Space' validation string to prevent a
space being inserted in the pathname. Longer pathnamcs should not crash
your application.

If the save is successful, update your stored name for the document and
remove the save dialogue box using Wimp_CreateMenu (-1): the operation is
complete. Check return codes and errors from saves.

Save should be interpreted as being like 'save and resume' from some other
systems, ie after the operation the user is still editing the same document.
Save should cause the document to be marked as unmodified, unless the save
was to a scrap file (see the section on the data transfer protocol in the section
on Wimp_SendMessage).

Remember the date-stamp on a loaded document. If the document is saved
without being modified, save with an unchanged date-stamp. Otherwise, save
with the current date-stamp and update the rerained date-stamp for rhe
document.

Menu entries for saving a portion of a document (eg 'Save selection') may be
grouped either with other selection operations, or with the 'Save file'
operation. If there are several possible selection save formats, putting it on
Save may be more appropriate. Balancing submenus may also be an issue.
Edit and Paint, for instance, group Save selection with other selection
operations while Draw (which has several different forms of Save selection,
and many other operations on the Selection submenu) groups it with Save file.

The Window Manager: Application Notes 1327

Closing document
windows

Quitting editors

Miscellaneous points

Null events

Dragging

1328

If the user clicks on the Close icon of a document window, and there is
unsaved data, then you should pop up a dialogue box asking:

• Do you want to save your edited file? (if the document has no title)

• Do you want to save edited file 'name'?

You can copy this dialogue box from Edit's template file. If the answer is
Yes then pop up a Save dialogue box, and if the result is saved then close the
document window. If the answer is No, or any cancel-menu (cg Escape) occurs,
then the operation is abandoned.

If the user clicks Adjust on the Close icon, call Wimp_GetPointcrlnfo on
receipt of the Close_ Window_Request. Also, you must open the file's home
directory after closing it. Th1s can be obtained by removing the lcafname
from the end of the file's name and sending a Message_FilctOpenDir
broadcast to open the directory.

A Quit operation should be supplied at the bottom of the menu attached to an
editor's icon bar icon. If it is selected when there is unsaved data, then ask the
question:

n files edited but not saved in prog: are you sure you want to Quit?

(files should say file if n= 1.) The same question should be asked if a preQuit
broadcast message is received. Sec Message_PrcQuit for further dcmils.

Mask out Nuii_Reason_Code events when you call Wimp_Poll, unless you
really need them. Causing the Wimp to return to an application only to have
it call Wimp_poll again immediately slows the system down. If you do need
to take null events, Wimp_Poiiidle is preferable to Wimp_Poll, unless the
user is directly involved (cg when dragging an object) and responsiveness is
important.

The Wimp's drag operations arc specifically for drags that must occur
outside all windows. As well as the cycling dashed box form, they allow the
use of user-defined graphics, allowing arbitrary objects to be dragged
between windows.

The Window Manager: Application Notes

Errors

Time

If you build drag operations within your window, check that redraw works
correctly when things move in the background (the Madness application is
useful for testing this). Also, it is important to note that such 'within-window'
dragging must use Wimp_UpdateWindow to update the window, rather than
drawing directly on the screen.

If the drag works with the mouse button up then menu selection and scrolling
can happen during the drag, which is often useful. Stop following the drag on
a Pointer_Leaving_ Window event, and start again on a
Pointer_Entering_ Window event.

If the drag works with the button down, then it may continue to work if the
pointer is moved out ci the window with the button still down. Alternatively
for button-down drags, you can restrict the pointer to the visible work area,
and automatically scroll the window if the pointer gets close to the edge.

Always check error returns from Wimp calls. Beware errors In redraw code;
they are a common form of infinite loops (because the redraw fails, the
Wimp asks you again to redraw, and so on). A suddenly missing font, for
instance, should not lead to infinite looping. Check that the failure ci
Wimp_CreateWindow or Wimp_Createlcon does not lead you to crash or
lose data.

Check cases concerning running out of space.

If the user is asked to insert a floppy disc and selects Cancel, you get an
error Disc not present (&10805) or Disc not found (&10804)
from the ADFS. If you get either of these errors from an operation you need
not call Wimp_ReportError, just cancel the operation. This avoids the user
getting two error boxes in a row.

Do not have phrases like 'at line 1230' in error messages from BASIC
programs;'(internal error code 1230)' ispreferable.

There are two clocks that keep track of real time in the system, the hardware
clock and a software centi-second timer. The two can diverge by a few seconds
a day, but are resynchronised at machine reset. For consistency, always use the
centi-second timer.

The Window Manager: Application Notes 1329

Error messages

1330

When using Wimp_Pollldle, remember that monotonic times can go negative
(ie wrap round in a 32-bit representation) after around six weeks. So when
comparing two times the expression

(newtime - oldtime) > 100

is a better comparison than

newtime > oldtime + 100.

&280 Wimp unable to claim work area
the RMA area is full

&281

&282

&283

&284

&286
&287
&288
&289

&29F

Invalid Wimp operation in this context
Some operations are only allowed after a call to Wimp_lnitialise
Rectangle area full
Screen display is too complex
Too many windows
Maximum 64 windows allowed
Window definition won't fit
No room in RMA for window
Wimp_GetRectangle called incorrectly
Input focus window not found
lllegal window handle
Bad work area extent
Visible window is set to display a non-existent part of the work area
Bad parameter passed to Wimp in R1
The address in R I was less than &8000,ie outside of application space

Most of these errors are provided as debugging aids to development
programmers, and should not occur when the system is working properly,
except for Too many windows, which can happen if a task program allows
the user to bring up more and more windows. The error is not serious, as long
as the task program's error trapping is written properly - when creating a
window, you should only update any data structures relating to it once the
window has been successfully created.

The Window Manaaer: Aoolication Notes

